snowflake-ml-python 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (203) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/utils/identifier.py +3 -1
  3. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  4. snowflake/ml/feature_store/feature_store.py +151 -78
  5. snowflake/ml/feature_store/feature_view.py +12 -24
  6. snowflake/ml/fileset/sfcfs.py +56 -50
  7. snowflake/ml/fileset/stage_fs.py +48 -13
  8. snowflake/ml/model/_client/model/model_version_impl.py +2 -50
  9. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  10. snowflake/ml/model/_client/sql/model.py +23 -2
  11. snowflake/ml/model/_client/sql/model_version.py +22 -1
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  13. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  14. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  15. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  16. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  17. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  18. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  19. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  20. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  21. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  22. snowflake/ml/model/_packager/model_packager.py +2 -2
  23. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  24. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  25. snowflake/ml/model/type_hints.py +21 -2
  26. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  27. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  29. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  33. snowflake/ml/modeling/cluster/birch.py +195 -123
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  35. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  37. snowflake/ml/modeling/cluster/k_means.py +195 -123
  38. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  40. snowflake/ml/modeling/cluster/optics.py +195 -123
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  44. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  51. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  52. snowflake/ml/modeling/covariance/oas.py +195 -123
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  56. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  61. snowflake/ml/modeling/decomposition/pca.py +195 -123
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  90. snowflake/ml/modeling/framework/_utils.py +8 -1
  91. snowflake/ml/modeling/framework/base.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  94. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  95. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  96. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +195 -123
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +195 -123
  105. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  107. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  111. snowflake/ml/modeling/linear_model/lars.py +195 -123
  112. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  113. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  118. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  128. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  131. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  140. snowflake/ml/modeling/manifold/isomap.py +195 -123
  141. snowflake/ml/modeling/manifold/mds.py +195 -123
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  143. snowflake/ml/modeling/manifold/tsne.py +195 -123
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  146. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  147. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  148. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  149. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  150. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  151. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  152. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  153. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  154. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  155. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  156. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  157. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  158. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  159. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  160. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  161. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  162. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  163. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  164. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  165. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  166. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  167. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  168. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  169. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  170. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  171. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  172. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  173. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  174. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  175. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  176. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  177. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  178. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  179. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  180. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  181. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  182. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  183. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  184. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  185. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  186. snowflake/ml/modeling/svm/svc.py +195 -123
  187. snowflake/ml/modeling/svm/svr.py +195 -123
  188. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  189. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  190. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  191. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  192. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  193. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  194. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  195. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  196. snowflake/ml/registry/registry.py +1 -1
  197. snowflake/ml/version.py +1 -1
  198. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +68 -57
  199. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +202 -200
  200. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  201. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  202. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  203. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -282,12 +281,7 @@ class TweedieRegressor(BaseTransformer):
282
281
  )
283
282
  return selected_cols
284
283
 
285
- @telemetry.send_api_usage_telemetry(
286
- project=_PROJECT,
287
- subproject=_SUBPROJECT,
288
- custom_tags=dict([("autogen", True)]),
289
- )
290
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TweedieRegressor":
284
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TweedieRegressor":
291
285
  """Fit a Generalized Linear Model
292
286
  For more details on this function, see [sklearn.linear_model.TweedieRegressor.fit]
293
287
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html#sklearn.linear_model.TweedieRegressor.fit)
@@ -314,12 +308,14 @@ class TweedieRegressor(BaseTransformer):
314
308
 
315
309
  self._snowpark_cols = dataset.select(self.input_cols).columns
316
310
 
317
- # If we are already in a stored procedure, no need to kick off another one.
311
+ # If we are already in a stored procedure, no need to kick off another one.
318
312
  if SNOWML_SPROC_ENV in os.environ:
319
313
  statement_params = telemetry.get_function_usage_statement_params(
320
314
  project=_PROJECT,
321
315
  subproject=_SUBPROJECT,
322
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TweedieRegressor.__class__.__name__),
316
+ function_name=telemetry.get_statement_params_full_func_name(
317
+ inspect.currentframe(), TweedieRegressor.__class__.__name__
318
+ ),
323
319
  api_calls=[Session.call],
324
320
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
325
321
  )
@@ -340,7 +336,7 @@ class TweedieRegressor(BaseTransformer):
340
336
  )
341
337
  self._sklearn_object = model_trainer.train()
342
338
  self._is_fitted = True
343
- self._get_model_signatures(dataset)
339
+ self._generate_model_signatures(dataset)
344
340
  return self
345
341
 
346
342
  def _batch_inference_validate_snowpark(
@@ -416,7 +412,9 @@ class TweedieRegressor(BaseTransformer):
416
412
  # when it is classifier, infer the datatype from label columns
417
413
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
418
414
  # Batch inference takes a single expected output column type. Use the first columns type for now.
419
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
415
+ label_cols_signatures = [
416
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
417
+ ]
420
418
  if len(label_cols_signatures) == 0:
421
419
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
422
420
  raise exceptions.SnowflakeMLException(
@@ -424,25 +422,22 @@ class TweedieRegressor(BaseTransformer):
424
422
  original_exception=ValueError(error_str),
425
423
  )
426
424
 
427
- expected_type_inferred = convert_sp_to_sf_type(
428
- label_cols_signatures[0].as_snowpark_type()
429
- )
425
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
430
426
 
431
427
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
428
+ assert isinstance(
429
+ dataset._session, Session
430
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
431
 
434
432
  transform_kwargs = dict(
435
- session = dataset._session,
436
- dependencies = self._deps,
437
- drop_input_cols = self._drop_input_cols,
438
- expected_output_cols_type = expected_type_inferred,
433
+ session=dataset._session,
434
+ dependencies=self._deps,
435
+ drop_input_cols=self._drop_input_cols,
436
+ expected_output_cols_type=expected_type_inferred,
439
437
  )
440
438
 
441
439
  elif isinstance(dataset, pd.DataFrame):
442
- transform_kwargs = dict(
443
- snowpark_input_cols = self._snowpark_cols,
444
- drop_input_cols = self._drop_input_cols
445
- )
440
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
446
441
 
447
442
  transform_handlers = ModelTransformerBuilder.build(
448
443
  dataset=dataset,
@@ -482,7 +477,7 @@ class TweedieRegressor(BaseTransformer):
482
477
  Transformed dataset.
483
478
  """
484
479
  super()._check_dataset_type(dataset)
485
- inference_method="transform"
480
+ inference_method = "transform"
486
481
 
487
482
  # This dictionary contains optional kwargs for batch inference. These kwargs
488
483
  # are specific to the type of dataset used.
@@ -519,17 +514,14 @@ class TweedieRegressor(BaseTransformer):
519
514
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
520
515
 
521
516
  transform_kwargs = dict(
522
- session = dataset._session,
523
- dependencies = self._deps,
524
- drop_input_cols = self._drop_input_cols,
525
- expected_output_cols_type = expected_dtype,
517
+ session=dataset._session,
518
+ dependencies=self._deps,
519
+ drop_input_cols=self._drop_input_cols,
520
+ expected_output_cols_type=expected_dtype,
526
521
  )
527
522
 
528
523
  elif isinstance(dataset, pd.DataFrame):
529
- transform_kwargs = dict(
530
- snowpark_input_cols = self._snowpark_cols,
531
- drop_input_cols = self._drop_input_cols
532
- )
524
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
533
525
 
534
526
  transform_handlers = ModelTransformerBuilder.build(
535
527
  dataset=dataset,
@@ -548,7 +540,11 @@ class TweedieRegressor(BaseTransformer):
548
540
  return output_df
549
541
 
550
542
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
551
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
543
+ def fit_predict(
544
+ self,
545
+ dataset: Union[DataFrame, pd.DataFrame],
546
+ output_cols_prefix: str = "fit_predict_",
547
+ ) -> Union[DataFrame, pd.DataFrame]:
552
548
  """ Method not supported for this class.
553
549
 
554
550
 
@@ -573,7 +569,9 @@ class TweedieRegressor(BaseTransformer):
573
569
  )
574
570
  output_result, fitted_estimator = model_trainer.train_fit_predict(
575
571
  drop_input_cols=self._drop_input_cols,
576
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
572
+ expected_output_cols_list=(
573
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
574
+ ),
577
575
  )
578
576
  self._sklearn_object = fitted_estimator
579
577
  self._is_fitted = True
@@ -590,6 +588,62 @@ class TweedieRegressor(BaseTransformer):
590
588
  assert self._sklearn_object is not None
591
589
  return self._sklearn_object.embedding_
592
590
 
591
+
592
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
593
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
594
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
595
+ """
596
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
597
+ # The following condition is introduced for kneighbors methods, and not used in other methods
598
+ if output_cols:
599
+ output_cols = [
600
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
601
+ for c in output_cols
602
+ ]
603
+ elif getattr(self._sklearn_object, "classes_", None) is None:
604
+ output_cols = [output_cols_prefix]
605
+ elif self._sklearn_object is not None:
606
+ classes = self._sklearn_object.classes_
607
+ if isinstance(classes, numpy.ndarray):
608
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
609
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
610
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
611
+ output_cols = []
612
+ for i, cl in enumerate(classes):
613
+ # For binary classification, there is only one output column for each class
614
+ # ndarray as the two classes are complementary.
615
+ if len(cl) == 2:
616
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
617
+ else:
618
+ output_cols.extend([
619
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
620
+ ])
621
+ else:
622
+ output_cols = []
623
+
624
+ # Make sure column names are valid snowflake identifiers.
625
+ assert output_cols is not None # Make MyPy happy
626
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
627
+
628
+ return rv
629
+
630
+ def _align_expected_output_names(
631
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
632
+ ) -> List[str]:
633
+ # in case the inferred output column names dimension is different
634
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
635
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
636
+ output_df_columns = list(output_df_pd.columns)
637
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
638
+ if self.sample_weight_col:
639
+ output_df_columns_set -= set(self.sample_weight_col)
640
+ # if the dimension of inferred output column names is correct; use it
641
+ if len(expected_output_cols_list) == len(output_df_columns_set):
642
+ return expected_output_cols_list
643
+ # otherwise, use the sklearn estimator's output
644
+ else:
645
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
646
+
593
647
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
594
648
  @telemetry.send_api_usage_telemetry(
595
649
  project=_PROJECT,
@@ -620,24 +674,28 @@ class TweedieRegressor(BaseTransformer):
620
674
  # are specific to the type of dataset used.
621
675
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
622
676
 
677
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
678
+
623
679
  if isinstance(dataset, DataFrame):
624
680
  self._deps = self._batch_inference_validate_snowpark(
625
681
  dataset=dataset,
626
682
  inference_method=inference_method,
627
683
  )
628
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
684
+ assert isinstance(
685
+ dataset._session, Session
686
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
687
  transform_kwargs = dict(
630
688
  session=dataset._session,
631
689
  dependencies=self._deps,
632
- drop_input_cols = self._drop_input_cols,
690
+ drop_input_cols=self._drop_input_cols,
633
691
  expected_output_cols_type="float",
634
692
  )
693
+ expected_output_cols = self._align_expected_output_names(
694
+ inference_method, dataset, expected_output_cols, output_cols_prefix
695
+ )
635
696
 
636
697
  elif isinstance(dataset, pd.DataFrame):
637
- transform_kwargs = dict(
638
- snowpark_input_cols = self._snowpark_cols,
639
- drop_input_cols = self._drop_input_cols
640
- )
698
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
641
699
 
642
700
  transform_handlers = ModelTransformerBuilder.build(
643
701
  dataset=dataset,
@@ -649,7 +707,7 @@ class TweedieRegressor(BaseTransformer):
649
707
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
650
708
  inference_method=inference_method,
651
709
  input_cols=self.input_cols,
652
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
710
+ expected_output_cols=expected_output_cols,
653
711
  **transform_kwargs
654
712
  )
655
713
  return output_df
@@ -679,7 +737,8 @@ class TweedieRegressor(BaseTransformer):
679
737
  Output dataset with log probability of the sample for each class in the model.
680
738
  """
681
739
  super()._check_dataset_type(dataset)
682
- inference_method="predict_log_proba"
740
+ inference_method = "predict_log_proba"
741
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
742
 
684
743
  # This dictionary contains optional kwargs for batch inference. These kwargs
685
744
  # are specific to the type of dataset used.
@@ -690,18 +749,20 @@ class TweedieRegressor(BaseTransformer):
690
749
  dataset=dataset,
691
750
  inference_method=inference_method,
692
751
  )
693
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
752
+ assert isinstance(
753
+ dataset._session, Session
754
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
755
  transform_kwargs = dict(
695
756
  session=dataset._session,
696
757
  dependencies=self._deps,
697
- drop_input_cols = self._drop_input_cols,
758
+ drop_input_cols=self._drop_input_cols,
698
759
  expected_output_cols_type="float",
699
760
  )
761
+ expected_output_cols = self._align_expected_output_names(
762
+ inference_method, dataset, expected_output_cols, output_cols_prefix
763
+ )
700
764
  elif isinstance(dataset, pd.DataFrame):
701
- transform_kwargs = dict(
702
- snowpark_input_cols = self._snowpark_cols,
703
- drop_input_cols = self._drop_input_cols
704
- )
765
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
705
766
 
706
767
  transform_handlers = ModelTransformerBuilder.build(
707
768
  dataset=dataset,
@@ -714,7 +775,7 @@ class TweedieRegressor(BaseTransformer):
714
775
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
715
776
  inference_method=inference_method,
716
777
  input_cols=self.input_cols,
717
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
778
+ expected_output_cols=expected_output_cols,
718
779
  **transform_kwargs
719
780
  )
720
781
  return output_df
@@ -740,30 +801,34 @@ class TweedieRegressor(BaseTransformer):
740
801
  Output dataset with results of the decision function for the samples in input dataset.
741
802
  """
742
803
  super()._check_dataset_type(dataset)
743
- inference_method="decision_function"
804
+ inference_method = "decision_function"
744
805
 
745
806
  # This dictionary contains optional kwargs for batch inference. These kwargs
746
807
  # are specific to the type of dataset used.
747
808
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
748
809
 
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
811
+
749
812
  if isinstance(dataset, DataFrame):
750
813
  self._deps = self._batch_inference_validate_snowpark(
751
814
  dataset=dataset,
752
815
  inference_method=inference_method,
753
816
  )
754
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
817
+ assert isinstance(
818
+ dataset._session, Session
819
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
755
820
  transform_kwargs = dict(
756
821
  session=dataset._session,
757
822
  dependencies=self._deps,
758
- drop_input_cols = self._drop_input_cols,
823
+ drop_input_cols=self._drop_input_cols,
759
824
  expected_output_cols_type="float",
760
825
  )
826
+ expected_output_cols = self._align_expected_output_names(
827
+ inference_method, dataset, expected_output_cols, output_cols_prefix
828
+ )
761
829
 
762
830
  elif isinstance(dataset, pd.DataFrame):
763
- transform_kwargs = dict(
764
- snowpark_input_cols = self._snowpark_cols,
765
- drop_input_cols = self._drop_input_cols
766
- )
831
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
767
832
 
768
833
  transform_handlers = ModelTransformerBuilder.build(
769
834
  dataset=dataset,
@@ -776,7 +841,7 @@ class TweedieRegressor(BaseTransformer):
776
841
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
777
842
  inference_method=inference_method,
778
843
  input_cols=self.input_cols,
779
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
844
+ expected_output_cols=expected_output_cols,
780
845
  **transform_kwargs
781
846
  )
782
847
  return output_df
@@ -805,12 +870,14 @@ class TweedieRegressor(BaseTransformer):
805
870
  Output dataset with probability of the sample for each class in the model.
806
871
  """
807
872
  super()._check_dataset_type(dataset)
808
- inference_method="score_samples"
873
+ inference_method = "score_samples"
809
874
 
810
875
  # This dictionary contains optional kwargs for batch inference. These kwargs
811
876
  # are specific to the type of dataset used.
812
877
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
813
878
 
879
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
880
+
814
881
  if isinstance(dataset, DataFrame):
815
882
  self._deps = self._batch_inference_validate_snowpark(
816
883
  dataset=dataset,
@@ -823,6 +890,9 @@ class TweedieRegressor(BaseTransformer):
823
890
  drop_input_cols = self._drop_input_cols,
824
891
  expected_output_cols_type="float",
825
892
  )
893
+ expected_output_cols = self._align_expected_output_names(
894
+ inference_method, dataset, expected_output_cols, output_cols_prefix
895
+ )
826
896
 
827
897
  elif isinstance(dataset, pd.DataFrame):
828
898
  transform_kwargs = dict(
@@ -841,7 +911,7 @@ class TweedieRegressor(BaseTransformer):
841
911
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
842
912
  inference_method=inference_method,
843
913
  input_cols=self.input_cols,
844
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
914
+ expected_output_cols=expected_output_cols,
845
915
  **transform_kwargs
846
916
  )
847
917
  return output_df
@@ -988,50 +1058,84 @@ class TweedieRegressor(BaseTransformer):
988
1058
  )
989
1059
  return output_df
990
1060
 
1061
+
1062
+
1063
+ def to_sklearn(self) -> Any:
1064
+ """Get sklearn.linear_model.TweedieRegressor object.
1065
+ """
1066
+ if self._sklearn_object is None:
1067
+ self._sklearn_object = self._create_sklearn_object()
1068
+ return self._sklearn_object
1069
+
1070
+ def to_xgboost(self) -> Any:
1071
+ raise exceptions.SnowflakeMLException(
1072
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1073
+ original_exception=AttributeError(
1074
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
+ "to_xgboost()",
1076
+ "to_sklearn()"
1077
+ )
1078
+ ),
1079
+ )
1080
+
1081
+ def to_lightgbm(self) -> Any:
1082
+ raise exceptions.SnowflakeMLException(
1083
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1084
+ original_exception=AttributeError(
1085
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
+ "to_lightgbm()",
1087
+ "to_sklearn()"
1088
+ )
1089
+ ),
1090
+ )
991
1091
 
992
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1092
+ def _get_dependencies(self) -> List[str]:
1093
+ return self._deps
1094
+
1095
+
1096
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
993
1097
  self._model_signature_dict = dict()
994
1098
 
995
1099
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
996
1100
 
997
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1101
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
998
1102
  outputs: List[BaseFeatureSpec] = []
999
1103
  if hasattr(self, "predict"):
1000
1104
  # keep mypy happy
1001
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1105
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1002
1106
  # For classifier, the type of predict is the same as the type of label
1003
- if self._sklearn_object._estimator_type == 'classifier':
1004
- # label columns is the desired type for output
1107
+ if self._sklearn_object._estimator_type == "classifier":
1108
+ # label columns is the desired type for output
1005
1109
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
1110
  # rename the output columns
1007
1111
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1112
+ self._model_signature_dict["predict"] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1011
1115
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1012
1116
  # For outlier models, returns -1 for outliers and 1 for inliers.
1013
- # Clusterer returns int64 cluster labels.
1117
+ # Clusterer returns int64 cluster labels.
1014
1118
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1015
1119
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1019
-
1120
+ self._model_signature_dict["predict"] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1123
+
1020
1124
  # For regressor, the type of predict is float64
1021
- elif self._sklearn_object._estimator_type == 'regressor':
1125
+ elif self._sklearn_object._estimator_type == "regressor":
1022
1126
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1130
+
1027
1131
  for prob_func in PROB_FUNCTIONS:
1028
1132
  if hasattr(self, prob_func):
1029
1133
  output_cols_prefix: str = f"{prob_func}_"
1030
1134
  output_column_names = self._get_output_column_names(output_cols_prefix)
1031
1135
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1032
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1136
+ self._model_signature_dict[prob_func] = ModelSignature(
1137
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1138
+ )
1035
1139
 
1036
1140
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1037
1141
  items = list(self._model_signature_dict.items())
@@ -1044,10 +1148,10 @@ class TweedieRegressor(BaseTransformer):
1044
1148
  """Returns model signature of current class.
1045
1149
 
1046
1150
  Raises:
1047
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1151
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1048
1152
 
1049
1153
  Returns:
1050
- Dict[str, ModelSignature]: each method and its input output signature
1154
+ Dict with each method and its input output signature
1051
1155
  """
1052
1156
  if self._model_signature_dict is None:
1053
1157
  raise exceptions.SnowflakeMLException(
@@ -1055,35 +1159,3 @@ class TweedieRegressor(BaseTransformer):
1055
1159
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1056
1160
  )
1057
1161
  return self._model_signature_dict
1058
-
1059
- def to_sklearn(self) -> Any:
1060
- """Get sklearn.linear_model.TweedieRegressor object.
1061
- """
1062
- if self._sklearn_object is None:
1063
- self._sklearn_object = self._create_sklearn_object()
1064
- return self._sklearn_object
1065
-
1066
- def to_xgboost(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_xgboost()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def to_lightgbm(self) -> Any:
1078
- raise exceptions.SnowflakeMLException(
1079
- error_code=error_codes.METHOD_NOT_ALLOWED,
1080
- original_exception=AttributeError(
1081
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
- "to_lightgbm()",
1083
- "to_sklearn()"
1084
- )
1085
- ),
1086
- )
1087
-
1088
- def _get_dependencies(self) -> List[str]:
1089
- return self._deps