tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,157 @@
|
|
1
|
+
|
2
|
+
// This file is part of Eigen, a lightweight C++ template library
|
3
|
+
// for linear algebra.
|
4
|
+
//
|
5
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_ORDERING_H
|
12
|
+
#define EIGEN_ORDERING_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
#include "Eigen_Colamd.h"
|
17
|
+
|
18
|
+
namespace internal {
|
19
|
+
|
20
|
+
/** \internal
|
21
|
+
* \ingroup OrderingMethods_Module
|
22
|
+
* \param[in] A the input non-symmetric matrix
|
23
|
+
* \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A.
|
24
|
+
* FIXME: The values should not be considered here
|
25
|
+
*/
|
26
|
+
template<typename MatrixType>
|
27
|
+
void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat)
|
28
|
+
{
|
29
|
+
MatrixType C;
|
30
|
+
C = A.transpose(); // NOTE: Could be costly
|
31
|
+
for (int i = 0; i < C.rows(); i++)
|
32
|
+
{
|
33
|
+
for (typename MatrixType::InnerIterator it(C, i); it; ++it)
|
34
|
+
it.valueRef() = 0.0;
|
35
|
+
}
|
36
|
+
symmat = C + A;
|
37
|
+
}
|
38
|
+
|
39
|
+
}
|
40
|
+
|
41
|
+
#ifndef EIGEN_MPL2_ONLY
|
42
|
+
|
43
|
+
/** \ingroup OrderingMethods_Module
|
44
|
+
* \class AMDOrdering
|
45
|
+
*
|
46
|
+
* Functor computing the \em approximate \em minimum \em degree ordering
|
47
|
+
* If the matrix is not structurally symmetric, an ordering of A^T+A is computed
|
48
|
+
* \tparam StorageIndex The type of indices of the matrix
|
49
|
+
* \sa COLAMDOrdering
|
50
|
+
*/
|
51
|
+
template <typename StorageIndex>
|
52
|
+
class AMDOrdering
|
53
|
+
{
|
54
|
+
public:
|
55
|
+
typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
|
56
|
+
|
57
|
+
/** Compute the permutation vector from a sparse matrix
|
58
|
+
* This routine is much faster if the input matrix is column-major
|
59
|
+
*/
|
60
|
+
template <typename MatrixType>
|
61
|
+
void operator()(const MatrixType& mat, PermutationType& perm)
|
62
|
+
{
|
63
|
+
// Compute the symmetric pattern
|
64
|
+
SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm;
|
65
|
+
internal::ordering_helper_at_plus_a(mat,symm);
|
66
|
+
|
67
|
+
// Call the AMD routine
|
68
|
+
//m_mat.prune(keep_diag());
|
69
|
+
internal::minimum_degree_ordering(symm, perm);
|
70
|
+
}
|
71
|
+
|
72
|
+
/** Compute the permutation with a selfadjoint matrix */
|
73
|
+
template <typename SrcType, unsigned int SrcUpLo>
|
74
|
+
void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
|
75
|
+
{
|
76
|
+
SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat;
|
77
|
+
|
78
|
+
// Call the AMD routine
|
79
|
+
// m_mat.prune(keep_diag()); //Remove the diagonal elements
|
80
|
+
internal::minimum_degree_ordering(C, perm);
|
81
|
+
}
|
82
|
+
};
|
83
|
+
|
84
|
+
#endif // EIGEN_MPL2_ONLY
|
85
|
+
|
86
|
+
/** \ingroup OrderingMethods_Module
|
87
|
+
* \class NaturalOrdering
|
88
|
+
*
|
89
|
+
* Functor computing the natural ordering (identity)
|
90
|
+
*
|
91
|
+
* \note Returns an empty permutation matrix
|
92
|
+
* \tparam StorageIndex The type of indices of the matrix
|
93
|
+
*/
|
94
|
+
template <typename StorageIndex>
|
95
|
+
class NaturalOrdering
|
96
|
+
{
|
97
|
+
public:
|
98
|
+
typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
|
99
|
+
|
100
|
+
/** Compute the permutation vector from a column-major sparse matrix */
|
101
|
+
template <typename MatrixType>
|
102
|
+
void operator()(const MatrixType& /*mat*/, PermutationType& perm)
|
103
|
+
{
|
104
|
+
perm.resize(0);
|
105
|
+
}
|
106
|
+
|
107
|
+
};
|
108
|
+
|
109
|
+
/** \ingroup OrderingMethods_Module
|
110
|
+
* \class COLAMDOrdering
|
111
|
+
*
|
112
|
+
* \tparam StorageIndex The type of indices of the matrix
|
113
|
+
*
|
114
|
+
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
115
|
+
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
116
|
+
*/
|
117
|
+
template<typename StorageIndex>
|
118
|
+
class COLAMDOrdering
|
119
|
+
{
|
120
|
+
public:
|
121
|
+
typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
|
122
|
+
typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
|
123
|
+
|
124
|
+
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
125
|
+
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
126
|
+
*/
|
127
|
+
template <typename MatrixType>
|
128
|
+
void operator() (const MatrixType& mat, PermutationType& perm)
|
129
|
+
{
|
130
|
+
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
131
|
+
|
132
|
+
StorageIndex m = StorageIndex(mat.rows());
|
133
|
+
StorageIndex n = StorageIndex(mat.cols());
|
134
|
+
StorageIndex nnz = StorageIndex(mat.nonZeros());
|
135
|
+
// Get the recommended value of Alen to be used by colamd
|
136
|
+
StorageIndex Alen = internal::colamd_recommended(nnz, m, n);
|
137
|
+
// Set the default parameters
|
138
|
+
double knobs [COLAMD_KNOBS];
|
139
|
+
StorageIndex stats [COLAMD_STATS];
|
140
|
+
internal::colamd_set_defaults(knobs);
|
141
|
+
|
142
|
+
IndexVector p(n+1), A(Alen);
|
143
|
+
for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
144
|
+
for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
145
|
+
// Call Colamd routine to compute the ordering
|
146
|
+
StorageIndex info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
147
|
+
EIGEN_UNUSED_VARIABLE(info);
|
148
|
+
eigen_assert( info && "COLAMD failed " );
|
149
|
+
|
150
|
+
perm.resize(n);
|
151
|
+
for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i;
|
152
|
+
}
|
153
|
+
};
|
154
|
+
|
155
|
+
} // end namespace Eigen
|
156
|
+
|
157
|
+
#endif
|
@@ -0,0 +1,678 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_PASTIXSUPPORT_H
|
11
|
+
#define EIGEN_PASTIXSUPPORT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
#if defined(DCOMPLEX)
|
16
|
+
#define PASTIX_COMPLEX COMPLEX
|
17
|
+
#define PASTIX_DCOMPLEX DCOMPLEX
|
18
|
+
#else
|
19
|
+
#define PASTIX_COMPLEX std::complex<float>
|
20
|
+
#define PASTIX_DCOMPLEX std::complex<double>
|
21
|
+
#endif
|
22
|
+
|
23
|
+
/** \ingroup PaStiXSupport_Module
|
24
|
+
* \brief Interface to the PaStix solver
|
25
|
+
*
|
26
|
+
* This class is used to solve the linear systems A.X = B via the PaStix library.
|
27
|
+
* The matrix can be either real or complex, symmetric or not.
|
28
|
+
*
|
29
|
+
* \sa TutorialSparseDirectSolvers
|
30
|
+
*/
|
31
|
+
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
|
32
|
+
template<typename _MatrixType, int Options> class PastixLLT;
|
33
|
+
template<typename _MatrixType, int Options> class PastixLDLT;
|
34
|
+
|
35
|
+
namespace internal
|
36
|
+
{
|
37
|
+
|
38
|
+
template<class Pastix> struct pastix_traits;
|
39
|
+
|
40
|
+
template<typename _MatrixType>
|
41
|
+
struct pastix_traits< PastixLU<_MatrixType> >
|
42
|
+
{
|
43
|
+
typedef _MatrixType MatrixType;
|
44
|
+
typedef typename _MatrixType::Scalar Scalar;
|
45
|
+
typedef typename _MatrixType::RealScalar RealScalar;
|
46
|
+
typedef typename _MatrixType::StorageIndex StorageIndex;
|
47
|
+
};
|
48
|
+
|
49
|
+
template<typename _MatrixType, int Options>
|
50
|
+
struct pastix_traits< PastixLLT<_MatrixType,Options> >
|
51
|
+
{
|
52
|
+
typedef _MatrixType MatrixType;
|
53
|
+
typedef typename _MatrixType::Scalar Scalar;
|
54
|
+
typedef typename _MatrixType::RealScalar RealScalar;
|
55
|
+
typedef typename _MatrixType::StorageIndex StorageIndex;
|
56
|
+
};
|
57
|
+
|
58
|
+
template<typename _MatrixType, int Options>
|
59
|
+
struct pastix_traits< PastixLDLT<_MatrixType,Options> >
|
60
|
+
{
|
61
|
+
typedef _MatrixType MatrixType;
|
62
|
+
typedef typename _MatrixType::Scalar Scalar;
|
63
|
+
typedef typename _MatrixType::RealScalar RealScalar;
|
64
|
+
typedef typename _MatrixType::StorageIndex StorageIndex;
|
65
|
+
};
|
66
|
+
|
67
|
+
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
|
68
|
+
{
|
69
|
+
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
70
|
+
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
71
|
+
s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
|
72
|
+
}
|
73
|
+
|
74
|
+
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
|
75
|
+
{
|
76
|
+
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
77
|
+
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
78
|
+
d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
|
79
|
+
}
|
80
|
+
|
81
|
+
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
|
82
|
+
{
|
83
|
+
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
84
|
+
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
85
|
+
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);
|
86
|
+
}
|
87
|
+
|
88
|
+
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
|
89
|
+
{
|
90
|
+
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
91
|
+
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
92
|
+
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm);
|
93
|
+
}
|
94
|
+
|
95
|
+
// Convert the matrix to Fortran-style Numbering
|
96
|
+
template <typename MatrixType>
|
97
|
+
void c_to_fortran_numbering (MatrixType& mat)
|
98
|
+
{
|
99
|
+
if ( !(mat.outerIndexPtr()[0]) )
|
100
|
+
{
|
101
|
+
int i;
|
102
|
+
for(i = 0; i <= mat.rows(); ++i)
|
103
|
+
++mat.outerIndexPtr()[i];
|
104
|
+
for(i = 0; i < mat.nonZeros(); ++i)
|
105
|
+
++mat.innerIndexPtr()[i];
|
106
|
+
}
|
107
|
+
}
|
108
|
+
|
109
|
+
// Convert to C-style Numbering
|
110
|
+
template <typename MatrixType>
|
111
|
+
void fortran_to_c_numbering (MatrixType& mat)
|
112
|
+
{
|
113
|
+
// Check the Numbering
|
114
|
+
if ( mat.outerIndexPtr()[0] == 1 )
|
115
|
+
{ // Convert to C-style numbering
|
116
|
+
int i;
|
117
|
+
for(i = 0; i <= mat.rows(); ++i)
|
118
|
+
--mat.outerIndexPtr()[i];
|
119
|
+
for(i = 0; i < mat.nonZeros(); ++i)
|
120
|
+
--mat.innerIndexPtr()[i];
|
121
|
+
}
|
122
|
+
}
|
123
|
+
}
|
124
|
+
|
125
|
+
// This is the base class to interface with PaStiX functions.
|
126
|
+
// Users should not used this class directly.
|
127
|
+
template <class Derived>
|
128
|
+
class PastixBase : public SparseSolverBase<Derived>
|
129
|
+
{
|
130
|
+
protected:
|
131
|
+
typedef SparseSolverBase<Derived> Base;
|
132
|
+
using Base::derived;
|
133
|
+
using Base::m_isInitialized;
|
134
|
+
public:
|
135
|
+
using Base::_solve_impl;
|
136
|
+
|
137
|
+
typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
|
138
|
+
typedef _MatrixType MatrixType;
|
139
|
+
typedef typename MatrixType::Scalar Scalar;
|
140
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
141
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
142
|
+
typedef Matrix<Scalar,Dynamic,1> Vector;
|
143
|
+
typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
|
144
|
+
enum {
|
145
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
146
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
147
|
+
};
|
148
|
+
|
149
|
+
public:
|
150
|
+
|
151
|
+
PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0)
|
152
|
+
{
|
153
|
+
init();
|
154
|
+
}
|
155
|
+
|
156
|
+
~PastixBase()
|
157
|
+
{
|
158
|
+
clean();
|
159
|
+
}
|
160
|
+
|
161
|
+
template<typename Rhs,typename Dest>
|
162
|
+
bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
|
163
|
+
|
164
|
+
/** Returns a reference to the integer vector IPARM of PaStiX parameters
|
165
|
+
* to modify the default parameters.
|
166
|
+
* The statistics related to the different phases of factorization and solve are saved here as well
|
167
|
+
* \sa analyzePattern() factorize()
|
168
|
+
*/
|
169
|
+
Array<StorageIndex,IPARM_SIZE,1>& iparm()
|
170
|
+
{
|
171
|
+
return m_iparm;
|
172
|
+
}
|
173
|
+
|
174
|
+
/** Return a reference to a particular index parameter of the IPARM vector
|
175
|
+
* \sa iparm()
|
176
|
+
*/
|
177
|
+
|
178
|
+
int& iparm(int idxparam)
|
179
|
+
{
|
180
|
+
return m_iparm(idxparam);
|
181
|
+
}
|
182
|
+
|
183
|
+
/** Returns a reference to the double vector DPARM of PaStiX parameters
|
184
|
+
* The statistics related to the different phases of factorization and solve are saved here as well
|
185
|
+
* \sa analyzePattern() factorize()
|
186
|
+
*/
|
187
|
+
Array<double,DPARM_SIZE,1>& dparm()
|
188
|
+
{
|
189
|
+
return m_dparm;
|
190
|
+
}
|
191
|
+
|
192
|
+
|
193
|
+
/** Return a reference to a particular index parameter of the DPARM vector
|
194
|
+
* \sa dparm()
|
195
|
+
*/
|
196
|
+
double& dparm(int idxparam)
|
197
|
+
{
|
198
|
+
return m_dparm(idxparam);
|
199
|
+
}
|
200
|
+
|
201
|
+
inline Index cols() const { return m_size; }
|
202
|
+
inline Index rows() const { return m_size; }
|
203
|
+
|
204
|
+
/** \brief Reports whether previous computation was successful.
|
205
|
+
*
|
206
|
+
* \returns \c Success if computation was succesful,
|
207
|
+
* \c NumericalIssue if the PaStiX reports a problem
|
208
|
+
* \c InvalidInput if the input matrix is invalid
|
209
|
+
*
|
210
|
+
* \sa iparm()
|
211
|
+
*/
|
212
|
+
ComputationInfo info() const
|
213
|
+
{
|
214
|
+
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
215
|
+
return m_info;
|
216
|
+
}
|
217
|
+
|
218
|
+
protected:
|
219
|
+
|
220
|
+
// Initialize the Pastix data structure, check the matrix
|
221
|
+
void init();
|
222
|
+
|
223
|
+
// Compute the ordering and the symbolic factorization
|
224
|
+
void analyzePattern(ColSpMatrix& mat);
|
225
|
+
|
226
|
+
// Compute the numerical factorization
|
227
|
+
void factorize(ColSpMatrix& mat);
|
228
|
+
|
229
|
+
// Free all the data allocated by Pastix
|
230
|
+
void clean()
|
231
|
+
{
|
232
|
+
eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
|
233
|
+
m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
|
234
|
+
m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
|
235
|
+
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
|
236
|
+
m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
|
237
|
+
}
|
238
|
+
|
239
|
+
void compute(ColSpMatrix& mat);
|
240
|
+
|
241
|
+
int m_initisOk;
|
242
|
+
int m_analysisIsOk;
|
243
|
+
int m_factorizationIsOk;
|
244
|
+
mutable ComputationInfo m_info;
|
245
|
+
mutable pastix_data_t *m_pastixdata; // Data structure for pastix
|
246
|
+
mutable int m_comm; // The MPI communicator identifier
|
247
|
+
mutable Array<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
|
248
|
+
mutable Array<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
|
249
|
+
mutable Matrix<StorageIndex,Dynamic,1> m_perm; // Permutation vector
|
250
|
+
mutable Matrix<StorageIndex,Dynamic,1> m_invp; // Inverse permutation vector
|
251
|
+
mutable int m_size; // Size of the matrix
|
252
|
+
};
|
253
|
+
|
254
|
+
/** Initialize the PaStiX data structure.
|
255
|
+
*A first call to this function fills iparm and dparm with the default PaStiX parameters
|
256
|
+
* \sa iparm() dparm()
|
257
|
+
*/
|
258
|
+
template <class Derived>
|
259
|
+
void PastixBase<Derived>::init()
|
260
|
+
{
|
261
|
+
m_size = 0;
|
262
|
+
m_iparm.setZero(IPARM_SIZE);
|
263
|
+
m_dparm.setZero(DPARM_SIZE);
|
264
|
+
|
265
|
+
m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
|
266
|
+
pastix(&m_pastixdata, MPI_COMM_WORLD,
|
267
|
+
0, 0, 0, 0,
|
268
|
+
0, 0, 0, 1, m_iparm.data(), m_dparm.data());
|
269
|
+
|
270
|
+
m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
|
271
|
+
m_iparm[IPARM_VERBOSE] = API_VERBOSE_NOT;
|
272
|
+
m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH;
|
273
|
+
m_iparm[IPARM_INCOMPLETE] = API_NO;
|
274
|
+
m_iparm[IPARM_OOC_LIMIT] = 2000;
|
275
|
+
m_iparm[IPARM_RHS_MAKING] = API_RHS_B;
|
276
|
+
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
|
277
|
+
|
278
|
+
m_iparm(IPARM_START_TASK) = API_TASK_INIT;
|
279
|
+
m_iparm(IPARM_END_TASK) = API_TASK_INIT;
|
280
|
+
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
|
281
|
+
0, 0, 0, 0, m_iparm.data(), m_dparm.data());
|
282
|
+
|
283
|
+
// Check the returned error
|
284
|
+
if(m_iparm(IPARM_ERROR_NUMBER)) {
|
285
|
+
m_info = InvalidInput;
|
286
|
+
m_initisOk = false;
|
287
|
+
}
|
288
|
+
else {
|
289
|
+
m_info = Success;
|
290
|
+
m_initisOk = true;
|
291
|
+
}
|
292
|
+
}
|
293
|
+
|
294
|
+
template <class Derived>
|
295
|
+
void PastixBase<Derived>::compute(ColSpMatrix& mat)
|
296
|
+
{
|
297
|
+
eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
|
298
|
+
|
299
|
+
analyzePattern(mat);
|
300
|
+
factorize(mat);
|
301
|
+
|
302
|
+
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
|
303
|
+
}
|
304
|
+
|
305
|
+
|
306
|
+
template <class Derived>
|
307
|
+
void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
|
308
|
+
{
|
309
|
+
eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
|
310
|
+
|
311
|
+
// clean previous calls
|
312
|
+
if(m_size>0)
|
313
|
+
clean();
|
314
|
+
|
315
|
+
m_size = internal::convert_index<int>(mat.rows());
|
316
|
+
m_perm.resize(m_size);
|
317
|
+
m_invp.resize(m_size);
|
318
|
+
|
319
|
+
m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
|
320
|
+
m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
|
321
|
+
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
|
322
|
+
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
|
323
|
+
|
324
|
+
// Check the returned error
|
325
|
+
if(m_iparm(IPARM_ERROR_NUMBER))
|
326
|
+
{
|
327
|
+
m_info = NumericalIssue;
|
328
|
+
m_analysisIsOk = false;
|
329
|
+
}
|
330
|
+
else
|
331
|
+
{
|
332
|
+
m_info = Success;
|
333
|
+
m_analysisIsOk = true;
|
334
|
+
}
|
335
|
+
}
|
336
|
+
|
337
|
+
template <class Derived>
|
338
|
+
void PastixBase<Derived>::factorize(ColSpMatrix& mat)
|
339
|
+
{
|
340
|
+
// if(&m_cpyMat != &mat) m_cpyMat = mat;
|
341
|
+
eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
|
342
|
+
m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
|
343
|
+
m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
|
344
|
+
m_size = internal::convert_index<int>(mat.rows());
|
345
|
+
|
346
|
+
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
|
347
|
+
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
|
348
|
+
|
349
|
+
// Check the returned error
|
350
|
+
if(m_iparm(IPARM_ERROR_NUMBER))
|
351
|
+
{
|
352
|
+
m_info = NumericalIssue;
|
353
|
+
m_factorizationIsOk = false;
|
354
|
+
m_isInitialized = false;
|
355
|
+
}
|
356
|
+
else
|
357
|
+
{
|
358
|
+
m_info = Success;
|
359
|
+
m_factorizationIsOk = true;
|
360
|
+
m_isInitialized = true;
|
361
|
+
}
|
362
|
+
}
|
363
|
+
|
364
|
+
/* Solve the system */
|
365
|
+
template<typename Base>
|
366
|
+
template<typename Rhs,typename Dest>
|
367
|
+
bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
|
368
|
+
{
|
369
|
+
eigen_assert(m_isInitialized && "The matrix should be factorized first");
|
370
|
+
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
|
371
|
+
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
372
|
+
int rhs = 1;
|
373
|
+
|
374
|
+
x = b; /* on return, x is overwritten by the computed solution */
|
375
|
+
|
376
|
+
for (int i = 0; i < b.cols(); i++){
|
377
|
+
m_iparm[IPARM_START_TASK] = API_TASK_SOLVE;
|
378
|
+
m_iparm[IPARM_END_TASK] = API_TASK_REFINE;
|
379
|
+
|
380
|
+
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0,
|
381
|
+
m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
|
382
|
+
}
|
383
|
+
|
384
|
+
// Check the returned error
|
385
|
+
m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
|
386
|
+
|
387
|
+
return m_iparm(IPARM_ERROR_NUMBER)==0;
|
388
|
+
}
|
389
|
+
|
390
|
+
/** \ingroup PaStiXSupport_Module
|
391
|
+
* \class PastixLU
|
392
|
+
* \brief Sparse direct LU solver based on PaStiX library
|
393
|
+
*
|
394
|
+
* This class is used to solve the linear systems A.X = B with a supernodal LU
|
395
|
+
* factorization in the PaStiX library. The matrix A should be squared and nonsingular
|
396
|
+
* PaStiX requires that the matrix A has a symmetric structural pattern.
|
397
|
+
* This interface can symmetrize the input matrix otherwise.
|
398
|
+
* The vectors or matrices X and B can be either dense or sparse.
|
399
|
+
*
|
400
|
+
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
401
|
+
* \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
|
402
|
+
* NOTE : Note that if the analysis and factorization phase are called separately,
|
403
|
+
* the input matrix will be symmetrized at each call, hence it is advised to
|
404
|
+
* symmetrize the matrix in a end-user program and set \p IsStrSym to true
|
405
|
+
*
|
406
|
+
* \implsparsesolverconcept
|
407
|
+
*
|
408
|
+
* \sa \ref TutorialSparseSolverConcept, class SparseLU
|
409
|
+
*
|
410
|
+
*/
|
411
|
+
template<typename _MatrixType, bool IsStrSym>
|
412
|
+
class PastixLU : public PastixBase< PastixLU<_MatrixType> >
|
413
|
+
{
|
414
|
+
public:
|
415
|
+
typedef _MatrixType MatrixType;
|
416
|
+
typedef PastixBase<PastixLU<MatrixType> > Base;
|
417
|
+
typedef typename Base::ColSpMatrix ColSpMatrix;
|
418
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
419
|
+
|
420
|
+
public:
|
421
|
+
PastixLU() : Base()
|
422
|
+
{
|
423
|
+
init();
|
424
|
+
}
|
425
|
+
|
426
|
+
explicit PastixLU(const MatrixType& matrix):Base()
|
427
|
+
{
|
428
|
+
init();
|
429
|
+
compute(matrix);
|
430
|
+
}
|
431
|
+
/** Compute the LU supernodal factorization of \p matrix.
|
432
|
+
* iparm and dparm can be used to tune the PaStiX parameters.
|
433
|
+
* see the PaStiX user's manual
|
434
|
+
* \sa analyzePattern() factorize()
|
435
|
+
*/
|
436
|
+
void compute (const MatrixType& matrix)
|
437
|
+
{
|
438
|
+
m_structureIsUptodate = false;
|
439
|
+
ColSpMatrix temp;
|
440
|
+
grabMatrix(matrix, temp);
|
441
|
+
Base::compute(temp);
|
442
|
+
}
|
443
|
+
/** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
|
444
|
+
* Several ordering methods can be used at this step. See the PaStiX user's manual.
|
445
|
+
* The result of this operation can be used with successive matrices having the same pattern as \p matrix
|
446
|
+
* \sa factorize()
|
447
|
+
*/
|
448
|
+
void analyzePattern(const MatrixType& matrix)
|
449
|
+
{
|
450
|
+
m_structureIsUptodate = false;
|
451
|
+
ColSpMatrix temp;
|
452
|
+
grabMatrix(matrix, temp);
|
453
|
+
Base::analyzePattern(temp);
|
454
|
+
}
|
455
|
+
|
456
|
+
/** Compute the LU supernodal factorization of \p matrix
|
457
|
+
* WARNING The matrix \p matrix should have the same structural pattern
|
458
|
+
* as the same used in the analysis phase.
|
459
|
+
* \sa analyzePattern()
|
460
|
+
*/
|
461
|
+
void factorize(const MatrixType& matrix)
|
462
|
+
{
|
463
|
+
ColSpMatrix temp;
|
464
|
+
grabMatrix(matrix, temp);
|
465
|
+
Base::factorize(temp);
|
466
|
+
}
|
467
|
+
protected:
|
468
|
+
|
469
|
+
void init()
|
470
|
+
{
|
471
|
+
m_structureIsUptodate = false;
|
472
|
+
m_iparm(IPARM_SYM) = API_SYM_NO;
|
473
|
+
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
|
474
|
+
}
|
475
|
+
|
476
|
+
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
|
477
|
+
{
|
478
|
+
if(IsStrSym)
|
479
|
+
out = matrix;
|
480
|
+
else
|
481
|
+
{
|
482
|
+
if(!m_structureIsUptodate)
|
483
|
+
{
|
484
|
+
// update the transposed structure
|
485
|
+
m_transposedStructure = matrix.transpose();
|
486
|
+
|
487
|
+
// Set the elements of the matrix to zero
|
488
|
+
for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
|
489
|
+
for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
|
490
|
+
it.valueRef() = 0.0;
|
491
|
+
|
492
|
+
m_structureIsUptodate = true;
|
493
|
+
}
|
494
|
+
|
495
|
+
out = m_transposedStructure + matrix;
|
496
|
+
}
|
497
|
+
internal::c_to_fortran_numbering(out);
|
498
|
+
}
|
499
|
+
|
500
|
+
using Base::m_iparm;
|
501
|
+
using Base::m_dparm;
|
502
|
+
|
503
|
+
ColSpMatrix m_transposedStructure;
|
504
|
+
bool m_structureIsUptodate;
|
505
|
+
};
|
506
|
+
|
507
|
+
/** \ingroup PaStiXSupport_Module
|
508
|
+
* \class PastixLLT
|
509
|
+
* \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
|
510
|
+
*
|
511
|
+
* This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
|
512
|
+
* available in the PaStiX library. The matrix A should be symmetric and positive definite
|
513
|
+
* WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
|
514
|
+
* The vectors or matrices X and B can be either dense or sparse
|
515
|
+
*
|
516
|
+
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
517
|
+
* \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
|
518
|
+
*
|
519
|
+
* \implsparsesolverconcept
|
520
|
+
*
|
521
|
+
* \sa \ref TutorialSparseSolverConcept, class SimplicialLLT
|
522
|
+
*/
|
523
|
+
template<typename _MatrixType, int _UpLo>
|
524
|
+
class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
|
525
|
+
{
|
526
|
+
public:
|
527
|
+
typedef _MatrixType MatrixType;
|
528
|
+
typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
|
529
|
+
typedef typename Base::ColSpMatrix ColSpMatrix;
|
530
|
+
|
531
|
+
public:
|
532
|
+
enum { UpLo = _UpLo };
|
533
|
+
PastixLLT() : Base()
|
534
|
+
{
|
535
|
+
init();
|
536
|
+
}
|
537
|
+
|
538
|
+
explicit PastixLLT(const MatrixType& matrix):Base()
|
539
|
+
{
|
540
|
+
init();
|
541
|
+
compute(matrix);
|
542
|
+
}
|
543
|
+
|
544
|
+
/** Compute the L factor of the LL^T supernodal factorization of \p matrix
|
545
|
+
* \sa analyzePattern() factorize()
|
546
|
+
*/
|
547
|
+
void compute (const MatrixType& matrix)
|
548
|
+
{
|
549
|
+
ColSpMatrix temp;
|
550
|
+
grabMatrix(matrix, temp);
|
551
|
+
Base::compute(temp);
|
552
|
+
}
|
553
|
+
|
554
|
+
/** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
|
555
|
+
* The result of this operation can be used with successive matrices having the same pattern as \p matrix
|
556
|
+
* \sa factorize()
|
557
|
+
*/
|
558
|
+
void analyzePattern(const MatrixType& matrix)
|
559
|
+
{
|
560
|
+
ColSpMatrix temp;
|
561
|
+
grabMatrix(matrix, temp);
|
562
|
+
Base::analyzePattern(temp);
|
563
|
+
}
|
564
|
+
/** Compute the LL^T supernodal numerical factorization of \p matrix
|
565
|
+
* \sa analyzePattern()
|
566
|
+
*/
|
567
|
+
void factorize(const MatrixType& matrix)
|
568
|
+
{
|
569
|
+
ColSpMatrix temp;
|
570
|
+
grabMatrix(matrix, temp);
|
571
|
+
Base::factorize(temp);
|
572
|
+
}
|
573
|
+
protected:
|
574
|
+
using Base::m_iparm;
|
575
|
+
|
576
|
+
void init()
|
577
|
+
{
|
578
|
+
m_iparm(IPARM_SYM) = API_SYM_YES;
|
579
|
+
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
|
580
|
+
}
|
581
|
+
|
582
|
+
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
|
583
|
+
{
|
584
|
+
out.resize(matrix.rows(), matrix.cols());
|
585
|
+
// Pastix supports only lower, column-major matrices
|
586
|
+
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
|
587
|
+
internal::c_to_fortran_numbering(out);
|
588
|
+
}
|
589
|
+
};
|
590
|
+
|
591
|
+
/** \ingroup PaStiXSupport_Module
|
592
|
+
* \class PastixLDLT
|
593
|
+
* \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
|
594
|
+
*
|
595
|
+
* This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
|
596
|
+
* available in the PaStiX library. The matrix A should be symmetric and positive definite
|
597
|
+
* WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
|
598
|
+
* The vectors or matrices X and B can be either dense or sparse
|
599
|
+
*
|
600
|
+
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
601
|
+
* \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
|
602
|
+
*
|
603
|
+
* \implsparsesolverconcept
|
604
|
+
*
|
605
|
+
* \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT
|
606
|
+
*/
|
607
|
+
template<typename _MatrixType, int _UpLo>
|
608
|
+
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
|
609
|
+
{
|
610
|
+
public:
|
611
|
+
typedef _MatrixType MatrixType;
|
612
|
+
typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
|
613
|
+
typedef typename Base::ColSpMatrix ColSpMatrix;
|
614
|
+
|
615
|
+
public:
|
616
|
+
enum { UpLo = _UpLo };
|
617
|
+
PastixLDLT():Base()
|
618
|
+
{
|
619
|
+
init();
|
620
|
+
}
|
621
|
+
|
622
|
+
explicit PastixLDLT(const MatrixType& matrix):Base()
|
623
|
+
{
|
624
|
+
init();
|
625
|
+
compute(matrix);
|
626
|
+
}
|
627
|
+
|
628
|
+
/** Compute the L and D factors of the LDL^T factorization of \p matrix
|
629
|
+
* \sa analyzePattern() factorize()
|
630
|
+
*/
|
631
|
+
void compute (const MatrixType& matrix)
|
632
|
+
{
|
633
|
+
ColSpMatrix temp;
|
634
|
+
grabMatrix(matrix, temp);
|
635
|
+
Base::compute(temp);
|
636
|
+
}
|
637
|
+
|
638
|
+
/** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
|
639
|
+
* The result of this operation can be used with successive matrices having the same pattern as \p matrix
|
640
|
+
* \sa factorize()
|
641
|
+
*/
|
642
|
+
void analyzePattern(const MatrixType& matrix)
|
643
|
+
{
|
644
|
+
ColSpMatrix temp;
|
645
|
+
grabMatrix(matrix, temp);
|
646
|
+
Base::analyzePattern(temp);
|
647
|
+
}
|
648
|
+
/** Compute the LDL^T supernodal numerical factorization of \p matrix
|
649
|
+
*
|
650
|
+
*/
|
651
|
+
void factorize(const MatrixType& matrix)
|
652
|
+
{
|
653
|
+
ColSpMatrix temp;
|
654
|
+
grabMatrix(matrix, temp);
|
655
|
+
Base::factorize(temp);
|
656
|
+
}
|
657
|
+
|
658
|
+
protected:
|
659
|
+
using Base::m_iparm;
|
660
|
+
|
661
|
+
void init()
|
662
|
+
{
|
663
|
+
m_iparm(IPARM_SYM) = API_SYM_YES;
|
664
|
+
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
|
665
|
+
}
|
666
|
+
|
667
|
+
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
|
668
|
+
{
|
669
|
+
// Pastix supports only lower, column-major matrices
|
670
|
+
out.resize(matrix.rows(), matrix.cols());
|
671
|
+
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
|
672
|
+
internal::c_to_fortran_numbering(out);
|
673
|
+
}
|
674
|
+
};
|
675
|
+
|
676
|
+
} // end namespace Eigen
|
677
|
+
|
678
|
+
#endif
|