tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,27 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_STDDEQUE_MODULE_H
12
+ #define EIGEN_STDDEQUE_MODULE_H
13
+
14
+ #include "Core"
15
+ #include <deque>
16
+
17
+ #if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
18
+
19
+ #define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)
20
+
21
+ #else
22
+
23
+ #include "src/StlSupport/StdDeque.h"
24
+
25
+ #endif
26
+
27
+ #endif // EIGEN_STDDEQUE_MODULE_H
@@ -0,0 +1,26 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_STDLIST_MODULE_H
11
+ #define EIGEN_STDLIST_MODULE_H
12
+
13
+ #include "Core"
14
+ #include <list>
15
+
16
+ #if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
17
+
18
+ #define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)
19
+
20
+ #else
21
+
22
+ #include "src/StlSupport/StdList.h"
23
+
24
+ #endif
25
+
26
+ #endif // EIGEN_STDLIST_MODULE_H
@@ -0,0 +1,27 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_STDVECTOR_MODULE_H
12
+ #define EIGEN_STDVECTOR_MODULE_H
13
+
14
+ #include "Core"
15
+ #include <vector>
16
+
17
+ #if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
18
+
19
+ #define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)
20
+
21
+ #else
22
+
23
+ #include "src/StlSupport/StdVector.h"
24
+
25
+ #endif
26
+
27
+ #endif // EIGEN_STDVECTOR_MODULE_H
@@ -0,0 +1,64 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // This Source Code Form is subject to the terms of the Mozilla
5
+ // Public License v. 2.0. If a copy of the MPL was not distributed
6
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
7
+
8
+ #ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
9
+ #define EIGEN_SUPERLUSUPPORT_MODULE_H
10
+
11
+ #include "SparseCore"
12
+
13
+ #include "src/Core/util/DisableStupidWarnings.h"
14
+
15
+ #ifdef EMPTY
16
+ #define EIGEN_EMPTY_WAS_ALREADY_DEFINED
17
+ #endif
18
+
19
+ typedef int int_t;
20
+ #include <slu_Cnames.h>
21
+ #include <supermatrix.h>
22
+ #include <slu_util.h>
23
+
24
+ // slu_util.h defines a preprocessor token named EMPTY which is really polluting,
25
+ // so we remove it in favor of a SUPERLU_EMPTY token.
26
+ // If EMPTY was already defined then we don't undef it.
27
+
28
+ #if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED)
29
+ # undef EIGEN_EMPTY_WAS_ALREADY_DEFINED
30
+ #elif defined(EMPTY)
31
+ # undef EMPTY
32
+ #endif
33
+
34
+ #define SUPERLU_EMPTY (-1)
35
+
36
+ namespace Eigen { struct SluMatrix; }
37
+
38
+ /** \ingroup Support_modules
39
+ * \defgroup SuperLUSupport_Module SuperLUSupport module
40
+ *
41
+ * This module provides an interface to the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library.
42
+ * It provides the following factorization class:
43
+ * - class SuperLU: a supernodal sequential LU factorization.
44
+ * - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
45
+ *
46
+ * \warning This wrapper requires at least versions 4.0 of SuperLU. The 3.x versions are not supported.
47
+ *
48
+ * \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
49
+ *
50
+ * \code
51
+ * #include <Eigen/SuperLUSupport>
52
+ * \endcode
53
+ *
54
+ * In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies.
55
+ * The dependencies depend on how superlu has been compiled.
56
+ * For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task.
57
+ *
58
+ */
59
+
60
+ #include "src/SuperLUSupport/SuperLUSupport.h"
61
+
62
+ #include "src/Core/util/ReenableStupidWarnings.h"
63
+
64
+ #endif // EIGEN_SUPERLUSUPPORT_MODULE_H
@@ -0,0 +1,40 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // This Source Code Form is subject to the terms of the Mozilla
5
+ // Public License v. 2.0. If a copy of the MPL was not distributed
6
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
7
+
8
+ #ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
9
+ #define EIGEN_UMFPACKSUPPORT_MODULE_H
10
+
11
+ #include "SparseCore"
12
+
13
+ #include "src/Core/util/DisableStupidWarnings.h"
14
+
15
+ extern "C" {
16
+ #include <umfpack.h>
17
+ }
18
+
19
+ /** \ingroup Support_modules
20
+ * \defgroup UmfPackSupport_Module UmfPackSupport module
21
+ *
22
+ * This module provides an interface to the UmfPack library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
23
+ * It provides the following factorization class:
24
+ * - class UmfPackLU: a multifrontal sequential LU factorization.
25
+ *
26
+ * \code
27
+ * #include <Eigen/UmfPackSupport>
28
+ * \endcode
29
+ *
30
+ * In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies.
31
+ * The dependencies depend on how umfpack has been compiled.
32
+ * For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task.
33
+ *
34
+ */
35
+
36
+ #include "src/UmfPackSupport/UmfPackSupport.h"
37
+
38
+ #include "src/Core/util/ReenableStupidWarnings.h"
39
+
40
+ #endif // EIGEN_UMFPACKSUPPORT_MODULE_H
@@ -0,0 +1,673 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
6
+ // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
7
+ // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
8
+ //
9
+ // This Source Code Form is subject to the terms of the Mozilla
10
+ // Public License v. 2.0. If a copy of the MPL was not distributed
11
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
12
+
13
+ #ifndef EIGEN_LDLT_H
14
+ #define EIGEN_LDLT_H
15
+
16
+ namespace Eigen {
17
+
18
+ namespace internal {
19
+ template<typename MatrixType, int UpLo> struct LDLT_Traits;
20
+
21
+ // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
22
+ enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
23
+ }
24
+
25
+ /** \ingroup Cholesky_Module
26
+ *
27
+ * \class LDLT
28
+ *
29
+ * \brief Robust Cholesky decomposition of a matrix with pivoting
30
+ *
31
+ * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
32
+ * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
33
+ * The other triangular part won't be read.
34
+ *
35
+ * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
36
+ * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
37
+ * is lower triangular with a unit diagonal and D is a diagonal matrix.
38
+ *
39
+ * The decomposition uses pivoting to ensure stability, so that L will have
40
+ * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
41
+ * on D also stabilizes the computation.
42
+ *
43
+ * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
44
+ * decomposition to determine whether a system of equations has a solution.
45
+ *
46
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
47
+ *
48
+ * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
49
+ */
50
+ template<typename _MatrixType, int _UpLo> class LDLT
51
+ {
52
+ public:
53
+ typedef _MatrixType MatrixType;
54
+ enum {
55
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
58
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
59
+ UpLo = _UpLo
60
+ };
61
+ typedef typename MatrixType::Scalar Scalar;
62
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
63
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
64
+ typedef typename MatrixType::StorageIndex StorageIndex;
65
+ typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
66
+
67
+ typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
68
+ typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
69
+
70
+ typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
71
+
72
+ /** \brief Default Constructor.
73
+ *
74
+ * The default constructor is useful in cases in which the user intends to
75
+ * perform decompositions via LDLT::compute(const MatrixType&).
76
+ */
77
+ LDLT()
78
+ : m_matrix(),
79
+ m_transpositions(),
80
+ m_sign(internal::ZeroSign),
81
+ m_isInitialized(false)
82
+ {}
83
+
84
+ /** \brief Default Constructor with memory preallocation
85
+ *
86
+ * Like the default constructor but with preallocation of the internal data
87
+ * according to the specified problem \a size.
88
+ * \sa LDLT()
89
+ */
90
+ explicit LDLT(Index size)
91
+ : m_matrix(size, size),
92
+ m_transpositions(size),
93
+ m_temporary(size),
94
+ m_sign(internal::ZeroSign),
95
+ m_isInitialized(false)
96
+ {}
97
+
98
+ /** \brief Constructor with decomposition
99
+ *
100
+ * This calculates the decomposition for the input \a matrix.
101
+ *
102
+ * \sa LDLT(Index size)
103
+ */
104
+ template<typename InputType>
105
+ explicit LDLT(const EigenBase<InputType>& matrix)
106
+ : m_matrix(matrix.rows(), matrix.cols()),
107
+ m_transpositions(matrix.rows()),
108
+ m_temporary(matrix.rows()),
109
+ m_sign(internal::ZeroSign),
110
+ m_isInitialized(false)
111
+ {
112
+ compute(matrix.derived());
113
+ }
114
+
115
+ /** \brief Constructs a LDLT factorization from a given matrix
116
+ *
117
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
118
+ *
119
+ * \sa LDLT(const EigenBase&)
120
+ */
121
+ template<typename InputType>
122
+ explicit LDLT(EigenBase<InputType>& matrix)
123
+ : m_matrix(matrix.derived()),
124
+ m_transpositions(matrix.rows()),
125
+ m_temporary(matrix.rows()),
126
+ m_sign(internal::ZeroSign),
127
+ m_isInitialized(false)
128
+ {
129
+ compute(matrix.derived());
130
+ }
131
+
132
+ /** Clear any existing decomposition
133
+ * \sa rankUpdate(w,sigma)
134
+ */
135
+ void setZero()
136
+ {
137
+ m_isInitialized = false;
138
+ }
139
+
140
+ /** \returns a view of the upper triangular matrix U */
141
+ inline typename Traits::MatrixU matrixU() const
142
+ {
143
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
144
+ return Traits::getU(m_matrix);
145
+ }
146
+
147
+ /** \returns a view of the lower triangular matrix L */
148
+ inline typename Traits::MatrixL matrixL() const
149
+ {
150
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
151
+ return Traits::getL(m_matrix);
152
+ }
153
+
154
+ /** \returns the permutation matrix P as a transposition sequence.
155
+ */
156
+ inline const TranspositionType& transpositionsP() const
157
+ {
158
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
159
+ return m_transpositions;
160
+ }
161
+
162
+ /** \returns the coefficients of the diagonal matrix D */
163
+ inline Diagonal<const MatrixType> vectorD() const
164
+ {
165
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
166
+ return m_matrix.diagonal();
167
+ }
168
+
169
+ /** \returns true if the matrix is positive (semidefinite) */
170
+ inline bool isPositive() const
171
+ {
172
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
173
+ return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
174
+ }
175
+
176
+ /** \returns true if the matrix is negative (semidefinite) */
177
+ inline bool isNegative(void) const
178
+ {
179
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
180
+ return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
181
+ }
182
+
183
+ /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
184
+ *
185
+ * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
186
+ *
187
+ * \note_about_checking_solutions
188
+ *
189
+ * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
190
+ * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
191
+ * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
192
+ * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
193
+ * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
194
+ * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
195
+ *
196
+ * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
197
+ */
198
+ template<typename Rhs>
199
+ inline const Solve<LDLT, Rhs>
200
+ solve(const MatrixBase<Rhs>& b) const
201
+ {
202
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
203
+ eigen_assert(m_matrix.rows()==b.rows()
204
+ && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
205
+ return Solve<LDLT, Rhs>(*this, b.derived());
206
+ }
207
+
208
+ template<typename Derived>
209
+ bool solveInPlace(MatrixBase<Derived> &bAndX) const;
210
+
211
+ template<typename InputType>
212
+ LDLT& compute(const EigenBase<InputType>& matrix);
213
+
214
+ /** \returns an estimate of the reciprocal condition number of the matrix of
215
+ * which \c *this is the LDLT decomposition.
216
+ */
217
+ RealScalar rcond() const
218
+ {
219
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
220
+ return internal::rcond_estimate_helper(m_l1_norm, *this);
221
+ }
222
+
223
+ template <typename Derived>
224
+ LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
225
+
226
+ /** \returns the internal LDLT decomposition matrix
227
+ *
228
+ * TODO: document the storage layout
229
+ */
230
+ inline const MatrixType& matrixLDLT() const
231
+ {
232
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
233
+ return m_matrix;
234
+ }
235
+
236
+ MatrixType reconstructedMatrix() const;
237
+
238
+ /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
239
+ *
240
+ * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
241
+ * \code x = decomposition.adjoint().solve(b) \endcode
242
+ */
243
+ const LDLT& adjoint() const { return *this; };
244
+
245
+ inline Index rows() const { return m_matrix.rows(); }
246
+ inline Index cols() const { return m_matrix.cols(); }
247
+
248
+ /** \brief Reports whether previous computation was successful.
249
+ *
250
+ * \returns \c Success if computation was succesful,
251
+ * \c NumericalIssue if the factorization failed because of a zero pivot.
252
+ */
253
+ ComputationInfo info() const
254
+ {
255
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
256
+ return m_info;
257
+ }
258
+
259
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
260
+ template<typename RhsType, typename DstType>
261
+ EIGEN_DEVICE_FUNC
262
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
263
+ #endif
264
+
265
+ protected:
266
+
267
+ static void check_template_parameters()
268
+ {
269
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
270
+ }
271
+
272
+ /** \internal
273
+ * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
274
+ * The strict upper part is used during the decomposition, the strict lower
275
+ * part correspond to the coefficients of L (its diagonal is equal to 1 and
276
+ * is not stored), and the diagonal entries correspond to D.
277
+ */
278
+ MatrixType m_matrix;
279
+ RealScalar m_l1_norm;
280
+ TranspositionType m_transpositions;
281
+ TmpMatrixType m_temporary;
282
+ internal::SignMatrix m_sign;
283
+ bool m_isInitialized;
284
+ ComputationInfo m_info;
285
+ };
286
+
287
+ namespace internal {
288
+
289
+ template<int UpLo> struct ldlt_inplace;
290
+
291
+ template<> struct ldlt_inplace<Lower>
292
+ {
293
+ template<typename MatrixType, typename TranspositionType, typename Workspace>
294
+ static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
295
+ {
296
+ using std::abs;
297
+ typedef typename MatrixType::Scalar Scalar;
298
+ typedef typename MatrixType::RealScalar RealScalar;
299
+ typedef typename TranspositionType::StorageIndex IndexType;
300
+ eigen_assert(mat.rows()==mat.cols());
301
+ const Index size = mat.rows();
302
+ bool found_zero_pivot = false;
303
+ bool ret = true;
304
+
305
+ if (size <= 1)
306
+ {
307
+ transpositions.setIdentity();
308
+ if(size==0) sign = ZeroSign;
309
+ else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
310
+ else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
311
+ else sign = ZeroSign;
312
+ return true;
313
+ }
314
+
315
+ for (Index k = 0; k < size; ++k)
316
+ {
317
+ // Find largest diagonal element
318
+ Index index_of_biggest_in_corner;
319
+ mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
320
+ index_of_biggest_in_corner += k;
321
+
322
+ transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
323
+ if(k != index_of_biggest_in_corner)
324
+ {
325
+ // apply the transposition while taking care to consider only
326
+ // the lower triangular part
327
+ Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
328
+ mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
329
+ mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
330
+ std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
331
+ for(Index i=k+1;i<index_of_biggest_in_corner;++i)
332
+ {
333
+ Scalar tmp = mat.coeffRef(i,k);
334
+ mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
335
+ mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
336
+ }
337
+ if(NumTraits<Scalar>::IsComplex)
338
+ mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
339
+ }
340
+
341
+ // partition the matrix:
342
+ // A00 | - | -
343
+ // lu = A10 | A11 | -
344
+ // A20 | A21 | A22
345
+ Index rs = size - k - 1;
346
+ Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
347
+ Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
348
+ Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
349
+
350
+ if(k>0)
351
+ {
352
+ temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
353
+ mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
354
+ if(rs>0)
355
+ A21.noalias() -= A20 * temp.head(k);
356
+ }
357
+
358
+ // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
359
+ // was smaller than the cutoff value. However, since LDLT is not rank-revealing
360
+ // we should only make sure that we do not introduce INF or NaN values.
361
+ // Remark that LAPACK also uses 0 as the cutoff value.
362
+ RealScalar realAkk = numext::real(mat.coeffRef(k,k));
363
+ bool pivot_is_valid = (abs(realAkk) > RealScalar(0));
364
+
365
+ if(k==0 && !pivot_is_valid)
366
+ {
367
+ // The entire diagonal is zero, there is nothing more to do
368
+ // except filling the transpositions, and checking whether the matrix is zero.
369
+ sign = ZeroSign;
370
+ for(Index j = 0; j<size; ++j)
371
+ {
372
+ transpositions.coeffRef(j) = IndexType(j);
373
+ ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all();
374
+ }
375
+ return ret;
376
+ }
377
+
378
+ if((rs>0) && pivot_is_valid)
379
+ A21 /= realAkk;
380
+ else if(rs>0)
381
+ ret = ret && (A21.array()==Scalar(0)).all();
382
+
383
+ if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed
384
+ else if(!pivot_is_valid) found_zero_pivot = true;
385
+
386
+ if (sign == PositiveSemiDef) {
387
+ if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite;
388
+ } else if (sign == NegativeSemiDef) {
389
+ if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite;
390
+ } else if (sign == ZeroSign) {
391
+ if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef;
392
+ else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
393
+ }
394
+ }
395
+
396
+ return ret;
397
+ }
398
+
399
+ // Reference for the algorithm: Davis and Hager, "Multiple Rank
400
+ // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
401
+ // Trivial rearrangements of their computations (Timothy E. Holy)
402
+ // allow their algorithm to work for rank-1 updates even if the
403
+ // original matrix is not of full rank.
404
+ // Here only rank-1 updates are implemented, to reduce the
405
+ // requirement for intermediate storage and improve accuracy
406
+ template<typename MatrixType, typename WDerived>
407
+ static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
408
+ {
409
+ using numext::isfinite;
410
+ typedef typename MatrixType::Scalar Scalar;
411
+ typedef typename MatrixType::RealScalar RealScalar;
412
+
413
+ const Index size = mat.rows();
414
+ eigen_assert(mat.cols() == size && w.size()==size);
415
+
416
+ RealScalar alpha = 1;
417
+
418
+ // Apply the update
419
+ for (Index j = 0; j < size; j++)
420
+ {
421
+ // Check for termination due to an original decomposition of low-rank
422
+ if (!(isfinite)(alpha))
423
+ break;
424
+
425
+ // Update the diagonal terms
426
+ RealScalar dj = numext::real(mat.coeff(j,j));
427
+ Scalar wj = w.coeff(j);
428
+ RealScalar swj2 = sigma*numext::abs2(wj);
429
+ RealScalar gamma = dj*alpha + swj2;
430
+
431
+ mat.coeffRef(j,j) += swj2/alpha;
432
+ alpha += swj2/dj;
433
+
434
+
435
+ // Update the terms of L
436
+ Index rs = size-j-1;
437
+ w.tail(rs) -= wj * mat.col(j).tail(rs);
438
+ if(gamma != 0)
439
+ mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
440
+ }
441
+ return true;
442
+ }
443
+
444
+ template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
445
+ static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
446
+ {
447
+ // Apply the permutation to the input w
448
+ tmp = transpositions * w;
449
+
450
+ return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
451
+ }
452
+ };
453
+
454
+ template<> struct ldlt_inplace<Upper>
455
+ {
456
+ template<typename MatrixType, typename TranspositionType, typename Workspace>
457
+ static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
458
+ {
459
+ Transpose<MatrixType> matt(mat);
460
+ return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
461
+ }
462
+
463
+ template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
464
+ static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
465
+ {
466
+ Transpose<MatrixType> matt(mat);
467
+ return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
468
+ }
469
+ };
470
+
471
+ template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
472
+ {
473
+ typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
474
+ typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
475
+ static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
476
+ static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
477
+ };
478
+
479
+ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
480
+ {
481
+ typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
482
+ typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
483
+ static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
484
+ static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
485
+ };
486
+
487
+ } // end namespace internal
488
+
489
+ /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
490
+ */
491
+ template<typename MatrixType, int _UpLo>
492
+ template<typename InputType>
493
+ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
494
+ {
495
+ check_template_parameters();
496
+
497
+ eigen_assert(a.rows()==a.cols());
498
+ const Index size = a.rows();
499
+
500
+ m_matrix = a.derived();
501
+
502
+ // Compute matrix L1 norm = max abs column sum.
503
+ m_l1_norm = RealScalar(0);
504
+ // TODO move this code to SelfAdjointView
505
+ for (Index col = 0; col < size; ++col) {
506
+ RealScalar abs_col_sum;
507
+ if (_UpLo == Lower)
508
+ abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
509
+ else
510
+ abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
511
+ if (abs_col_sum > m_l1_norm)
512
+ m_l1_norm = abs_col_sum;
513
+ }
514
+
515
+ m_transpositions.resize(size);
516
+ m_isInitialized = false;
517
+ m_temporary.resize(size);
518
+ m_sign = internal::ZeroSign;
519
+
520
+ m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue;
521
+
522
+ m_isInitialized = true;
523
+ return *this;
524
+ }
525
+
526
+ /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
527
+ * \param w a vector to be incorporated into the decomposition.
528
+ * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
529
+ * \sa setZero()
530
+ */
531
+ template<typename MatrixType, int _UpLo>
532
+ template<typename Derived>
533
+ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
534
+ {
535
+ typedef typename TranspositionType::StorageIndex IndexType;
536
+ const Index size = w.rows();
537
+ if (m_isInitialized)
538
+ {
539
+ eigen_assert(m_matrix.rows()==size);
540
+ }
541
+ else
542
+ {
543
+ m_matrix.resize(size,size);
544
+ m_matrix.setZero();
545
+ m_transpositions.resize(size);
546
+ for (Index i = 0; i < size; i++)
547
+ m_transpositions.coeffRef(i) = IndexType(i);
548
+ m_temporary.resize(size);
549
+ m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
550
+ m_isInitialized = true;
551
+ }
552
+
553
+ internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
554
+
555
+ return *this;
556
+ }
557
+
558
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
559
+ template<typename _MatrixType, int _UpLo>
560
+ template<typename RhsType, typename DstType>
561
+ void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
562
+ {
563
+ eigen_assert(rhs.rows() == rows());
564
+ // dst = P b
565
+ dst = m_transpositions * rhs;
566
+
567
+ // dst = L^-1 (P b)
568
+ matrixL().solveInPlace(dst);
569
+
570
+ // dst = D^-1 (L^-1 P b)
571
+ // more precisely, use pseudo-inverse of D (see bug 241)
572
+ using std::abs;
573
+ const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
574
+ // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min())
575
+ // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS:
576
+ // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
577
+ // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
578
+ // diagonal element is not well justified and leads to numerical issues in some cases.
579
+ // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
580
+ // Using numeric_limits::min() gives us more robustness to denormals.
581
+ RealScalar tolerance = (std::numeric_limits<RealScalar>::min)();
582
+
583
+ for (Index i = 0; i < vecD.size(); ++i)
584
+ {
585
+ if(abs(vecD(i)) > tolerance)
586
+ dst.row(i) /= vecD(i);
587
+ else
588
+ dst.row(i).setZero();
589
+ }
590
+
591
+ // dst = L^-T (D^-1 L^-1 P b)
592
+ matrixU().solveInPlace(dst);
593
+
594
+ // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
595
+ dst = m_transpositions.transpose() * dst;
596
+ }
597
+ #endif
598
+
599
+ /** \internal use x = ldlt_object.solve(x);
600
+ *
601
+ * This is the \em in-place version of solve().
602
+ *
603
+ * \param bAndX represents both the right-hand side matrix b and result x.
604
+ *
605
+ * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
606
+ *
607
+ * This version avoids a copy when the right hand side matrix b is not
608
+ * needed anymore.
609
+ *
610
+ * \sa LDLT::solve(), MatrixBase::ldlt()
611
+ */
612
+ template<typename MatrixType,int _UpLo>
613
+ template<typename Derived>
614
+ bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
615
+ {
616
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
617
+ eigen_assert(m_matrix.rows() == bAndX.rows());
618
+
619
+ bAndX = this->solve(bAndX);
620
+
621
+ return true;
622
+ }
623
+
624
+ /** \returns the matrix represented by the decomposition,
625
+ * i.e., it returns the product: P^T L D L^* P.
626
+ * This function is provided for debug purpose. */
627
+ template<typename MatrixType, int _UpLo>
628
+ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
629
+ {
630
+ eigen_assert(m_isInitialized && "LDLT is not initialized.");
631
+ const Index size = m_matrix.rows();
632
+ MatrixType res(size,size);
633
+
634
+ // P
635
+ res.setIdentity();
636
+ res = transpositionsP() * res;
637
+ // L^* P
638
+ res = matrixU() * res;
639
+ // D(L^*P)
640
+ res = vectorD().real().asDiagonal() * res;
641
+ // L(DL^*P)
642
+ res = matrixL() * res;
643
+ // P^T (LDL^*P)
644
+ res = transpositionsP().transpose() * res;
645
+
646
+ return res;
647
+ }
648
+
649
+ /** \cholesky_module
650
+ * \returns the Cholesky decomposition with full pivoting without square root of \c *this
651
+ * \sa MatrixBase::ldlt()
652
+ */
653
+ template<typename MatrixType, unsigned int UpLo>
654
+ inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
655
+ SelfAdjointView<MatrixType, UpLo>::ldlt() const
656
+ {
657
+ return LDLT<PlainObject,UpLo>(m_matrix);
658
+ }
659
+
660
+ /** \cholesky_module
661
+ * \returns the Cholesky decomposition with full pivoting without square root of \c *this
662
+ * \sa SelfAdjointView::ldlt()
663
+ */
664
+ template<typename Derived>
665
+ inline const LDLT<typename MatrixBase<Derived>::PlainObject>
666
+ MatrixBase<Derived>::ldlt() const
667
+ {
668
+ return LDLT<PlainObject>(derived());
669
+ }
670
+
671
+ } // end namespace Eigen
672
+
673
+ #endif // EIGEN_LDLT_H