tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,546 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_REAL_SCHUR_H
|
12
|
+
#define EIGEN_REAL_SCHUR_H
|
13
|
+
|
14
|
+
#include "./HessenbergDecomposition.h"
|
15
|
+
|
16
|
+
namespace Eigen {
|
17
|
+
|
18
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
19
|
+
*
|
20
|
+
*
|
21
|
+
* \class RealSchur
|
22
|
+
*
|
23
|
+
* \brief Performs a real Schur decomposition of a square matrix
|
24
|
+
*
|
25
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the
|
26
|
+
* real Schur decomposition; this is expected to be an instantiation of the
|
27
|
+
* Matrix class template.
|
28
|
+
*
|
29
|
+
* Given a real square matrix A, this class computes the real Schur
|
30
|
+
* decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
|
31
|
+
* T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
|
32
|
+
* inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
|
33
|
+
* matrix is a block-triangular matrix whose diagonal consists of 1-by-1
|
34
|
+
* blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
|
35
|
+
* blocks on the diagonal of T are the same as the eigenvalues of the matrix
|
36
|
+
* A, and thus the real Schur decomposition is used in EigenSolver to compute
|
37
|
+
* the eigendecomposition of a matrix.
|
38
|
+
*
|
39
|
+
* Call the function compute() to compute the real Schur decomposition of a
|
40
|
+
* given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
|
41
|
+
* constructor which computes the real Schur decomposition at construction
|
42
|
+
* time. Once the decomposition is computed, you can use the matrixU() and
|
43
|
+
* matrixT() functions to retrieve the matrices U and T in the decomposition.
|
44
|
+
*
|
45
|
+
* The documentation of RealSchur(const MatrixType&, bool) contains an example
|
46
|
+
* of the typical use of this class.
|
47
|
+
*
|
48
|
+
* \note The implementation is adapted from
|
49
|
+
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
|
50
|
+
* Their code is based on EISPACK.
|
51
|
+
*
|
52
|
+
* \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
53
|
+
*/
|
54
|
+
template<typename _MatrixType> class RealSchur
|
55
|
+
{
|
56
|
+
public:
|
57
|
+
typedef _MatrixType MatrixType;
|
58
|
+
enum {
|
59
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
60
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
61
|
+
Options = MatrixType::Options,
|
62
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
63
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
64
|
+
};
|
65
|
+
typedef typename MatrixType::Scalar Scalar;
|
66
|
+
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
67
|
+
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
68
|
+
|
69
|
+
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
|
70
|
+
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
71
|
+
|
72
|
+
/** \brief Default constructor.
|
73
|
+
*
|
74
|
+
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
|
75
|
+
*
|
76
|
+
* The default constructor is useful in cases in which the user intends to
|
77
|
+
* perform decompositions via compute(). The \p size parameter is only
|
78
|
+
* used as a hint. It is not an error to give a wrong \p size, but it may
|
79
|
+
* impair performance.
|
80
|
+
*
|
81
|
+
* \sa compute() for an example.
|
82
|
+
*/
|
83
|
+
explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
84
|
+
: m_matT(size, size),
|
85
|
+
m_matU(size, size),
|
86
|
+
m_workspaceVector(size),
|
87
|
+
m_hess(size),
|
88
|
+
m_isInitialized(false),
|
89
|
+
m_matUisUptodate(false),
|
90
|
+
m_maxIters(-1)
|
91
|
+
{ }
|
92
|
+
|
93
|
+
/** \brief Constructor; computes real Schur decomposition of given matrix.
|
94
|
+
*
|
95
|
+
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
96
|
+
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
97
|
+
*
|
98
|
+
* This constructor calls compute() to compute the Schur decomposition.
|
99
|
+
*
|
100
|
+
* Example: \include RealSchur_RealSchur_MatrixType.cpp
|
101
|
+
* Output: \verbinclude RealSchur_RealSchur_MatrixType.out
|
102
|
+
*/
|
103
|
+
template<typename InputType>
|
104
|
+
explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
|
105
|
+
: m_matT(matrix.rows(),matrix.cols()),
|
106
|
+
m_matU(matrix.rows(),matrix.cols()),
|
107
|
+
m_workspaceVector(matrix.rows()),
|
108
|
+
m_hess(matrix.rows()),
|
109
|
+
m_isInitialized(false),
|
110
|
+
m_matUisUptodate(false),
|
111
|
+
m_maxIters(-1)
|
112
|
+
{
|
113
|
+
compute(matrix.derived(), computeU);
|
114
|
+
}
|
115
|
+
|
116
|
+
/** \brief Returns the orthogonal matrix in the Schur decomposition.
|
117
|
+
*
|
118
|
+
* \returns A const reference to the matrix U.
|
119
|
+
*
|
120
|
+
* \pre Either the constructor RealSchur(const MatrixType&, bool) or the
|
121
|
+
* member function compute(const MatrixType&, bool) has been called before
|
122
|
+
* to compute the Schur decomposition of a matrix, and \p computeU was set
|
123
|
+
* to true (the default value).
|
124
|
+
*
|
125
|
+
* \sa RealSchur(const MatrixType&, bool) for an example
|
126
|
+
*/
|
127
|
+
const MatrixType& matrixU() const
|
128
|
+
{
|
129
|
+
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
130
|
+
eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
|
131
|
+
return m_matU;
|
132
|
+
}
|
133
|
+
|
134
|
+
/** \brief Returns the quasi-triangular matrix in the Schur decomposition.
|
135
|
+
*
|
136
|
+
* \returns A const reference to the matrix T.
|
137
|
+
*
|
138
|
+
* \pre Either the constructor RealSchur(const MatrixType&, bool) or the
|
139
|
+
* member function compute(const MatrixType&, bool) has been called before
|
140
|
+
* to compute the Schur decomposition of a matrix.
|
141
|
+
*
|
142
|
+
* \sa RealSchur(const MatrixType&, bool) for an example
|
143
|
+
*/
|
144
|
+
const MatrixType& matrixT() const
|
145
|
+
{
|
146
|
+
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
147
|
+
return m_matT;
|
148
|
+
}
|
149
|
+
|
150
|
+
/** \brief Computes Schur decomposition of given matrix.
|
151
|
+
*
|
152
|
+
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
153
|
+
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
154
|
+
* \returns Reference to \c *this
|
155
|
+
*
|
156
|
+
* The Schur decomposition is computed by first reducing the matrix to
|
157
|
+
* Hessenberg form using the class HessenbergDecomposition. The Hessenberg
|
158
|
+
* matrix is then reduced to triangular form by performing Francis QR
|
159
|
+
* iterations with implicit double shift. The cost of computing the Schur
|
160
|
+
* decomposition depends on the number of iterations; as a rough guide, it
|
161
|
+
* may be taken to be \f$25n^3\f$ flops if \a computeU is true and
|
162
|
+
* \f$10n^3\f$ flops if \a computeU is false.
|
163
|
+
*
|
164
|
+
* Example: \include RealSchur_compute.cpp
|
165
|
+
* Output: \verbinclude RealSchur_compute.out
|
166
|
+
*
|
167
|
+
* \sa compute(const MatrixType&, bool, Index)
|
168
|
+
*/
|
169
|
+
template<typename InputType>
|
170
|
+
RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
|
171
|
+
|
172
|
+
/** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
|
173
|
+
* \param[in] matrixH Matrix in Hessenberg form H
|
174
|
+
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
175
|
+
* \param computeU Computes the matriX U of the Schur vectors
|
176
|
+
* \return Reference to \c *this
|
177
|
+
*
|
178
|
+
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
179
|
+
* using either the class HessenbergDecomposition or another mean.
|
180
|
+
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
181
|
+
* When computeU is true, this routine computes the matrix U such that
|
182
|
+
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
183
|
+
*
|
184
|
+
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
185
|
+
* is not available, the user should give an identity matrix (Q.setIdentity())
|
186
|
+
*
|
187
|
+
* \sa compute(const MatrixType&, bool)
|
188
|
+
*/
|
189
|
+
template<typename HessMatrixType, typename OrthMatrixType>
|
190
|
+
RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
191
|
+
/** \brief Reports whether previous computation was successful.
|
192
|
+
*
|
193
|
+
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
194
|
+
*/
|
195
|
+
ComputationInfo info() const
|
196
|
+
{
|
197
|
+
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
198
|
+
return m_info;
|
199
|
+
}
|
200
|
+
|
201
|
+
/** \brief Sets the maximum number of iterations allowed.
|
202
|
+
*
|
203
|
+
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
204
|
+
* of the matrix.
|
205
|
+
*/
|
206
|
+
RealSchur& setMaxIterations(Index maxIters)
|
207
|
+
{
|
208
|
+
m_maxIters = maxIters;
|
209
|
+
return *this;
|
210
|
+
}
|
211
|
+
|
212
|
+
/** \brief Returns the maximum number of iterations. */
|
213
|
+
Index getMaxIterations()
|
214
|
+
{
|
215
|
+
return m_maxIters;
|
216
|
+
}
|
217
|
+
|
218
|
+
/** \brief Maximum number of iterations per row.
|
219
|
+
*
|
220
|
+
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
221
|
+
* matrix. It is currently set to 40.
|
222
|
+
*/
|
223
|
+
static const int m_maxIterationsPerRow = 40;
|
224
|
+
|
225
|
+
private:
|
226
|
+
|
227
|
+
MatrixType m_matT;
|
228
|
+
MatrixType m_matU;
|
229
|
+
ColumnVectorType m_workspaceVector;
|
230
|
+
HessenbergDecomposition<MatrixType> m_hess;
|
231
|
+
ComputationInfo m_info;
|
232
|
+
bool m_isInitialized;
|
233
|
+
bool m_matUisUptodate;
|
234
|
+
Index m_maxIters;
|
235
|
+
|
236
|
+
typedef Matrix<Scalar,3,1> Vector3s;
|
237
|
+
|
238
|
+
Scalar computeNormOfT();
|
239
|
+
Index findSmallSubdiagEntry(Index iu);
|
240
|
+
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
241
|
+
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
242
|
+
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
243
|
+
void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
|
244
|
+
};
|
245
|
+
|
246
|
+
|
247
|
+
template<typename MatrixType>
|
248
|
+
template<typename InputType>
|
249
|
+
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
|
250
|
+
{
|
251
|
+
const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
|
252
|
+
|
253
|
+
eigen_assert(matrix.cols() == matrix.rows());
|
254
|
+
Index maxIters = m_maxIters;
|
255
|
+
if (maxIters == -1)
|
256
|
+
maxIters = m_maxIterationsPerRow * matrix.rows();
|
257
|
+
|
258
|
+
Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
|
259
|
+
if(scale<considerAsZero)
|
260
|
+
{
|
261
|
+
m_matT.setZero(matrix.rows(),matrix.cols());
|
262
|
+
if(computeU)
|
263
|
+
m_matU.setIdentity(matrix.rows(),matrix.cols());
|
264
|
+
m_info = Success;
|
265
|
+
m_isInitialized = true;
|
266
|
+
m_matUisUptodate = computeU;
|
267
|
+
return *this;
|
268
|
+
}
|
269
|
+
|
270
|
+
// Step 1. Reduce to Hessenberg form
|
271
|
+
m_hess.compute(matrix.derived()/scale);
|
272
|
+
|
273
|
+
// Step 2. Reduce to real Schur form
|
274
|
+
computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
|
275
|
+
|
276
|
+
m_matT *= scale;
|
277
|
+
|
278
|
+
return *this;
|
279
|
+
}
|
280
|
+
template<typename MatrixType>
|
281
|
+
template<typename HessMatrixType, typename OrthMatrixType>
|
282
|
+
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
283
|
+
{
|
284
|
+
using std::abs;
|
285
|
+
|
286
|
+
m_matT = matrixH;
|
287
|
+
if(computeU)
|
288
|
+
m_matU = matrixQ;
|
289
|
+
|
290
|
+
Index maxIters = m_maxIters;
|
291
|
+
if (maxIters == -1)
|
292
|
+
maxIters = m_maxIterationsPerRow * matrixH.rows();
|
293
|
+
m_workspaceVector.resize(m_matT.cols());
|
294
|
+
Scalar* workspace = &m_workspaceVector.coeffRef(0);
|
295
|
+
|
296
|
+
// The matrix m_matT is divided in three parts.
|
297
|
+
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
298
|
+
// Rows il,...,iu is the part we are working on (the active window).
|
299
|
+
// Rows iu+1,...,end are already brought in triangular form.
|
300
|
+
Index iu = m_matT.cols() - 1;
|
301
|
+
Index iter = 0; // iteration count for current eigenvalue
|
302
|
+
Index totalIter = 0; // iteration count for whole matrix
|
303
|
+
Scalar exshift(0); // sum of exceptional shifts
|
304
|
+
Scalar norm = computeNormOfT();
|
305
|
+
|
306
|
+
if(norm!=Scalar(0))
|
307
|
+
{
|
308
|
+
while (iu >= 0)
|
309
|
+
{
|
310
|
+
Index il = findSmallSubdiagEntry(iu);
|
311
|
+
|
312
|
+
// Check for convergence
|
313
|
+
if (il == iu) // One root found
|
314
|
+
{
|
315
|
+
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
316
|
+
if (iu > 0)
|
317
|
+
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
318
|
+
iu--;
|
319
|
+
iter = 0;
|
320
|
+
}
|
321
|
+
else if (il == iu-1) // Two roots found
|
322
|
+
{
|
323
|
+
splitOffTwoRows(iu, computeU, exshift);
|
324
|
+
iu -= 2;
|
325
|
+
iter = 0;
|
326
|
+
}
|
327
|
+
else // No convergence yet
|
328
|
+
{
|
329
|
+
// The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
|
330
|
+
Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
|
331
|
+
computeShift(iu, iter, exshift, shiftInfo);
|
332
|
+
iter = iter + 1;
|
333
|
+
totalIter = totalIter + 1;
|
334
|
+
if (totalIter > maxIters) break;
|
335
|
+
Index im;
|
336
|
+
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
337
|
+
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
338
|
+
}
|
339
|
+
}
|
340
|
+
}
|
341
|
+
if(totalIter <= maxIters)
|
342
|
+
m_info = Success;
|
343
|
+
else
|
344
|
+
m_info = NoConvergence;
|
345
|
+
|
346
|
+
m_isInitialized = true;
|
347
|
+
m_matUisUptodate = computeU;
|
348
|
+
return *this;
|
349
|
+
}
|
350
|
+
|
351
|
+
/** \internal Computes and returns vector L1 norm of T */
|
352
|
+
template<typename MatrixType>
|
353
|
+
inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
354
|
+
{
|
355
|
+
const Index size = m_matT.cols();
|
356
|
+
// FIXME to be efficient the following would requires a triangular reduxion code
|
357
|
+
// Scalar norm = m_matT.upper().cwiseAbs().sum()
|
358
|
+
// + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
|
359
|
+
Scalar norm(0);
|
360
|
+
for (Index j = 0; j < size; ++j)
|
361
|
+
norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
|
362
|
+
return norm;
|
363
|
+
}
|
364
|
+
|
365
|
+
/** \internal Look for single small sub-diagonal element and returns its index */
|
366
|
+
template<typename MatrixType>
|
367
|
+
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
368
|
+
{
|
369
|
+
using std::abs;
|
370
|
+
Index res = iu;
|
371
|
+
while (res > 0)
|
372
|
+
{
|
373
|
+
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
374
|
+
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
375
|
+
break;
|
376
|
+
res--;
|
377
|
+
}
|
378
|
+
return res;
|
379
|
+
}
|
380
|
+
|
381
|
+
/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
|
382
|
+
template<typename MatrixType>
|
383
|
+
inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
|
384
|
+
{
|
385
|
+
using std::sqrt;
|
386
|
+
using std::abs;
|
387
|
+
const Index size = m_matT.cols();
|
388
|
+
|
389
|
+
// The eigenvalues of the 2x2 matrix [a b; c d] are
|
390
|
+
// trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
|
391
|
+
Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
|
392
|
+
Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
|
393
|
+
m_matT.coeffRef(iu,iu) += exshift;
|
394
|
+
m_matT.coeffRef(iu-1,iu-1) += exshift;
|
395
|
+
|
396
|
+
if (q >= Scalar(0)) // Two real eigenvalues
|
397
|
+
{
|
398
|
+
Scalar z = sqrt(abs(q));
|
399
|
+
JacobiRotation<Scalar> rot;
|
400
|
+
if (p >= Scalar(0))
|
401
|
+
rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
|
402
|
+
else
|
403
|
+
rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
|
404
|
+
|
405
|
+
m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
|
406
|
+
m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
|
407
|
+
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
408
|
+
if (computeU)
|
409
|
+
m_matU.applyOnTheRight(iu-1, iu, rot);
|
410
|
+
}
|
411
|
+
|
412
|
+
if (iu > 1)
|
413
|
+
m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
|
414
|
+
}
|
415
|
+
|
416
|
+
/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
|
417
|
+
template<typename MatrixType>
|
418
|
+
inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
|
419
|
+
{
|
420
|
+
using std::sqrt;
|
421
|
+
using std::abs;
|
422
|
+
shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
|
423
|
+
shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
|
424
|
+
shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
425
|
+
|
426
|
+
// Wilkinson's original ad hoc shift
|
427
|
+
if (iter == 10)
|
428
|
+
{
|
429
|
+
exshift += shiftInfo.coeff(0);
|
430
|
+
for (Index i = 0; i <= iu; ++i)
|
431
|
+
m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
|
432
|
+
Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
|
433
|
+
shiftInfo.coeffRef(0) = Scalar(0.75) * s;
|
434
|
+
shiftInfo.coeffRef(1) = Scalar(0.75) * s;
|
435
|
+
shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
|
436
|
+
}
|
437
|
+
|
438
|
+
// MATLAB's new ad hoc shift
|
439
|
+
if (iter == 30)
|
440
|
+
{
|
441
|
+
Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
442
|
+
s = s * s + shiftInfo.coeff(2);
|
443
|
+
if (s > Scalar(0))
|
444
|
+
{
|
445
|
+
s = sqrt(s);
|
446
|
+
if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
|
447
|
+
s = -s;
|
448
|
+
s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
449
|
+
s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
|
450
|
+
exshift += s;
|
451
|
+
for (Index i = 0; i <= iu; ++i)
|
452
|
+
m_matT.coeffRef(i,i) -= s;
|
453
|
+
shiftInfo.setConstant(Scalar(0.964));
|
454
|
+
}
|
455
|
+
}
|
456
|
+
}
|
457
|
+
|
458
|
+
/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
|
459
|
+
template<typename MatrixType>
|
460
|
+
inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
|
461
|
+
{
|
462
|
+
using std::abs;
|
463
|
+
Vector3s& v = firstHouseholderVector; // alias to save typing
|
464
|
+
|
465
|
+
for (im = iu-2; im >= il; --im)
|
466
|
+
{
|
467
|
+
const Scalar Tmm = m_matT.coeff(im,im);
|
468
|
+
const Scalar r = shiftInfo.coeff(0) - Tmm;
|
469
|
+
const Scalar s = shiftInfo.coeff(1) - Tmm;
|
470
|
+
v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
|
471
|
+
v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
|
472
|
+
v.coeffRef(2) = m_matT.coeff(im+2,im+1);
|
473
|
+
if (im == il) {
|
474
|
+
break;
|
475
|
+
}
|
476
|
+
const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
|
477
|
+
const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
|
478
|
+
if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
|
479
|
+
break;
|
480
|
+
}
|
481
|
+
}
|
482
|
+
|
483
|
+
/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
|
484
|
+
template<typename MatrixType>
|
485
|
+
inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
|
486
|
+
{
|
487
|
+
eigen_assert(im >= il);
|
488
|
+
eigen_assert(im <= iu-2);
|
489
|
+
|
490
|
+
const Index size = m_matT.cols();
|
491
|
+
|
492
|
+
for (Index k = im; k <= iu-2; ++k)
|
493
|
+
{
|
494
|
+
bool firstIteration = (k == im);
|
495
|
+
|
496
|
+
Vector3s v;
|
497
|
+
if (firstIteration)
|
498
|
+
v = firstHouseholderVector;
|
499
|
+
else
|
500
|
+
v = m_matT.template block<3,1>(k,k-1);
|
501
|
+
|
502
|
+
Scalar tau, beta;
|
503
|
+
Matrix<Scalar, 2, 1> ess;
|
504
|
+
v.makeHouseholder(ess, tau, beta);
|
505
|
+
|
506
|
+
if (beta != Scalar(0)) // if v is not zero
|
507
|
+
{
|
508
|
+
if (firstIteration && k > il)
|
509
|
+
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
510
|
+
else if (!firstIteration)
|
511
|
+
m_matT.coeffRef(k,k-1) = beta;
|
512
|
+
|
513
|
+
// These Householder transformations form the O(n^3) part of the algorithm
|
514
|
+
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
|
515
|
+
m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
|
516
|
+
if (computeU)
|
517
|
+
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
|
518
|
+
}
|
519
|
+
}
|
520
|
+
|
521
|
+
Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
|
522
|
+
Scalar tau, beta;
|
523
|
+
Matrix<Scalar, 1, 1> ess;
|
524
|
+
v.makeHouseholder(ess, tau, beta);
|
525
|
+
|
526
|
+
if (beta != Scalar(0)) // if v is not zero
|
527
|
+
{
|
528
|
+
m_matT.coeffRef(iu-1, iu-2) = beta;
|
529
|
+
m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
|
530
|
+
m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
|
531
|
+
if (computeU)
|
532
|
+
m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
|
533
|
+
}
|
534
|
+
|
535
|
+
// clean up pollution due to round-off errors
|
536
|
+
for (Index i = im+2; i <= iu; ++i)
|
537
|
+
{
|
538
|
+
m_matT.coeffRef(i,i-2) = Scalar(0);
|
539
|
+
if (i > im+2)
|
540
|
+
m_matT.coeffRef(i,i-3) = Scalar(0);
|
541
|
+
}
|
542
|
+
}
|
543
|
+
|
544
|
+
} // end namespace Eigen
|
545
|
+
|
546
|
+
#endif // EIGEN_REAL_SCHUR_H
|