tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,546 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_REAL_SCHUR_H
12
+ #define EIGEN_REAL_SCHUR_H
13
+
14
+ #include "./HessenbergDecomposition.h"
15
+
16
+ namespace Eigen {
17
+
18
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
19
+ *
20
+ *
21
+ * \class RealSchur
22
+ *
23
+ * \brief Performs a real Schur decomposition of a square matrix
24
+ *
25
+ * \tparam _MatrixType the type of the matrix of which we are computing the
26
+ * real Schur decomposition; this is expected to be an instantiation of the
27
+ * Matrix class template.
28
+ *
29
+ * Given a real square matrix A, this class computes the real Schur
30
+ * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
31
+ * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
32
+ * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
33
+ * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
34
+ * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
35
+ * blocks on the diagonal of T are the same as the eigenvalues of the matrix
36
+ * A, and thus the real Schur decomposition is used in EigenSolver to compute
37
+ * the eigendecomposition of a matrix.
38
+ *
39
+ * Call the function compute() to compute the real Schur decomposition of a
40
+ * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
41
+ * constructor which computes the real Schur decomposition at construction
42
+ * time. Once the decomposition is computed, you can use the matrixU() and
43
+ * matrixT() functions to retrieve the matrices U and T in the decomposition.
44
+ *
45
+ * The documentation of RealSchur(const MatrixType&, bool) contains an example
46
+ * of the typical use of this class.
47
+ *
48
+ * \note The implementation is adapted from
49
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
50
+ * Their code is based on EISPACK.
51
+ *
52
+ * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
53
+ */
54
+ template<typename _MatrixType> class RealSchur
55
+ {
56
+ public:
57
+ typedef _MatrixType MatrixType;
58
+ enum {
59
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61
+ Options = MatrixType::Options,
62
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64
+ };
65
+ typedef typename MatrixType::Scalar Scalar;
66
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
68
+
69
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
70
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
71
+
72
+ /** \brief Default constructor.
73
+ *
74
+ * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
75
+ *
76
+ * The default constructor is useful in cases in which the user intends to
77
+ * perform decompositions via compute(). The \p size parameter is only
78
+ * used as a hint. It is not an error to give a wrong \p size, but it may
79
+ * impair performance.
80
+ *
81
+ * \sa compute() for an example.
82
+ */
83
+ explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84
+ : m_matT(size, size),
85
+ m_matU(size, size),
86
+ m_workspaceVector(size),
87
+ m_hess(size),
88
+ m_isInitialized(false),
89
+ m_matUisUptodate(false),
90
+ m_maxIters(-1)
91
+ { }
92
+
93
+ /** \brief Constructor; computes real Schur decomposition of given matrix.
94
+ *
95
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
96
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
97
+ *
98
+ * This constructor calls compute() to compute the Schur decomposition.
99
+ *
100
+ * Example: \include RealSchur_RealSchur_MatrixType.cpp
101
+ * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
102
+ */
103
+ template<typename InputType>
104
+ explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105
+ : m_matT(matrix.rows(),matrix.cols()),
106
+ m_matU(matrix.rows(),matrix.cols()),
107
+ m_workspaceVector(matrix.rows()),
108
+ m_hess(matrix.rows()),
109
+ m_isInitialized(false),
110
+ m_matUisUptodate(false),
111
+ m_maxIters(-1)
112
+ {
113
+ compute(matrix.derived(), computeU);
114
+ }
115
+
116
+ /** \brief Returns the orthogonal matrix in the Schur decomposition.
117
+ *
118
+ * \returns A const reference to the matrix U.
119
+ *
120
+ * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
121
+ * member function compute(const MatrixType&, bool) has been called before
122
+ * to compute the Schur decomposition of a matrix, and \p computeU was set
123
+ * to true (the default value).
124
+ *
125
+ * \sa RealSchur(const MatrixType&, bool) for an example
126
+ */
127
+ const MatrixType& matrixU() const
128
+ {
129
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130
+ eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131
+ return m_matU;
132
+ }
133
+
134
+ /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
135
+ *
136
+ * \returns A const reference to the matrix T.
137
+ *
138
+ * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
139
+ * member function compute(const MatrixType&, bool) has been called before
140
+ * to compute the Schur decomposition of a matrix.
141
+ *
142
+ * \sa RealSchur(const MatrixType&, bool) for an example
143
+ */
144
+ const MatrixType& matrixT() const
145
+ {
146
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147
+ return m_matT;
148
+ }
149
+
150
+ /** \brief Computes Schur decomposition of given matrix.
151
+ *
152
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
153
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
154
+ * \returns Reference to \c *this
155
+ *
156
+ * The Schur decomposition is computed by first reducing the matrix to
157
+ * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
158
+ * matrix is then reduced to triangular form by performing Francis QR
159
+ * iterations with implicit double shift. The cost of computing the Schur
160
+ * decomposition depends on the number of iterations; as a rough guide, it
161
+ * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
162
+ * \f$10n^3\f$ flops if \a computeU is false.
163
+ *
164
+ * Example: \include RealSchur_compute.cpp
165
+ * Output: \verbinclude RealSchur_compute.out
166
+ *
167
+ * \sa compute(const MatrixType&, bool, Index)
168
+ */
169
+ template<typename InputType>
170
+ RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171
+
172
+ /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
173
+ * \param[in] matrixH Matrix in Hessenberg form H
174
+ * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
175
+ * \param computeU Computes the matriX U of the Schur vectors
176
+ * \return Reference to \c *this
177
+ *
178
+ * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
179
+ * using either the class HessenbergDecomposition or another mean.
180
+ * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
181
+ * When computeU is true, this routine computes the matrix U such that
182
+ * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
183
+ *
184
+ * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
185
+ * is not available, the user should give an identity matrix (Q.setIdentity())
186
+ *
187
+ * \sa compute(const MatrixType&, bool)
188
+ */
189
+ template<typename HessMatrixType, typename OrthMatrixType>
190
+ RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
191
+ /** \brief Reports whether previous computation was successful.
192
+ *
193
+ * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
194
+ */
195
+ ComputationInfo info() const
196
+ {
197
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198
+ return m_info;
199
+ }
200
+
201
+ /** \brief Sets the maximum number of iterations allowed.
202
+ *
203
+ * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
204
+ * of the matrix.
205
+ */
206
+ RealSchur& setMaxIterations(Index maxIters)
207
+ {
208
+ m_maxIters = maxIters;
209
+ return *this;
210
+ }
211
+
212
+ /** \brief Returns the maximum number of iterations. */
213
+ Index getMaxIterations()
214
+ {
215
+ return m_maxIters;
216
+ }
217
+
218
+ /** \brief Maximum number of iterations per row.
219
+ *
220
+ * If not otherwise specified, the maximum number of iterations is this number times the size of the
221
+ * matrix. It is currently set to 40.
222
+ */
223
+ static const int m_maxIterationsPerRow = 40;
224
+
225
+ private:
226
+
227
+ MatrixType m_matT;
228
+ MatrixType m_matU;
229
+ ColumnVectorType m_workspaceVector;
230
+ HessenbergDecomposition<MatrixType> m_hess;
231
+ ComputationInfo m_info;
232
+ bool m_isInitialized;
233
+ bool m_matUisUptodate;
234
+ Index m_maxIters;
235
+
236
+ typedef Matrix<Scalar,3,1> Vector3s;
237
+
238
+ Scalar computeNormOfT();
239
+ Index findSmallSubdiagEntry(Index iu);
240
+ void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241
+ void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242
+ void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243
+ void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244
+ };
245
+
246
+
247
+ template<typename MatrixType>
248
+ template<typename InputType>
249
+ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
250
+ {
251
+ const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
252
+
253
+ eigen_assert(matrix.cols() == matrix.rows());
254
+ Index maxIters = m_maxIters;
255
+ if (maxIters == -1)
256
+ maxIters = m_maxIterationsPerRow * matrix.rows();
257
+
258
+ Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
259
+ if(scale<considerAsZero)
260
+ {
261
+ m_matT.setZero(matrix.rows(),matrix.cols());
262
+ if(computeU)
263
+ m_matU.setIdentity(matrix.rows(),matrix.cols());
264
+ m_info = Success;
265
+ m_isInitialized = true;
266
+ m_matUisUptodate = computeU;
267
+ return *this;
268
+ }
269
+
270
+ // Step 1. Reduce to Hessenberg form
271
+ m_hess.compute(matrix.derived()/scale);
272
+
273
+ // Step 2. Reduce to real Schur form
274
+ computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
275
+
276
+ m_matT *= scale;
277
+
278
+ return *this;
279
+ }
280
+ template<typename MatrixType>
281
+ template<typename HessMatrixType, typename OrthMatrixType>
282
+ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
283
+ {
284
+ using std::abs;
285
+
286
+ m_matT = matrixH;
287
+ if(computeU)
288
+ m_matU = matrixQ;
289
+
290
+ Index maxIters = m_maxIters;
291
+ if (maxIters == -1)
292
+ maxIters = m_maxIterationsPerRow * matrixH.rows();
293
+ m_workspaceVector.resize(m_matT.cols());
294
+ Scalar* workspace = &m_workspaceVector.coeffRef(0);
295
+
296
+ // The matrix m_matT is divided in three parts.
297
+ // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
298
+ // Rows il,...,iu is the part we are working on (the active window).
299
+ // Rows iu+1,...,end are already brought in triangular form.
300
+ Index iu = m_matT.cols() - 1;
301
+ Index iter = 0; // iteration count for current eigenvalue
302
+ Index totalIter = 0; // iteration count for whole matrix
303
+ Scalar exshift(0); // sum of exceptional shifts
304
+ Scalar norm = computeNormOfT();
305
+
306
+ if(norm!=Scalar(0))
307
+ {
308
+ while (iu >= 0)
309
+ {
310
+ Index il = findSmallSubdiagEntry(iu);
311
+
312
+ // Check for convergence
313
+ if (il == iu) // One root found
314
+ {
315
+ m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
316
+ if (iu > 0)
317
+ m_matT.coeffRef(iu, iu-1) = Scalar(0);
318
+ iu--;
319
+ iter = 0;
320
+ }
321
+ else if (il == iu-1) // Two roots found
322
+ {
323
+ splitOffTwoRows(iu, computeU, exshift);
324
+ iu -= 2;
325
+ iter = 0;
326
+ }
327
+ else // No convergence yet
328
+ {
329
+ // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
330
+ Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
331
+ computeShift(iu, iter, exshift, shiftInfo);
332
+ iter = iter + 1;
333
+ totalIter = totalIter + 1;
334
+ if (totalIter > maxIters) break;
335
+ Index im;
336
+ initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
337
+ performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
338
+ }
339
+ }
340
+ }
341
+ if(totalIter <= maxIters)
342
+ m_info = Success;
343
+ else
344
+ m_info = NoConvergence;
345
+
346
+ m_isInitialized = true;
347
+ m_matUisUptodate = computeU;
348
+ return *this;
349
+ }
350
+
351
+ /** \internal Computes and returns vector L1 norm of T */
352
+ template<typename MatrixType>
353
+ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
354
+ {
355
+ const Index size = m_matT.cols();
356
+ // FIXME to be efficient the following would requires a triangular reduxion code
357
+ // Scalar norm = m_matT.upper().cwiseAbs().sum()
358
+ // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
359
+ Scalar norm(0);
360
+ for (Index j = 0; j < size; ++j)
361
+ norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
362
+ return norm;
363
+ }
364
+
365
+ /** \internal Look for single small sub-diagonal element and returns its index */
366
+ template<typename MatrixType>
367
+ inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
368
+ {
369
+ using std::abs;
370
+ Index res = iu;
371
+ while (res > 0)
372
+ {
373
+ Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
374
+ if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
375
+ break;
376
+ res--;
377
+ }
378
+ return res;
379
+ }
380
+
381
+ /** \internal Update T given that rows iu-1 and iu decouple from the rest. */
382
+ template<typename MatrixType>
383
+ inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
384
+ {
385
+ using std::sqrt;
386
+ using std::abs;
387
+ const Index size = m_matT.cols();
388
+
389
+ // The eigenvalues of the 2x2 matrix [a b; c d] are
390
+ // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
391
+ Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
392
+ Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
393
+ m_matT.coeffRef(iu,iu) += exshift;
394
+ m_matT.coeffRef(iu-1,iu-1) += exshift;
395
+
396
+ if (q >= Scalar(0)) // Two real eigenvalues
397
+ {
398
+ Scalar z = sqrt(abs(q));
399
+ JacobiRotation<Scalar> rot;
400
+ if (p >= Scalar(0))
401
+ rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
402
+ else
403
+ rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
404
+
405
+ m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
406
+ m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
407
+ m_matT.coeffRef(iu, iu-1) = Scalar(0);
408
+ if (computeU)
409
+ m_matU.applyOnTheRight(iu-1, iu, rot);
410
+ }
411
+
412
+ if (iu > 1)
413
+ m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
414
+ }
415
+
416
+ /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
417
+ template<typename MatrixType>
418
+ inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
419
+ {
420
+ using std::sqrt;
421
+ using std::abs;
422
+ shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
423
+ shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
424
+ shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
425
+
426
+ // Wilkinson's original ad hoc shift
427
+ if (iter == 10)
428
+ {
429
+ exshift += shiftInfo.coeff(0);
430
+ for (Index i = 0; i <= iu; ++i)
431
+ m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
432
+ Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
433
+ shiftInfo.coeffRef(0) = Scalar(0.75) * s;
434
+ shiftInfo.coeffRef(1) = Scalar(0.75) * s;
435
+ shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
436
+ }
437
+
438
+ // MATLAB's new ad hoc shift
439
+ if (iter == 30)
440
+ {
441
+ Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
442
+ s = s * s + shiftInfo.coeff(2);
443
+ if (s > Scalar(0))
444
+ {
445
+ s = sqrt(s);
446
+ if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
447
+ s = -s;
448
+ s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
449
+ s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
450
+ exshift += s;
451
+ for (Index i = 0; i <= iu; ++i)
452
+ m_matT.coeffRef(i,i) -= s;
453
+ shiftInfo.setConstant(Scalar(0.964));
454
+ }
455
+ }
456
+ }
457
+
458
+ /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
459
+ template<typename MatrixType>
460
+ inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
461
+ {
462
+ using std::abs;
463
+ Vector3s& v = firstHouseholderVector; // alias to save typing
464
+
465
+ for (im = iu-2; im >= il; --im)
466
+ {
467
+ const Scalar Tmm = m_matT.coeff(im,im);
468
+ const Scalar r = shiftInfo.coeff(0) - Tmm;
469
+ const Scalar s = shiftInfo.coeff(1) - Tmm;
470
+ v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
471
+ v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
472
+ v.coeffRef(2) = m_matT.coeff(im+2,im+1);
473
+ if (im == il) {
474
+ break;
475
+ }
476
+ const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
477
+ const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
478
+ if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
479
+ break;
480
+ }
481
+ }
482
+
483
+ /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
484
+ template<typename MatrixType>
485
+ inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
486
+ {
487
+ eigen_assert(im >= il);
488
+ eigen_assert(im <= iu-2);
489
+
490
+ const Index size = m_matT.cols();
491
+
492
+ for (Index k = im; k <= iu-2; ++k)
493
+ {
494
+ bool firstIteration = (k == im);
495
+
496
+ Vector3s v;
497
+ if (firstIteration)
498
+ v = firstHouseholderVector;
499
+ else
500
+ v = m_matT.template block<3,1>(k,k-1);
501
+
502
+ Scalar tau, beta;
503
+ Matrix<Scalar, 2, 1> ess;
504
+ v.makeHouseholder(ess, tau, beta);
505
+
506
+ if (beta != Scalar(0)) // if v is not zero
507
+ {
508
+ if (firstIteration && k > il)
509
+ m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
510
+ else if (!firstIteration)
511
+ m_matT.coeffRef(k,k-1) = beta;
512
+
513
+ // These Householder transformations form the O(n^3) part of the algorithm
514
+ m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
515
+ m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
516
+ if (computeU)
517
+ m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
518
+ }
519
+ }
520
+
521
+ Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
522
+ Scalar tau, beta;
523
+ Matrix<Scalar, 1, 1> ess;
524
+ v.makeHouseholder(ess, tau, beta);
525
+
526
+ if (beta != Scalar(0)) // if v is not zero
527
+ {
528
+ m_matT.coeffRef(iu-1, iu-2) = beta;
529
+ m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
530
+ m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
531
+ if (computeU)
532
+ m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
533
+ }
534
+
535
+ // clean up pollution due to round-off errors
536
+ for (Index i = im+2; i <= iu; ++i)
537
+ {
538
+ m_matT.coeffRef(i,i-2) = Scalar(0);
539
+ if (i > im+2)
540
+ m_matT.coeffRef(i,i-3) = Scalar(0);
541
+ }
542
+ }
543
+
544
+ } // end namespace Eigen
545
+
546
+ #endif // EIGEN_REAL_SCHUR_H