tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,37 @@
1
+ #pragma once
2
+ #include "LDA.h"
3
+
4
+ namespace tomoto
5
+ {
6
+ template<TermWeight _tw>
7
+ struct DocumentCTM : public DocumentLDA<_tw>
8
+ {
9
+ using BaseDocument = DocumentLDA<_tw>;
10
+ using DocumentLDA<_tw>::DocumentLDA;
11
+ Eigen::Matrix<Float, -1, -1> beta; // Dim: (K, betaSample)
12
+ Eigen::Matrix<Float, -1, 1> smBeta; // Dim: K
13
+
14
+ DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseDocument, 0, smBeta);
15
+ DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseDocument, 1, 0x00010001, smBeta);
16
+ };
17
+
18
+ class ICTModel : public ILDAModel
19
+ {
20
+ public:
21
+ using DefaultDocType = DocumentCTM<TermWeight::one>;
22
+ static ICTModel* create(TermWeight _weight, size_t _K = 1,
23
+ Float smoothingAlpha = 0.1, Float _eta = 0.01,
24
+ size_t seed = std::random_device{}(),
25
+ bool scalarRng = false);
26
+
27
+ virtual void setNumBetaSample(size_t numSample) = 0;
28
+ virtual size_t getNumBetaSample() const = 0;
29
+ virtual void setNumTMNSample(size_t numSample) = 0;
30
+ virtual size_t getNumTMNSample() const = 0;
31
+ virtual void setNumDocBetaSample(size_t numSample) = 0;
32
+ virtual size_t getNumDocBetaSample() const = 0;
33
+ virtual std::vector<Float> getPriorMean() const = 0;
34
+ virtual std::vector<Float> getPriorCov() const = 0;
35
+ virtual std::vector<Float> getCorrelationTopic(Tid k) const = 0;
36
+ };
37
+ }
@@ -0,0 +1,13 @@
1
+ #include "CTModel.hpp"
2
+
3
+ namespace tomoto
4
+ {
5
+ /*template class CTModel<TermWeight::one>;
6
+ template class CTModel<TermWeight::idf>;
7
+ template class CTModel<TermWeight::pmi>;*/
8
+
9
+ ICTModel* ICTModel::create(TermWeight _weight, size_t _K, Float smoothingAlpha, Float _eta, size_t seed, bool scalarRng)
10
+ {
11
+ TMT_SWITCH_TW(_weight, scalarRng, CTModel, _K, smoothingAlpha, _eta, seed);
12
+ }
13
+ }
@@ -0,0 +1,293 @@
1
+ #pragma once
2
+ #include "LDAModel.hpp"
3
+ #include "../Utils/MultiNormalDistribution.hpp"
4
+ #include "../Utils/TruncMultiNormal.hpp"
5
+ #include "CT.h"
6
+ /*
7
+ Implementation of CTM using Gibbs sampling by bab2min
8
+ * Blei, D., & Lafferty, J. (2006). Correlated topic models. Advances in neural information processing systems, 18, 147.
9
+ * Mimno, D., Wallach, H., & McCallum, A. (2008, December). Gibbs sampling for logistic normal topic models with graph-based priors. In NIPS Workshop on Analyzing Graphs (Vol. 61).
10
+ */
11
+
12
+ namespace tomoto
13
+ {
14
+ template<TermWeight _tw>
15
+ struct ModelStateCTM : public ModelStateLDA<_tw>
16
+ {
17
+ };
18
+
19
+ template<TermWeight _tw, typename _RandGen,
20
+ size_t _Flags = flags::partitioned_multisampling,
21
+ typename _Interface = ICTModel,
22
+ typename _Derived = void,
23
+ typename _DocType = DocumentCTM<_tw>,
24
+ typename _ModelState = ModelStateCTM<_tw>>
25
+ class CTModel : public LDAModel<_tw, _RandGen, _Flags, _Interface,
26
+ typename std::conditional<std::is_same<_Derived, void>::value, CTModel<_tw, _RandGen, _Flags>, _Derived>::type,
27
+ _DocType, _ModelState>
28
+ {
29
+ protected:
30
+ using DerivedClass = typename std::conditional<std::is_same<_Derived, void>::value, CTModel<_tw, _RandGen>, _Derived>::type;
31
+ using BaseClass = LDAModel<_tw, _RandGen, _Flags, _Interface, DerivedClass, _DocType, _ModelState>;
32
+ friend BaseClass;
33
+ friend typename BaseClass::BaseClass;
34
+ using WeightType = typename BaseClass::WeightType;
35
+
36
+ static constexpr char TMID[] = "CTM\0";
37
+
38
+ uint64_t numBetaSample = 10;
39
+ uint64_t numTMNSample = 5;
40
+ uint64_t numDocBetaSample = -1;
41
+ math::MultiNormalDistribution<Float> topicPrior;
42
+
43
+ template<bool _asymEta>
44
+ Float* getZLikelihoods(_ModelState& ld, const _DocType& doc, size_t docId, size_t vid) const
45
+ {
46
+ const size_t V = this->realV;
47
+ assert(vid < V);
48
+ auto etaHelper = this->template getEtaHelper<_asymEta>();
49
+ auto& zLikelihood = ld.zLikelihood;
50
+ zLikelihood = doc.smBeta.array()
51
+ * (ld.numByTopicWord.col(vid).array().template cast<Float>() + etaHelper.getEta(vid))
52
+ / (ld.numByTopic.array().template cast<Float>() + etaHelper.getEtaSum());
53
+ sample::prefixSum(zLikelihood.data(), this->K);
54
+ return &zLikelihood[0];
55
+ }
56
+
57
+ void updateBeta(_DocType& doc, _RandGen& rg) const
58
+ {
59
+ Eigen::Matrix<Float, -1, 1> pbeta, lowerBound, upperBound;
60
+ constexpr Float epsilon = 1e-8;
61
+ constexpr size_t burnIn = 3;
62
+
63
+ pbeta = lowerBound = upperBound = Eigen::Matrix<Float, -1, 1>::Zero(this->K);
64
+ for (size_t i = 0; i < numBetaSample + burnIn; ++i)
65
+ {
66
+ if (i == 0) pbeta = Eigen::Matrix<Float, -1, 1>::Ones(this->K);
67
+ else pbeta = doc.beta.col(i % numBetaSample).array().exp();
68
+ Float betaESum = pbeta.sum() + 1;
69
+ pbeta /= betaESum;
70
+ for (size_t k = 0; k < this->K; ++k)
71
+ {
72
+ Float N_k = doc.numByTopic[k] + this->alpha;
73
+ Float N_nk = doc.getSumWordWeight() + this->alpha * (this->K + 1) - N_k;
74
+ Float u1 = rg.uniform_real(), u2 = rg.uniform_real();
75
+ Float max_uk = epsilon + pow(u1, (Float)1 / N_k) * (pbeta[k] - epsilon);
76
+ Float min_unk = (1 - pow(u2, (Float)1 / N_nk))
77
+ * (1 - pbeta[k]) + pbeta[k];
78
+
79
+ Float c = betaESum * (1 - pbeta[k]);
80
+ lowerBound[k] = log(c * max_uk / (1 - max_uk));
81
+ upperBound[k] = log(c * min_unk / (1 - min_unk));
82
+ if (lowerBound[k] > upperBound[k])
83
+ {
84
+ THROW_ERROR_WITH_INFO(exception::TrainingError,
85
+ text::format("Bound Error: LB(%f) > UB(%f)\n"
86
+ "max_uk: %f, min_unk: %f, c: %f", lowerBound[k], upperBound[k], max_uk, min_unk, c));
87
+ }
88
+ }
89
+
90
+ try
91
+ {
92
+ math::sampleFromTruncatedMultiNormal(doc.beta.col((i + 1) % numBetaSample),
93
+ topicPrior, lowerBound, upperBound, rg, numTMNSample);
94
+
95
+ if (!std::isfinite(doc.beta.col((i + 1) % numBetaSample)[0]))
96
+ THROW_ERROR_WITH_INFO(exception::TrainingError,
97
+ text::format("doc.beta.col(%d) is %f", (i + 1) % numBetaSample,
98
+ doc.beta.col((i + 1) % numBetaSample)[0]));
99
+ }
100
+ catch (const std::runtime_error& e)
101
+ {
102
+ std::cerr << e.what() << std::endl;
103
+ THROW_ERROR_WITH_INFO(exception::TrainingError, e.what());
104
+ }
105
+ }
106
+
107
+ // update softmax-applied beta coefficient
108
+ doc.smBeta.head(this->K) = doc.beta.block(0, 0, this->K, std::min(numBetaSample, numDocBetaSample)).rowwise().mean();
109
+ doc.smBeta = doc.smBeta.array().exp();
110
+ doc.smBeta /= doc.smBeta.array().sum();
111
+ }
112
+
113
+ template<ParallelScheme _ps, bool _infer, typename _ExtraDocData>
114
+ void sampleDocument(_DocType& doc, const _ExtraDocData& edd, size_t docId, _ModelState& ld, _RandGen& rgs, size_t iterationCnt, size_t partitionId = 0) const
115
+ {
116
+ BaseClass::template sampleDocument<_ps, _infer>(doc, edd, docId, ld, rgs, iterationCnt, partitionId);
117
+ /*if (iterationCnt >= this->burnIn && this->optimInterval && (iterationCnt + 1) % this->optimInterval == 0)
118
+ {
119
+ updateBeta(doc, rgs);
120
+ }*/
121
+ }
122
+
123
+ template<typename _DocIter>
124
+ void sampleGlobalLevel(ThreadPool* pool, _ModelState* localData, _RandGen* rgs, _DocIter first, _DocIter last) const
125
+ {
126
+ if (this->globalStep < this->burnIn || !this->optimInterval || (this->globalStep + 1) % this->optimInterval != 0) return;
127
+
128
+ if (pool)
129
+ {
130
+ std::vector<std::future<void>> res;
131
+ const size_t chStride = pool->getNumWorkers() * 8;
132
+ size_t dist = std::distance(first, last);
133
+ for (size_t ch = 0; ch < chStride; ++ch)
134
+ {
135
+ auto b = first, e = first;
136
+ std::advance(b, dist * ch / chStride);
137
+ std::advance(e, dist * (ch + 1) / chStride);
138
+ res.emplace_back(pool->enqueue([&, ch, chStride](size_t threadId, _DocIter b, _DocIter e)
139
+ {
140
+ for (auto doc = b; doc != e; ++doc)
141
+ {
142
+ updateBeta(*doc, rgs[threadId]);
143
+ }
144
+ }, b, e));
145
+ }
146
+ for (auto& r : res) r.get();
147
+ }
148
+ else
149
+ {
150
+ for (auto doc = first; doc != last; ++doc)
151
+ {
152
+ updateBeta(*doc, rgs[0]);
153
+ }
154
+ }
155
+ }
156
+
157
+ int restoreFromTrainingError(const exception::TrainingError& e, ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
158
+ {
159
+ std::cerr << "Failed to sample! Reset prior and retry!" << std::endl;
160
+ const size_t chStride = std::min(pool.getNumWorkers() * 8, this->docs.size());
161
+ topicPrior = math::MultiNormalDistribution<Float>{ this->K };
162
+ std::vector<std::future<void>> res;
163
+ for (size_t ch = 0; ch < chStride; ++ch)
164
+ {
165
+ res.emplace_back(pool.enqueue([&, this](size_t threadId, size_t ch)
166
+ {
167
+ for (size_t i = ch; i < this->docs.size(); i += chStride)
168
+ {
169
+ this->docs[i].beta.setZero();
170
+ updateBeta(this->docs[i], rgs[threadId]);
171
+ }
172
+ }, ch));
173
+ }
174
+ for (auto& r : res) r.get();
175
+ return 0;
176
+ }
177
+
178
+ void optimizeParameters(ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
179
+ {
180
+ std::vector<std::future<void>> res;
181
+ topicPrior = math::MultiNormalDistribution<Float>::estimate([this](size_t i)
182
+ {
183
+ return this->docs[i / numBetaSample].beta.col(i % numBetaSample);
184
+ }, this->docs.size() * numBetaSample);
185
+ if (!std::isfinite(topicPrior.mean[0]))
186
+ THROW_ERROR_WITH_INFO(exception::TrainingError,
187
+ text::format("topicPrior.mean is %f", topicPrior.mean[0]));
188
+ }
189
+
190
+ template<typename _DocIter>
191
+ double getLLDocs(_DocIter _first, _DocIter _last) const
192
+ {
193
+ const auto K = this->K;
194
+ const auto alpha = this->alpha;
195
+
196
+ double ll = 0;
197
+ for (; _first != _last; ++_first)
198
+ {
199
+ auto& doc = *_first;
200
+ Eigen::Matrix<Float, -1, 1> pbeta = doc.smBeta.array().log();
201
+ Float last = pbeta[K - 1];
202
+ for (Tid k = 0; k < K; ++k)
203
+ {
204
+ ll += pbeta[k] * (doc.numByTopic[k] + alpha) - math::lgammaT(doc.numByTopic[k] + alpha + 1);
205
+ }
206
+ pbeta.array() -= last;
207
+ ll += topicPrior.getLL(pbeta.head(this->K));
208
+ ll += math::lgammaT(doc.getSumWordWeight() + alpha * K + 1);
209
+ }
210
+ return ll;
211
+ }
212
+
213
+ void prepareDoc(_DocType& doc, size_t docId, size_t wordSize) const
214
+ {
215
+ BaseClass::prepareDoc(doc, docId, wordSize);
216
+ doc.beta = Eigen::Matrix<Float, -1, -1>::Zero(this->K, numBetaSample);
217
+ doc.smBeta = Eigen::Matrix<Float, -1, 1>::Constant(this->K, (Float)1 / this->K);
218
+ }
219
+
220
+ void updateDocs()
221
+ {
222
+ BaseClass::updateDocs();
223
+ for (auto& doc : this->docs)
224
+ {
225
+ doc.beta = Eigen::Matrix<Float, -1, -1>::Zero(this->K, numBetaSample);
226
+ }
227
+ }
228
+
229
+ void initGlobalState(bool initDocs)
230
+ {
231
+ BaseClass::initGlobalState(initDocs);
232
+ if (initDocs)
233
+ {
234
+ topicPrior = math::MultiNormalDistribution<Float>{ this->K };
235
+ }
236
+ }
237
+
238
+ public:
239
+ DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 0, numBetaSample, numTMNSample, topicPrior);
240
+ DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 1, 0x00010001, numBetaSample, numTMNSample, topicPrior);
241
+
242
+ CTModel(size_t _K = 1, Float smoothingAlpha = 0.1, Float _eta = 0.01, size_t _rg = std::random_device{}())
243
+ : BaseClass(_K, smoothingAlpha, _eta, _rg)
244
+ {
245
+ this->optimInterval = 2;
246
+ }
247
+
248
+ std::vector<Float> getTopicsByDoc(const _DocType& doc) const
249
+ {
250
+ std::vector<Float> ret(this->K);
251
+ Eigen::Map<Eigen::Matrix<Float, -1, 1>>{ret.data(), this->K}.array() =
252
+ doc.numByTopic.array().template cast<Float>() / doc.getSumWordWeight();
253
+ return ret;
254
+ }
255
+
256
+ std::vector<Float> getPriorMean() const override
257
+ {
258
+ return { topicPrior.mean.data(), topicPrior.mean.data() + topicPrior.mean.size() };
259
+ }
260
+
261
+ std::vector<Float> getPriorCov() const override
262
+ {
263
+ return { topicPrior.cov.data(), topicPrior.cov.data() + topicPrior.cov.size() };
264
+ }
265
+
266
+ std::vector<Float> getCorrelationTopic(Tid k) const override
267
+ {
268
+ Eigen::Matrix<Float, -1, 1> ret = topicPrior.cov.col(k).array() / (topicPrior.cov.diagonal().array() * topicPrior.cov(k, k)).sqrt();
269
+ return { ret.data(), ret.data() + ret.size() };
270
+ }
271
+
272
+ GETTER(NumBetaSample, size_t, numBetaSample);
273
+
274
+ void setNumBetaSample(size_t _numSample) override
275
+ {
276
+ numBetaSample = _numSample;
277
+ }
278
+
279
+ GETTER(NumDocBetaSample, size_t, numDocBetaSample);
280
+
281
+ void setNumDocBetaSample(size_t _numSample) override
282
+ {
283
+ numDocBetaSample = _numSample;
284
+ }
285
+
286
+ GETTER(NumTMNSample, size_t, numTMNSample);
287
+
288
+ void setNumTMNSample(size_t _numSample) override
289
+ {
290
+ numTMNSample = _numSample;
291
+ }
292
+ };
293
+ }
@@ -0,0 +1,51 @@
1
+ #pragma once
2
+ #include "LDA.h"
3
+
4
+ namespace tomoto
5
+ {
6
+ template<TermWeight _tw>
7
+ struct DocumentDMR : public DocumentLDA<_tw>
8
+ {
9
+ using BaseDocument = DocumentLDA<_tw>;
10
+ using DocumentLDA<_tw>::DocumentLDA;
11
+ size_t metadata = 0;
12
+
13
+ DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseDocument, 0, metadata);
14
+ DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseDocument, 1, 0x00010001, metadata);
15
+ };
16
+
17
+ class IDMRModel : public ILDAModel
18
+ {
19
+ public:
20
+ using DefaultDocType = DocumentDMR<TermWeight::one>;
21
+ static IDMRModel* create(TermWeight _weight, size_t _K = 1,
22
+ Float defaultAlpha = 1.0, Float _sigma = 1.0, Float _eta = 0.01, Float _alphaEps = 1e-10,
23
+ size_t seed = std::random_device{}(),
24
+ bool scalarRng = false);
25
+
26
+ virtual size_t addDoc(const std::vector<std::string>& words, const std::vector<std::string>& metadata) = 0;
27
+ virtual std::unique_ptr<DocumentBase> makeDoc(const std::vector<std::string>& words, const std::vector<std::string>& metadata) const = 0;
28
+
29
+ virtual size_t addDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
30
+ const std::vector<std::string>& metadata) = 0;
31
+ virtual std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
32
+ const std::vector<std::string>& metadata) const = 0;
33
+
34
+ virtual size_t addDoc(const std::string& rawStr, const std::vector<Vid>& words,
35
+ const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
36
+ const std::vector<std::string>& metadata) = 0;
37
+ virtual std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const std::vector<Vid>& words,
38
+ const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
39
+ const std::vector<std::string>& metadata) const = 0;
40
+
41
+ virtual void setAlphaEps(Float _alphaEps) = 0;
42
+ virtual Float getAlphaEps() const = 0;
43
+ virtual void setOptimRepeat(size_t repeat) = 0;
44
+ virtual size_t getOptimRepeat() const = 0;
45
+ virtual size_t getF() const = 0;
46
+ virtual Float getSigma() const = 0;
47
+ virtual const Dictionary& getMetadataDict() const = 0;
48
+ virtual std::vector<Float> getLambdaByMetadata(size_t metadataId) const = 0;
49
+ virtual std::vector<Float> getLambdaByTopic(Tid tid) const = 0;
50
+ };
51
+ }
@@ -0,0 +1,13 @@
1
+ #include "DMRModel.hpp"
2
+
3
+ namespace tomoto
4
+ {
5
+ /*template class DMRModel<TermWeight::one>;
6
+ template class DMRModel<TermWeight::idf>;
7
+ template class DMRModel<TermWeight::pmi>;*/
8
+
9
+ IDMRModel* IDMRModel::create(TermWeight _weight, size_t _K, Float _defaultAlpha, Float _sigma, Float _eta, Float _alphaEps, size_t seed, bool scalarRng)
10
+ {
11
+ TMT_SWITCH_TW(_weight, scalarRng, DMRModel, _K, _defaultAlpha, _sigma, _eta, _alphaEps, seed);
12
+ }
13
+ }
@@ -0,0 +1,374 @@
1
+ #pragma once
2
+ #include "LDAModel.hpp"
3
+ #include "../Utils/LBFGS.h"
4
+ #include "../Utils/text.hpp"
5
+ #include "DMR.h"
6
+ /*
7
+ Implementation of DMR using Gibbs sampling by bab2min
8
+ * Mimno, D., & McCallum, A. (2012). Topic models conditioned on arbitrary features with dirichlet-multinomial regression. arXiv preprint arXiv:1206.3278.
9
+ */
10
+
11
+ namespace tomoto
12
+ {
13
+ template<TermWeight _tw>
14
+ struct ModelStateDMR : public ModelStateLDA<_tw>
15
+ {
16
+ Eigen::Matrix<Float, -1, 1> tmpK;
17
+ };
18
+
19
+ template<TermWeight _tw, typename _RandGen,
20
+ size_t _Flags = flags::partitioned_multisampling,
21
+ typename _Interface = IDMRModel,
22
+ typename _Derived = void,
23
+ typename _DocType = DocumentDMR<_tw>,
24
+ typename _ModelState = ModelStateDMR<_tw>>
25
+ class DMRModel : public LDAModel<_tw, _RandGen, _Flags, _Interface,
26
+ typename std::conditional<std::is_same<_Derived, void>::value, DMRModel<_tw, _RandGen, _Flags>, _Derived>::type,
27
+ _DocType, _ModelState>
28
+ {
29
+ protected:
30
+ using DerivedClass = typename std::conditional<std::is_same<_Derived, void>::value, DMRModel<_tw, _RandGen>, _Derived>::type;
31
+ using BaseClass = LDAModel<_tw, _RandGen, _Flags, _Interface, DerivedClass, _DocType, _ModelState>;
32
+ friend BaseClass;
33
+ friend typename BaseClass::BaseClass;
34
+ using WeightType = typename BaseClass::WeightType;
35
+
36
+ static constexpr char TMID[] = "DMR\0";
37
+
38
+ Eigen::Matrix<Float, -1, -1> lambda;
39
+ Eigen::Matrix<Float, -1, -1> expLambda;
40
+ Float sigma;
41
+ uint32_t F = 0;
42
+ uint32_t optimRepeat = 5;
43
+ Float alphaEps = 1e-10;
44
+ Float temperatureScale = 0;
45
+ static constexpr Float maxLambda = 10;
46
+ static constexpr size_t maxBFGSIteration = 10;
47
+
48
+ Dictionary metadataDict;
49
+ LBFGSpp::LBFGSSolver<Float, LBFGSpp::LineSearchBracketing> solver;
50
+
51
+ Float getNegativeLambdaLL(Eigen::Ref<Eigen::Matrix<Float, -1, 1>> x, Eigen::Matrix<Float, -1, 1>& g) const
52
+ {
53
+ g = (x.array() - log(this->alpha)) / pow(sigma, 2);
54
+ return (x.array() - log(this->alpha)).pow(2).sum() / 2 / pow(sigma, 2);
55
+ }
56
+
57
+ Float evaluateLambdaObj(Eigen::Ref<Eigen::Matrix<Float, -1, 1>> x, Eigen::Matrix<Float, -1, 1>& g, ThreadPool& pool, _ModelState* localData) const
58
+ {
59
+ // if one of x is greater than maxLambda, return +inf for preventing searching more
60
+ if ((x.array() > maxLambda).any()) return INFINITY;
61
+
62
+ const auto K = this->K;
63
+
64
+ Float fx = - static_cast<const DerivedClass*>(this)->getNegativeLambdaLL(x, g);
65
+ auto alphas = (x.array().exp() + alphaEps).eval();
66
+
67
+ std::vector<std::future<Eigen::Matrix<Float, -1, 1>>> res;
68
+ const size_t chStride = pool.getNumWorkers() * 8;
69
+ for (size_t ch = 0; ch < chStride; ++ch)
70
+ {
71
+ res.emplace_back(pool.enqueue([&](size_t threadId)
72
+ {
73
+ auto& tmpK = localData[threadId].tmpK;
74
+ if (!tmpK.size()) tmpK.resize(this->K);
75
+ Eigen::Matrix<Float, -1, 1> val = Eigen::Matrix<Float, -1, 1>::Zero(K * F + 1);
76
+ for (size_t docId = ch; docId < this->docs.size(); docId += chStride)
77
+ {
78
+ const auto& doc = this->docs[docId];
79
+ auto alphaDoc = alphas.segment(doc.metadata * K, K);
80
+ Float alphaSum = alphaDoc.sum();
81
+ for (Tid k = 0; k < K; ++k)
82
+ {
83
+ val[K * F] -= math::lgammaT(alphaDoc[k]) - math::lgammaT(doc.numByTopic[k] + alphaDoc[k]);
84
+ if (!std::isfinite(alphaDoc[k]) && alphaDoc[k] > 0) tmpK[k] = 0;
85
+ else tmpK[k] = -(math::digammaT(alphaDoc[k]) - math::digammaT(doc.numByTopic[k] + alphaDoc[k]));
86
+ }
87
+ //val[K * F] = -(lgammaApprox(alphaDoc.array()) - lgammaApprox(doc.numByTopic.array().cast<Float>() + alphaDoc.array())).sum();
88
+ //tmpK = -(digammaApprox(alphaDoc.array()) - digammaApprox(doc.numByTopic.array().cast<Float>() + alphaDoc.array()));
89
+ val[K * F] += math::lgammaT(alphaSum) - math::lgammaT(doc.getSumWordWeight() + alphaSum);
90
+ Float t = math::digammaT(alphaSum) - math::digammaT(doc.getSumWordWeight() + alphaSum);
91
+ if (!std::isfinite(alphaSum) && alphaSum > 0)
92
+ {
93
+ val[K * F] = -INFINITY;
94
+ t = 0;
95
+ }
96
+ val.segment(doc.metadata * K, K).array() -= alphaDoc.array() * (tmpK.array() + t);
97
+ }
98
+ return val;
99
+ }));
100
+ }
101
+ for (auto& r : res)
102
+ {
103
+ auto ret = r.get();
104
+ fx += ret[K * F];
105
+ g += ret.head(K * F);
106
+ }
107
+
108
+ // positive fx is an error from limited precision of float.
109
+ if (fx > 0) return INFINITY;
110
+ return -fx;
111
+ }
112
+
113
+ void initParameters()
114
+ {
115
+ auto dist = std::normal_distribution<Float>(log(this->alpha), sigma);
116
+ for (size_t i = 0; i < this->K; ++i) for (size_t j = 0; j < F; ++j)
117
+ {
118
+ lambda(i, j) = dist(this->rg);
119
+ }
120
+ }
121
+
122
+ void optimizeParameters(ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
123
+ {
124
+ Eigen::Matrix<Float, -1, -1> bLambda;
125
+ Float fx = 0, bestFx = INFINITY;
126
+ for (size_t i = 0; i < optimRepeat; ++i)
127
+ {
128
+ static_cast<DerivedClass*>(this)->initParameters();
129
+ int ret = solver.minimize([this, &pool, localData](Eigen::Ref<Eigen::Matrix<Float, -1, 1>> x, Eigen::Matrix<Float, -1, 1>& g)
130
+ {
131
+ return static_cast<DerivedClass*>(this)->evaluateLambdaObj(x, g, pool, localData);
132
+ }, Eigen::Map<Eigen::Matrix<Float, -1, 1>>(lambda.data(), lambda.size()), fx);
133
+
134
+ if (fx < bestFx)
135
+ {
136
+ bLambda = lambda;
137
+ bestFx = fx;
138
+ //printf("\t(%d) %e\n", ret, fx);
139
+ }
140
+ }
141
+ if (!std::isfinite(bestFx))
142
+ {
143
+ throw exception::TrainingError{ "optimizing parameters has been failed!" };
144
+ }
145
+ lambda = bLambda;
146
+ //std::cerr << fx << std::endl;
147
+ expLambda = lambda.array().exp() + alphaEps;
148
+ }
149
+
150
+ int restoreFromTrainingError(const exception::TrainingError& e, ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
151
+ {
152
+ std::cerr << "Failed to optimize! Reset prior and retry!" << std::endl;
153
+ lambda.setZero();
154
+ expLambda = lambda.array().exp() + alphaEps;
155
+ return 0;
156
+ }
157
+
158
+ template<bool _asymEta>
159
+ Float* getZLikelihoods(_ModelState& ld, const _DocType& doc, size_t docId, size_t vid) const
160
+ {
161
+ const size_t V = this->realV;
162
+ assert(vid < V);
163
+ auto etaHelper = this->template getEtaHelper<_asymEta>();
164
+ auto& zLikelihood = ld.zLikelihood;
165
+ zLikelihood = (doc.numByTopic.array().template cast<Float>() + this->expLambda.col(doc.metadata).array())
166
+ * (ld.numByTopicWord.col(vid).array().template cast<Float>() + etaHelper.getEta(vid))
167
+ / (ld.numByTopic.array().template cast<Float>() + etaHelper.getEtaSum());
168
+
169
+ sample::prefixSum(zLikelihood.data(), this->K);
170
+ return &zLikelihood[0];
171
+ }
172
+
173
+
174
+ double getLLDocTopic(const _DocType& doc) const
175
+ {
176
+ const size_t V = this->realV;
177
+ const auto K = this->K;
178
+
179
+ auto alphaDoc = expLambda.col(doc.metadata);
180
+
181
+ Float ll = 0;
182
+ Float alphaSum = alphaDoc.sum();
183
+ for (Tid k = 0; k < K; ++k)
184
+ {
185
+ ll += math::lgammaT(doc.numByTopic[k] + alphaDoc[k]);
186
+ ll -= math::lgammaT(alphaDoc[k]);
187
+ }
188
+ ll -= math::lgammaT(doc.getSumWordWeight() + alphaSum);
189
+ ll += math::lgammaT(alphaSum);
190
+ return ll;
191
+ }
192
+
193
+ template<typename _DocIter>
194
+ double getLLDocs(_DocIter _first, _DocIter _last) const
195
+ {
196
+ const auto K = this->K;
197
+
198
+ double ll = 0;
199
+ for (; _first != _last; ++_first)
200
+ {
201
+ auto& doc = *_first;
202
+ auto alphaDoc = expLambda.col(doc.metadata);
203
+ Float alphaSum = alphaDoc.sum();
204
+
205
+ for (Tid k = 0; k < K; ++k)
206
+ {
207
+ ll += math::lgammaT(doc.numByTopic[k] + alphaDoc[k]) - math::lgammaT(alphaDoc[k]);
208
+ }
209
+ ll -= math::lgammaT(doc.getSumWordWeight() + alphaSum) - math::lgammaT(alphaSum);
210
+ }
211
+ return ll;
212
+ }
213
+
214
+ double getLLRest(const _ModelState& ld) const
215
+ {
216
+ const auto K = this->K;
217
+ const auto alpha = this->alpha;
218
+ const auto eta = this->eta;
219
+ const size_t V = this->realV;
220
+
221
+ double ll = -(lambda.array() - log(alpha)).pow(2).sum() / 2 / pow(sigma, 2);
222
+ // topic-word distribution
223
+ auto lgammaEta = math::lgammaT(eta);
224
+ ll += math::lgammaT(V*eta) * K;
225
+ for (Tid k = 0; k < K; ++k)
226
+ {
227
+ ll -= math::lgammaT(ld.numByTopic[k] + V * eta);
228
+ for (Vid v = 0; v < V; ++v)
229
+ {
230
+ if (!ld.numByTopicWord(k, v)) continue;
231
+ ll += math::lgammaT(ld.numByTopicWord(k, v) + eta) - lgammaEta;
232
+ }
233
+ }
234
+ return ll;
235
+ }
236
+
237
+ void initGlobalState(bool initDocs)
238
+ {
239
+ BaseClass::initGlobalState(initDocs);
240
+ this->globalState.tmpK = Eigen::Matrix<Float, -1, 1>::Zero(this->K);
241
+ F = metadataDict.size();
242
+ if (initDocs)
243
+ {
244
+ lambda = Eigen::Matrix<Float, -1, -1>::Constant(this->K, F, log(this->alpha));
245
+ }
246
+ if (_Flags & flags::continuous_doc_data) this->numByTopicDoc = Eigen::Matrix<WeightType, -1, -1>::Zero(this->K, this->docs.size());
247
+ expLambda = lambda.array().exp();
248
+ LBFGSpp::LBFGSParam<Float> param;
249
+ param.max_iterations = maxBFGSIteration;
250
+ solver = decltype(solver){ param };
251
+ }
252
+
253
+ public:
254
+ DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 0, sigma, alphaEps, metadataDict, lambda);
255
+ DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 1, 0x00010001, sigma, alphaEps, metadataDict, lambda);
256
+
257
+ DMRModel(size_t _K = 1, Float defaultAlpha = 1.0, Float _sigma = 1.0, Float _eta = 0.01,
258
+ Float _alphaEps = 0, size_t _rg = std::random_device{}())
259
+ : BaseClass(_K, defaultAlpha, _eta, _rg), sigma(_sigma), alphaEps(_alphaEps)
260
+ {
261
+ if (_sigma <= 0) THROW_ERROR_WITH_INFO(std::runtime_error, text::format("wrong sigma value (sigma = %f)", _sigma));
262
+ }
263
+
264
+ template<bool _const = false>
265
+ _DocType& _updateDoc(_DocType& doc, const std::vector<std::string>& metadata)
266
+ {
267
+ std::string metadataJoined = text::join(metadata.begin(), metadata.end(), "_");
268
+ Vid xid;
269
+ if (_const)
270
+ {
271
+ xid = metadataDict.toWid(metadataJoined);
272
+ if (xid == (Vid)-1) throw std::invalid_argument("unknown metadata");
273
+ }
274
+ else
275
+ {
276
+ xid = metadataDict.add(metadataJoined);
277
+ }
278
+ doc.metadata = xid;
279
+ return doc;
280
+ }
281
+
282
+ size_t addDoc(const std::vector<std::string>& words, const std::vector<std::string>& metadata) override
283
+ {
284
+ auto doc = this->_makeDoc(words);
285
+ return this->_addDoc(_updateDoc(doc, metadata));
286
+ }
287
+
288
+ std::unique_ptr<DocumentBase> makeDoc(const std::vector<std::string>& words, const std::vector<std::string>& metadata) const override
289
+ {
290
+ auto doc = as_mutable(this)->template _makeDoc<true>(words);
291
+ return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, metadata));
292
+ }
293
+
294
+ size_t addDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
295
+ const std::vector<std::string>& metadata) override
296
+ {
297
+ auto doc = this->template _makeRawDoc<false>(rawStr, tokenizer);
298
+ return this->_addDoc(_updateDoc(doc, metadata));
299
+ }
300
+
301
+ std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
302
+ const std::vector<std::string>& metadata) const override
303
+ {
304
+ auto doc = as_mutable(this)->template _makeRawDoc<true>(rawStr, tokenizer);
305
+ return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, metadata));
306
+ }
307
+
308
+ size_t addDoc(const std::string& rawStr, const std::vector<Vid>& words,
309
+ const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
310
+ const std::vector<std::string>& metadata) override
311
+ {
312
+ auto doc = this->_makeRawDoc(rawStr, words, pos, len);
313
+ return this->_addDoc(_updateDoc(doc, metadata));
314
+ }
315
+
316
+ std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const std::vector<Vid>& words,
317
+ const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
318
+ const std::vector<std::string>& metadata) const override
319
+ {
320
+ auto doc = this->_makeRawDoc(rawStr, words, pos, len);
321
+ return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, metadata));
322
+ }
323
+
324
+ GETTER(F, size_t, F);
325
+ GETTER(Sigma, Float, sigma);
326
+ GETTER(AlphaEps, Float, alphaEps);
327
+ GETTER(OptimRepeat, size_t, optimRepeat);
328
+
329
+ void setAlphaEps(Float _alphaEps) override
330
+ {
331
+ alphaEps = _alphaEps;
332
+ }
333
+
334
+ void setOptimRepeat(size_t _optimRepeat) override
335
+ {
336
+ optimRepeat = _optimRepeat;
337
+ }
338
+
339
+ std::vector<Float> getTopicsByDoc(const _DocType& doc) const
340
+ {
341
+ std::vector<Float> ret(this->K);
342
+ auto alphaDoc = expLambda.col(doc.metadata);
343
+ Eigen::Map<Eigen::Matrix<Float, -1, 1>>{ret.data(), this->K}.array() =
344
+ (doc.numByTopic.array().template cast<Float>() + alphaDoc.array()) / (doc.getSumWordWeight() + alphaDoc.sum());
345
+ return ret;
346
+ }
347
+
348
+ std::vector<Float> getLambdaByMetadata(size_t metadataId) const override
349
+ {
350
+ assert(metadataId < metadataDict.size());
351
+ auto l = lambda.col(metadataId);
352
+ return { l.data(), l.data() + this->K };
353
+ }
354
+
355
+ std::vector<Float> getLambdaByTopic(Tid tid) const override
356
+ {
357
+ assert(tid < this->K);
358
+ auto l = lambda.row(tid);
359
+ return { l.data(), l.data() + F };
360
+ }
361
+
362
+ const Dictionary& getMetadataDict() const override { return metadataDict; }
363
+ };
364
+
365
+ /* This is for preventing 'undefined symbol' problem in compiling by clang. */
366
+ template<TermWeight _tw, typename _RandGen, size_t _Flags,
367
+ typename _Interface, typename _Derived, typename _DocType, typename _ModelState>
368
+ constexpr Float DMRModel<_tw, _RandGen, _Flags, _Interface, _Derived, _DocType, _ModelState>::maxLambda;
369
+
370
+ template<TermWeight _tw, typename _RandGen, size_t _Flags,
371
+ typename _Interface, typename _Derived, typename _DocType, typename _ModelState>
372
+ constexpr size_t DMRModel<_tw, _RandGen, _Flags, _Interface, _Derived, _DocType, _ModelState>::maxBFGSIteration;
373
+
374
+ }