tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,1403 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_SPARSEMATRIX_H
|
11
|
+
#define EIGEN_SPARSEMATRIX_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
/** \ingroup SparseCore_Module
|
16
|
+
*
|
17
|
+
* \class SparseMatrix
|
18
|
+
*
|
19
|
+
* \brief A versatible sparse matrix representation
|
20
|
+
*
|
21
|
+
* This class implements a more versatile variants of the common \em compressed row/column storage format.
|
22
|
+
* Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
|
23
|
+
* All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
|
24
|
+
* space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
|
25
|
+
* can be done with limited memory reallocation and copies.
|
26
|
+
*
|
27
|
+
* A call to the function makeCompressed() turns the matrix into the standard \em compressed format
|
28
|
+
* compatible with many library.
|
29
|
+
*
|
30
|
+
* More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
|
31
|
+
*
|
32
|
+
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
|
33
|
+
* \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
|
34
|
+
* is ColMajor or RowMajor. The default is 0 which means column-major.
|
35
|
+
* \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
|
36
|
+
*
|
37
|
+
* \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
|
38
|
+
* whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
|
39
|
+
* Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
|
40
|
+
*
|
41
|
+
* This class can be extended with the help of the plugin mechanism described on the page
|
42
|
+
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
|
43
|
+
*/
|
44
|
+
|
45
|
+
namespace internal {
|
46
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
47
|
+
struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
|
48
|
+
{
|
49
|
+
typedef _Scalar Scalar;
|
50
|
+
typedef _StorageIndex StorageIndex;
|
51
|
+
typedef Sparse StorageKind;
|
52
|
+
typedef MatrixXpr XprKind;
|
53
|
+
enum {
|
54
|
+
RowsAtCompileTime = Dynamic,
|
55
|
+
ColsAtCompileTime = Dynamic,
|
56
|
+
MaxRowsAtCompileTime = Dynamic,
|
57
|
+
MaxColsAtCompileTime = Dynamic,
|
58
|
+
Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
|
59
|
+
SupportedAccessPatterns = InnerRandomAccessPattern
|
60
|
+
};
|
61
|
+
};
|
62
|
+
|
63
|
+
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
|
64
|
+
struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
|
65
|
+
{
|
66
|
+
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
|
67
|
+
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
68
|
+
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
69
|
+
|
70
|
+
typedef _Scalar Scalar;
|
71
|
+
typedef Dense StorageKind;
|
72
|
+
typedef _StorageIndex StorageIndex;
|
73
|
+
typedef MatrixXpr XprKind;
|
74
|
+
|
75
|
+
enum {
|
76
|
+
RowsAtCompileTime = Dynamic,
|
77
|
+
ColsAtCompileTime = 1,
|
78
|
+
MaxRowsAtCompileTime = Dynamic,
|
79
|
+
MaxColsAtCompileTime = 1,
|
80
|
+
Flags = LvalueBit
|
81
|
+
};
|
82
|
+
};
|
83
|
+
|
84
|
+
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
|
85
|
+
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
|
86
|
+
: public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
|
87
|
+
{
|
88
|
+
enum {
|
89
|
+
Flags = 0
|
90
|
+
};
|
91
|
+
};
|
92
|
+
|
93
|
+
} // end namespace internal
|
94
|
+
|
95
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
96
|
+
class SparseMatrix
|
97
|
+
: public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
|
98
|
+
{
|
99
|
+
typedef SparseCompressedBase<SparseMatrix> Base;
|
100
|
+
using Base::convert_index;
|
101
|
+
friend class SparseVector<_Scalar,0,_StorageIndex>;
|
102
|
+
public:
|
103
|
+
using Base::isCompressed;
|
104
|
+
using Base::nonZeros;
|
105
|
+
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
|
106
|
+
using Base::operator+=;
|
107
|
+
using Base::operator-=;
|
108
|
+
|
109
|
+
typedef MappedSparseMatrix<Scalar,Flags> Map;
|
110
|
+
typedef Diagonal<SparseMatrix> DiagonalReturnType;
|
111
|
+
typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
|
112
|
+
typedef typename Base::InnerIterator InnerIterator;
|
113
|
+
typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
|
114
|
+
|
115
|
+
|
116
|
+
using Base::IsRowMajor;
|
117
|
+
typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
|
118
|
+
enum {
|
119
|
+
Options = _Options
|
120
|
+
};
|
121
|
+
|
122
|
+
typedef typename Base::IndexVector IndexVector;
|
123
|
+
typedef typename Base::ScalarVector ScalarVector;
|
124
|
+
protected:
|
125
|
+
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
|
126
|
+
|
127
|
+
Index m_outerSize;
|
128
|
+
Index m_innerSize;
|
129
|
+
StorageIndex* m_outerIndex;
|
130
|
+
StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed
|
131
|
+
Storage m_data;
|
132
|
+
|
133
|
+
public:
|
134
|
+
|
135
|
+
/** \returns the number of rows of the matrix */
|
136
|
+
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
|
137
|
+
/** \returns the number of columns of the matrix */
|
138
|
+
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
|
139
|
+
|
140
|
+
/** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
|
141
|
+
inline Index innerSize() const { return m_innerSize; }
|
142
|
+
/** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
|
143
|
+
inline Index outerSize() const { return m_outerSize; }
|
144
|
+
|
145
|
+
/** \returns a const pointer to the array of values.
|
146
|
+
* This function is aimed at interoperability with other libraries.
|
147
|
+
* \sa innerIndexPtr(), outerIndexPtr() */
|
148
|
+
inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
|
149
|
+
/** \returns a non-const pointer to the array of values.
|
150
|
+
* This function is aimed at interoperability with other libraries.
|
151
|
+
* \sa innerIndexPtr(), outerIndexPtr() */
|
152
|
+
inline Scalar* valuePtr() { return m_data.valuePtr(); }
|
153
|
+
|
154
|
+
/** \returns a const pointer to the array of inner indices.
|
155
|
+
* This function is aimed at interoperability with other libraries.
|
156
|
+
* \sa valuePtr(), outerIndexPtr() */
|
157
|
+
inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
|
158
|
+
/** \returns a non-const pointer to the array of inner indices.
|
159
|
+
* This function is aimed at interoperability with other libraries.
|
160
|
+
* \sa valuePtr(), outerIndexPtr() */
|
161
|
+
inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
|
162
|
+
|
163
|
+
/** \returns a const pointer to the array of the starting positions of the inner vectors.
|
164
|
+
* This function is aimed at interoperability with other libraries.
|
165
|
+
* \sa valuePtr(), innerIndexPtr() */
|
166
|
+
inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
|
167
|
+
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
|
168
|
+
* This function is aimed at interoperability with other libraries.
|
169
|
+
* \sa valuePtr(), innerIndexPtr() */
|
170
|
+
inline StorageIndex* outerIndexPtr() { return m_outerIndex; }
|
171
|
+
|
172
|
+
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
|
173
|
+
* This function is aimed at interoperability with other libraries.
|
174
|
+
* \warning it returns the null pointer 0 in compressed mode */
|
175
|
+
inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
|
176
|
+
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
|
177
|
+
* This function is aimed at interoperability with other libraries.
|
178
|
+
* \warning it returns the null pointer 0 in compressed mode */
|
179
|
+
inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }
|
180
|
+
|
181
|
+
/** \internal */
|
182
|
+
inline Storage& data() { return m_data; }
|
183
|
+
/** \internal */
|
184
|
+
inline const Storage& data() const { return m_data; }
|
185
|
+
|
186
|
+
/** \returns the value of the matrix at position \a i, \a j
|
187
|
+
* This function returns Scalar(0) if the element is an explicit \em zero */
|
188
|
+
inline Scalar coeff(Index row, Index col) const
|
189
|
+
{
|
190
|
+
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
|
191
|
+
|
192
|
+
const Index outer = IsRowMajor ? row : col;
|
193
|
+
const Index inner = IsRowMajor ? col : row;
|
194
|
+
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
|
195
|
+
return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
|
196
|
+
}
|
197
|
+
|
198
|
+
/** \returns a non-const reference to the value of the matrix at position \a i, \a j
|
199
|
+
*
|
200
|
+
* If the element does not exist then it is inserted via the insert(Index,Index) function
|
201
|
+
* which itself turns the matrix into a non compressed form if that was not the case.
|
202
|
+
*
|
203
|
+
* This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
|
204
|
+
* function if the element does not already exist.
|
205
|
+
*/
|
206
|
+
inline Scalar& coeffRef(Index row, Index col)
|
207
|
+
{
|
208
|
+
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
|
209
|
+
|
210
|
+
const Index outer = IsRowMajor ? row : col;
|
211
|
+
const Index inner = IsRowMajor ? col : row;
|
212
|
+
|
213
|
+
Index start = m_outerIndex[outer];
|
214
|
+
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
|
215
|
+
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
|
216
|
+
if(end<=start)
|
217
|
+
return insert(row,col);
|
218
|
+
const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
|
219
|
+
if((p<end) && (m_data.index(p)==inner))
|
220
|
+
return m_data.value(p);
|
221
|
+
else
|
222
|
+
return insert(row,col);
|
223
|
+
}
|
224
|
+
|
225
|
+
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
|
226
|
+
* The non zero coefficient must \b not already exist.
|
227
|
+
*
|
228
|
+
* If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
|
229
|
+
* mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
|
230
|
+
* In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
|
231
|
+
* inserted by increasing outer-indices.
|
232
|
+
*
|
233
|
+
* If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
|
234
|
+
* call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
|
235
|
+
*
|
236
|
+
* Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
|
237
|
+
* if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
|
238
|
+
*
|
239
|
+
*/
|
240
|
+
Scalar& insert(Index row, Index col);
|
241
|
+
|
242
|
+
public:
|
243
|
+
|
244
|
+
/** Removes all non zeros but keep allocated memory
|
245
|
+
*
|
246
|
+
* This function does not free the currently allocated memory. To release as much as memory as possible,
|
247
|
+
* call \code mat.data().squeeze(); \endcode after resizing it.
|
248
|
+
*
|
249
|
+
* \sa resize(Index,Index), data()
|
250
|
+
*/
|
251
|
+
inline void setZero()
|
252
|
+
{
|
253
|
+
m_data.clear();
|
254
|
+
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
|
255
|
+
if(m_innerNonZeros)
|
256
|
+
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
|
257
|
+
}
|
258
|
+
|
259
|
+
/** Preallocates \a reserveSize non zeros.
|
260
|
+
*
|
261
|
+
* Precondition: the matrix must be in compressed mode. */
|
262
|
+
inline void reserve(Index reserveSize)
|
263
|
+
{
|
264
|
+
eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
|
265
|
+
m_data.reserve(reserveSize);
|
266
|
+
}
|
267
|
+
|
268
|
+
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
269
|
+
/** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
|
270
|
+
*
|
271
|
+
* This function turns the matrix in non-compressed mode.
|
272
|
+
*
|
273
|
+
* The type \c SizesType must expose the following interface:
|
274
|
+
\code
|
275
|
+
typedef value_type;
|
276
|
+
const value_type& operator[](i) const;
|
277
|
+
\endcode
|
278
|
+
* for \c i in the [0,this->outerSize()[ range.
|
279
|
+
* Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
|
280
|
+
*/
|
281
|
+
template<class SizesType>
|
282
|
+
inline void reserve(const SizesType& reserveSizes);
|
283
|
+
#else
|
284
|
+
template<class SizesType>
|
285
|
+
inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
|
286
|
+
#if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
|
287
|
+
typename
|
288
|
+
#endif
|
289
|
+
SizesType::value_type())
|
290
|
+
{
|
291
|
+
EIGEN_UNUSED_VARIABLE(enableif);
|
292
|
+
reserveInnerVectors(reserveSizes);
|
293
|
+
}
|
294
|
+
#endif // EIGEN_PARSED_BY_DOXYGEN
|
295
|
+
protected:
|
296
|
+
template<class SizesType>
|
297
|
+
inline void reserveInnerVectors(const SizesType& reserveSizes)
|
298
|
+
{
|
299
|
+
if(isCompressed())
|
300
|
+
{
|
301
|
+
Index totalReserveSize = 0;
|
302
|
+
// turn the matrix into non-compressed mode
|
303
|
+
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
|
304
|
+
if (!m_innerNonZeros) internal::throw_std_bad_alloc();
|
305
|
+
|
306
|
+
// temporarily use m_innerSizes to hold the new starting points.
|
307
|
+
StorageIndex* newOuterIndex = m_innerNonZeros;
|
308
|
+
|
309
|
+
StorageIndex count = 0;
|
310
|
+
for(Index j=0; j<m_outerSize; ++j)
|
311
|
+
{
|
312
|
+
newOuterIndex[j] = count;
|
313
|
+
count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
|
314
|
+
totalReserveSize += reserveSizes[j];
|
315
|
+
}
|
316
|
+
m_data.reserve(totalReserveSize);
|
317
|
+
StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
|
318
|
+
for(Index j=m_outerSize-1; j>=0; --j)
|
319
|
+
{
|
320
|
+
StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
|
321
|
+
for(Index i=innerNNZ-1; i>=0; --i)
|
322
|
+
{
|
323
|
+
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
|
324
|
+
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
|
325
|
+
}
|
326
|
+
previousOuterIndex = m_outerIndex[j];
|
327
|
+
m_outerIndex[j] = newOuterIndex[j];
|
328
|
+
m_innerNonZeros[j] = innerNNZ;
|
329
|
+
}
|
330
|
+
m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
|
331
|
+
|
332
|
+
m_data.resize(m_outerIndex[m_outerSize]);
|
333
|
+
}
|
334
|
+
else
|
335
|
+
{
|
336
|
+
StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
|
337
|
+
if (!newOuterIndex) internal::throw_std_bad_alloc();
|
338
|
+
|
339
|
+
StorageIndex count = 0;
|
340
|
+
for(Index j=0; j<m_outerSize; ++j)
|
341
|
+
{
|
342
|
+
newOuterIndex[j] = count;
|
343
|
+
StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
|
344
|
+
StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
|
345
|
+
count += toReserve + m_innerNonZeros[j];
|
346
|
+
}
|
347
|
+
newOuterIndex[m_outerSize] = count;
|
348
|
+
|
349
|
+
m_data.resize(count);
|
350
|
+
for(Index j=m_outerSize-1; j>=0; --j)
|
351
|
+
{
|
352
|
+
Index offset = newOuterIndex[j] - m_outerIndex[j];
|
353
|
+
if(offset>0)
|
354
|
+
{
|
355
|
+
StorageIndex innerNNZ = m_innerNonZeros[j];
|
356
|
+
for(Index i=innerNNZ-1; i>=0; --i)
|
357
|
+
{
|
358
|
+
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
|
359
|
+
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
|
360
|
+
}
|
361
|
+
}
|
362
|
+
}
|
363
|
+
|
364
|
+
std::swap(m_outerIndex, newOuterIndex);
|
365
|
+
std::free(newOuterIndex);
|
366
|
+
}
|
367
|
+
|
368
|
+
}
|
369
|
+
public:
|
370
|
+
|
371
|
+
//--- low level purely coherent filling ---
|
372
|
+
|
373
|
+
/** \internal
|
374
|
+
* \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
|
375
|
+
* - the nonzero does not already exist
|
376
|
+
* - the new coefficient is the last one according to the storage order
|
377
|
+
*
|
378
|
+
* Before filling a given inner vector you must call the statVec(Index) function.
|
379
|
+
*
|
380
|
+
* After an insertion session, you should call the finalize() function.
|
381
|
+
*
|
382
|
+
* \sa insert, insertBackByOuterInner, startVec */
|
383
|
+
inline Scalar& insertBack(Index row, Index col)
|
384
|
+
{
|
385
|
+
return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
|
386
|
+
}
|
387
|
+
|
388
|
+
/** \internal
|
389
|
+
* \sa insertBack, startVec */
|
390
|
+
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
|
391
|
+
{
|
392
|
+
eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
|
393
|
+
eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
|
394
|
+
Index p = m_outerIndex[outer+1];
|
395
|
+
++m_outerIndex[outer+1];
|
396
|
+
m_data.append(Scalar(0), inner);
|
397
|
+
return m_data.value(p);
|
398
|
+
}
|
399
|
+
|
400
|
+
/** \internal
|
401
|
+
* \warning use it only if you know what you are doing */
|
402
|
+
inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
|
403
|
+
{
|
404
|
+
Index p = m_outerIndex[outer+1];
|
405
|
+
++m_outerIndex[outer+1];
|
406
|
+
m_data.append(Scalar(0), inner);
|
407
|
+
return m_data.value(p);
|
408
|
+
}
|
409
|
+
|
410
|
+
/** \internal
|
411
|
+
* \sa insertBack, insertBackByOuterInner */
|
412
|
+
inline void startVec(Index outer)
|
413
|
+
{
|
414
|
+
eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
|
415
|
+
eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
|
416
|
+
m_outerIndex[outer+1] = m_outerIndex[outer];
|
417
|
+
}
|
418
|
+
|
419
|
+
/** \internal
|
420
|
+
* Must be called after inserting a set of non zero entries using the low level compressed API.
|
421
|
+
*/
|
422
|
+
inline void finalize()
|
423
|
+
{
|
424
|
+
if(isCompressed())
|
425
|
+
{
|
426
|
+
StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
|
427
|
+
Index i = m_outerSize;
|
428
|
+
// find the last filled column
|
429
|
+
while (i>=0 && m_outerIndex[i]==0)
|
430
|
+
--i;
|
431
|
+
++i;
|
432
|
+
while (i<=m_outerSize)
|
433
|
+
{
|
434
|
+
m_outerIndex[i] = size;
|
435
|
+
++i;
|
436
|
+
}
|
437
|
+
}
|
438
|
+
}
|
439
|
+
|
440
|
+
//---
|
441
|
+
|
442
|
+
template<typename InputIterators>
|
443
|
+
void setFromTriplets(const InputIterators& begin, const InputIterators& end);
|
444
|
+
|
445
|
+
template<typename InputIterators,typename DupFunctor>
|
446
|
+
void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);
|
447
|
+
|
448
|
+
void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }
|
449
|
+
|
450
|
+
template<typename DupFunctor>
|
451
|
+
void collapseDuplicates(DupFunctor dup_func = DupFunctor());
|
452
|
+
|
453
|
+
//---
|
454
|
+
|
455
|
+
/** \internal
|
456
|
+
* same as insert(Index,Index) except that the indices are given relative to the storage order */
|
457
|
+
Scalar& insertByOuterInner(Index j, Index i)
|
458
|
+
{
|
459
|
+
return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
|
460
|
+
}
|
461
|
+
|
462
|
+
/** Turns the matrix into the \em compressed format.
|
463
|
+
*/
|
464
|
+
void makeCompressed()
|
465
|
+
{
|
466
|
+
if(isCompressed())
|
467
|
+
return;
|
468
|
+
|
469
|
+
eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
|
470
|
+
|
471
|
+
Index oldStart = m_outerIndex[1];
|
472
|
+
m_outerIndex[1] = m_innerNonZeros[0];
|
473
|
+
for(Index j=1; j<m_outerSize; ++j)
|
474
|
+
{
|
475
|
+
Index nextOldStart = m_outerIndex[j+1];
|
476
|
+
Index offset = oldStart - m_outerIndex[j];
|
477
|
+
if(offset>0)
|
478
|
+
{
|
479
|
+
for(Index k=0; k<m_innerNonZeros[j]; ++k)
|
480
|
+
{
|
481
|
+
m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
|
482
|
+
m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
|
483
|
+
}
|
484
|
+
}
|
485
|
+
m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
|
486
|
+
oldStart = nextOldStart;
|
487
|
+
}
|
488
|
+
std::free(m_innerNonZeros);
|
489
|
+
m_innerNonZeros = 0;
|
490
|
+
m_data.resize(m_outerIndex[m_outerSize]);
|
491
|
+
m_data.squeeze();
|
492
|
+
}
|
493
|
+
|
494
|
+
/** Turns the matrix into the uncompressed mode */
|
495
|
+
void uncompress()
|
496
|
+
{
|
497
|
+
if(m_innerNonZeros != 0)
|
498
|
+
return;
|
499
|
+
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
|
500
|
+
for (Index i = 0; i < m_outerSize; i++)
|
501
|
+
{
|
502
|
+
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
|
503
|
+
}
|
504
|
+
}
|
505
|
+
|
506
|
+
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
|
507
|
+
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
|
508
|
+
{
|
509
|
+
prune(default_prunning_func(reference,epsilon));
|
510
|
+
}
|
511
|
+
|
512
|
+
/** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
|
513
|
+
* The functor type \a KeepFunc must implement the following function:
|
514
|
+
* \code
|
515
|
+
* bool operator() (const Index& row, const Index& col, const Scalar& value) const;
|
516
|
+
* \endcode
|
517
|
+
* \sa prune(Scalar,RealScalar)
|
518
|
+
*/
|
519
|
+
template<typename KeepFunc>
|
520
|
+
void prune(const KeepFunc& keep = KeepFunc())
|
521
|
+
{
|
522
|
+
// TODO optimize the uncompressed mode to avoid moving and allocating the data twice
|
523
|
+
makeCompressed();
|
524
|
+
|
525
|
+
StorageIndex k = 0;
|
526
|
+
for(Index j=0; j<m_outerSize; ++j)
|
527
|
+
{
|
528
|
+
Index previousStart = m_outerIndex[j];
|
529
|
+
m_outerIndex[j] = k;
|
530
|
+
Index end = m_outerIndex[j+1];
|
531
|
+
for(Index i=previousStart; i<end; ++i)
|
532
|
+
{
|
533
|
+
if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
|
534
|
+
{
|
535
|
+
m_data.value(k) = m_data.value(i);
|
536
|
+
m_data.index(k) = m_data.index(i);
|
537
|
+
++k;
|
538
|
+
}
|
539
|
+
}
|
540
|
+
}
|
541
|
+
m_outerIndex[m_outerSize] = k;
|
542
|
+
m_data.resize(k,0);
|
543
|
+
}
|
544
|
+
|
545
|
+
/** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
|
546
|
+
*
|
547
|
+
* If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
|
548
|
+
* and the storage of the out of bounds coefficients is kept and reserved.
|
549
|
+
* Call makeCompressed() to pack the entries and squeeze extra memory.
|
550
|
+
*
|
551
|
+
* \sa reserve(), setZero(), makeCompressed()
|
552
|
+
*/
|
553
|
+
void conservativeResize(Index rows, Index cols)
|
554
|
+
{
|
555
|
+
// No change
|
556
|
+
if (this->rows() == rows && this->cols() == cols) return;
|
557
|
+
|
558
|
+
// If one dimension is null, then there is nothing to be preserved
|
559
|
+
if(rows==0 || cols==0) return resize(rows,cols);
|
560
|
+
|
561
|
+
Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
|
562
|
+
Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
|
563
|
+
StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);
|
564
|
+
|
565
|
+
// Deals with inner non zeros
|
566
|
+
if (m_innerNonZeros)
|
567
|
+
{
|
568
|
+
// Resize m_innerNonZeros
|
569
|
+
StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
|
570
|
+
if (!newInnerNonZeros) internal::throw_std_bad_alloc();
|
571
|
+
m_innerNonZeros = newInnerNonZeros;
|
572
|
+
|
573
|
+
for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
|
574
|
+
m_innerNonZeros[i] = 0;
|
575
|
+
}
|
576
|
+
else if (innerChange < 0)
|
577
|
+
{
|
578
|
+
// Inner size decreased: allocate a new m_innerNonZeros
|
579
|
+
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex)));
|
580
|
+
if (!m_innerNonZeros) internal::throw_std_bad_alloc();
|
581
|
+
for(Index i = 0; i < m_outerSize; i++)
|
582
|
+
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
|
583
|
+
}
|
584
|
+
|
585
|
+
// Change the m_innerNonZeros in case of a decrease of inner size
|
586
|
+
if (m_innerNonZeros && innerChange < 0)
|
587
|
+
{
|
588
|
+
for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
|
589
|
+
{
|
590
|
+
StorageIndex &n = m_innerNonZeros[i];
|
591
|
+
StorageIndex start = m_outerIndex[i];
|
592
|
+
while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
|
593
|
+
}
|
594
|
+
}
|
595
|
+
|
596
|
+
m_innerSize = newInnerSize;
|
597
|
+
|
598
|
+
// Re-allocate outer index structure if necessary
|
599
|
+
if (outerChange == 0)
|
600
|
+
return;
|
601
|
+
|
602
|
+
StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
|
603
|
+
if (!newOuterIndex) internal::throw_std_bad_alloc();
|
604
|
+
m_outerIndex = newOuterIndex;
|
605
|
+
if (outerChange > 0)
|
606
|
+
{
|
607
|
+
StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
|
608
|
+
for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
|
609
|
+
m_outerIndex[i] = last;
|
610
|
+
}
|
611
|
+
m_outerSize += outerChange;
|
612
|
+
}
|
613
|
+
|
614
|
+
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
|
615
|
+
*
|
616
|
+
* This function does not free the currently allocated memory. To release as much as memory as possible,
|
617
|
+
* call \code mat.data().squeeze(); \endcode after resizing it.
|
618
|
+
*
|
619
|
+
* \sa reserve(), setZero()
|
620
|
+
*/
|
621
|
+
void resize(Index rows, Index cols)
|
622
|
+
{
|
623
|
+
const Index outerSize = IsRowMajor ? rows : cols;
|
624
|
+
m_innerSize = IsRowMajor ? cols : rows;
|
625
|
+
m_data.clear();
|
626
|
+
if (m_outerSize != outerSize || m_outerSize==0)
|
627
|
+
{
|
628
|
+
std::free(m_outerIndex);
|
629
|
+
m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
|
630
|
+
if (!m_outerIndex) internal::throw_std_bad_alloc();
|
631
|
+
|
632
|
+
m_outerSize = outerSize;
|
633
|
+
}
|
634
|
+
if(m_innerNonZeros)
|
635
|
+
{
|
636
|
+
std::free(m_innerNonZeros);
|
637
|
+
m_innerNonZeros = 0;
|
638
|
+
}
|
639
|
+
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
|
640
|
+
}
|
641
|
+
|
642
|
+
/** \internal
|
643
|
+
* Resize the nonzero vector to \a size */
|
644
|
+
void resizeNonZeros(Index size)
|
645
|
+
{
|
646
|
+
m_data.resize(size);
|
647
|
+
}
|
648
|
+
|
649
|
+
/** \returns a const expression of the diagonal coefficients. */
|
650
|
+
const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
|
651
|
+
|
652
|
+
/** \returns a read-write expression of the diagonal coefficients.
|
653
|
+
* \warning If the diagonal entries are written, then all diagonal
|
654
|
+
* entries \b must already exist, otherwise an assertion will be raised.
|
655
|
+
*/
|
656
|
+
DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }
|
657
|
+
|
658
|
+
/** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
|
659
|
+
inline SparseMatrix()
|
660
|
+
: m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
661
|
+
{
|
662
|
+
check_template_parameters();
|
663
|
+
resize(0, 0);
|
664
|
+
}
|
665
|
+
|
666
|
+
/** Constructs a \a rows \c x \a cols empty matrix */
|
667
|
+
inline SparseMatrix(Index rows, Index cols)
|
668
|
+
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
669
|
+
{
|
670
|
+
check_template_parameters();
|
671
|
+
resize(rows, cols);
|
672
|
+
}
|
673
|
+
|
674
|
+
/** Constructs a sparse matrix from the sparse expression \a other */
|
675
|
+
template<typename OtherDerived>
|
676
|
+
inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
|
677
|
+
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
678
|
+
{
|
679
|
+
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
680
|
+
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
681
|
+
check_template_parameters();
|
682
|
+
const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
|
683
|
+
if (needToTranspose)
|
684
|
+
*this = other.derived();
|
685
|
+
else
|
686
|
+
{
|
687
|
+
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
688
|
+
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
689
|
+
#endif
|
690
|
+
internal::call_assignment_no_alias(*this, other.derived());
|
691
|
+
}
|
692
|
+
}
|
693
|
+
|
694
|
+
/** Constructs a sparse matrix from the sparse selfadjoint view \a other */
|
695
|
+
template<typename OtherDerived, unsigned int UpLo>
|
696
|
+
inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
|
697
|
+
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
698
|
+
{
|
699
|
+
check_template_parameters();
|
700
|
+
Base::operator=(other);
|
701
|
+
}
|
702
|
+
|
703
|
+
/** Copy constructor (it performs a deep copy) */
|
704
|
+
inline SparseMatrix(const SparseMatrix& other)
|
705
|
+
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
706
|
+
{
|
707
|
+
check_template_parameters();
|
708
|
+
*this = other.derived();
|
709
|
+
}
|
710
|
+
|
711
|
+
/** \brief Copy constructor with in-place evaluation */
|
712
|
+
template<typename OtherDerived>
|
713
|
+
SparseMatrix(const ReturnByValue<OtherDerived>& other)
|
714
|
+
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
715
|
+
{
|
716
|
+
check_template_parameters();
|
717
|
+
initAssignment(other);
|
718
|
+
other.evalTo(*this);
|
719
|
+
}
|
720
|
+
|
721
|
+
/** \brief Copy constructor with in-place evaluation */
|
722
|
+
template<typename OtherDerived>
|
723
|
+
explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
|
724
|
+
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
725
|
+
{
|
726
|
+
check_template_parameters();
|
727
|
+
*this = other.derived();
|
728
|
+
}
|
729
|
+
|
730
|
+
/** Swaps the content of two sparse matrices of the same type.
|
731
|
+
* This is a fast operation that simply swaps the underlying pointers and parameters. */
|
732
|
+
inline void swap(SparseMatrix& other)
|
733
|
+
{
|
734
|
+
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
|
735
|
+
std::swap(m_outerIndex, other.m_outerIndex);
|
736
|
+
std::swap(m_innerSize, other.m_innerSize);
|
737
|
+
std::swap(m_outerSize, other.m_outerSize);
|
738
|
+
std::swap(m_innerNonZeros, other.m_innerNonZeros);
|
739
|
+
m_data.swap(other.m_data);
|
740
|
+
}
|
741
|
+
|
742
|
+
/** Sets *this to the identity matrix.
|
743
|
+
* This function also turns the matrix into compressed mode, and drop any reserved memory. */
|
744
|
+
inline void setIdentity()
|
745
|
+
{
|
746
|
+
eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
|
747
|
+
this->m_data.resize(rows());
|
748
|
+
Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
|
749
|
+
Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
|
750
|
+
Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
|
751
|
+
std::free(m_innerNonZeros);
|
752
|
+
m_innerNonZeros = 0;
|
753
|
+
}
|
754
|
+
inline SparseMatrix& operator=(const SparseMatrix& other)
|
755
|
+
{
|
756
|
+
if (other.isRValue())
|
757
|
+
{
|
758
|
+
swap(other.const_cast_derived());
|
759
|
+
}
|
760
|
+
else if(this!=&other)
|
761
|
+
{
|
762
|
+
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
763
|
+
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
764
|
+
#endif
|
765
|
+
initAssignment(other);
|
766
|
+
if(other.isCompressed())
|
767
|
+
{
|
768
|
+
internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
|
769
|
+
m_data = other.m_data;
|
770
|
+
}
|
771
|
+
else
|
772
|
+
{
|
773
|
+
Base::operator=(other);
|
774
|
+
}
|
775
|
+
}
|
776
|
+
return *this;
|
777
|
+
}
|
778
|
+
|
779
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
780
|
+
template<typename OtherDerived>
|
781
|
+
inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
|
782
|
+
{ return Base::operator=(other.derived()); }
|
783
|
+
#endif // EIGEN_PARSED_BY_DOXYGEN
|
784
|
+
|
785
|
+
template<typename OtherDerived>
|
786
|
+
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
|
787
|
+
|
788
|
+
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
|
789
|
+
{
|
790
|
+
EIGEN_DBG_SPARSE(
|
791
|
+
s << "Nonzero entries:\n";
|
792
|
+
if(m.isCompressed())
|
793
|
+
{
|
794
|
+
for (Index i=0; i<m.nonZeros(); ++i)
|
795
|
+
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
|
796
|
+
}
|
797
|
+
else
|
798
|
+
{
|
799
|
+
for (Index i=0; i<m.outerSize(); ++i)
|
800
|
+
{
|
801
|
+
Index p = m.m_outerIndex[i];
|
802
|
+
Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
|
803
|
+
Index k=p;
|
804
|
+
for (; k<pe; ++k) {
|
805
|
+
s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
|
806
|
+
}
|
807
|
+
for (; k<m.m_outerIndex[i+1]; ++k) {
|
808
|
+
s << "(_,_) ";
|
809
|
+
}
|
810
|
+
}
|
811
|
+
}
|
812
|
+
s << std::endl;
|
813
|
+
s << std::endl;
|
814
|
+
s << "Outer pointers:\n";
|
815
|
+
for (Index i=0; i<m.outerSize(); ++i) {
|
816
|
+
s << m.m_outerIndex[i] << " ";
|
817
|
+
}
|
818
|
+
s << " $" << std::endl;
|
819
|
+
if(!m.isCompressed())
|
820
|
+
{
|
821
|
+
s << "Inner non zeros:\n";
|
822
|
+
for (Index i=0; i<m.outerSize(); ++i) {
|
823
|
+
s << m.m_innerNonZeros[i] << " ";
|
824
|
+
}
|
825
|
+
s << " $" << std::endl;
|
826
|
+
}
|
827
|
+
s << std::endl;
|
828
|
+
);
|
829
|
+
s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
|
830
|
+
return s;
|
831
|
+
}
|
832
|
+
|
833
|
+
/** Destructor */
|
834
|
+
inline ~SparseMatrix()
|
835
|
+
{
|
836
|
+
std::free(m_outerIndex);
|
837
|
+
std::free(m_innerNonZeros);
|
838
|
+
}
|
839
|
+
|
840
|
+
/** Overloaded for performance */
|
841
|
+
Scalar sum() const;
|
842
|
+
|
843
|
+
# ifdef EIGEN_SPARSEMATRIX_PLUGIN
|
844
|
+
# include EIGEN_SPARSEMATRIX_PLUGIN
|
845
|
+
# endif
|
846
|
+
|
847
|
+
protected:
|
848
|
+
|
849
|
+
template<typename Other>
|
850
|
+
void initAssignment(const Other& other)
|
851
|
+
{
|
852
|
+
resize(other.rows(), other.cols());
|
853
|
+
if(m_innerNonZeros)
|
854
|
+
{
|
855
|
+
std::free(m_innerNonZeros);
|
856
|
+
m_innerNonZeros = 0;
|
857
|
+
}
|
858
|
+
}
|
859
|
+
|
860
|
+
/** \internal
|
861
|
+
* \sa insert(Index,Index) */
|
862
|
+
EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
|
863
|
+
|
864
|
+
/** \internal
|
865
|
+
* A vector object that is equal to 0 everywhere but v at the position i */
|
866
|
+
class SingletonVector
|
867
|
+
{
|
868
|
+
StorageIndex m_index;
|
869
|
+
StorageIndex m_value;
|
870
|
+
public:
|
871
|
+
typedef StorageIndex value_type;
|
872
|
+
SingletonVector(Index i, Index v)
|
873
|
+
: m_index(convert_index(i)), m_value(convert_index(v))
|
874
|
+
{}
|
875
|
+
|
876
|
+
StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
|
877
|
+
};
|
878
|
+
|
879
|
+
/** \internal
|
880
|
+
* \sa insert(Index,Index) */
|
881
|
+
EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
|
882
|
+
|
883
|
+
public:
|
884
|
+
/** \internal
|
885
|
+
* \sa insert(Index,Index) */
|
886
|
+
EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
|
887
|
+
{
|
888
|
+
const Index outer = IsRowMajor ? row : col;
|
889
|
+
const Index inner = IsRowMajor ? col : row;
|
890
|
+
|
891
|
+
eigen_assert(!isCompressed());
|
892
|
+
eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
|
893
|
+
|
894
|
+
Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
|
895
|
+
m_data.index(p) = convert_index(inner);
|
896
|
+
return (m_data.value(p) = Scalar(0));
|
897
|
+
}
|
898
|
+
|
899
|
+
private:
|
900
|
+
static void check_template_parameters()
|
901
|
+
{
|
902
|
+
EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
|
903
|
+
EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
|
904
|
+
}
|
905
|
+
|
906
|
+
struct default_prunning_func {
|
907
|
+
default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
|
908
|
+
inline bool operator() (const Index&, const Index&, const Scalar& value) const
|
909
|
+
{
|
910
|
+
return !internal::isMuchSmallerThan(value, reference, epsilon);
|
911
|
+
}
|
912
|
+
Scalar reference;
|
913
|
+
RealScalar epsilon;
|
914
|
+
};
|
915
|
+
};
|
916
|
+
|
917
|
+
namespace internal {
|
918
|
+
|
919
|
+
template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
|
920
|
+
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
|
921
|
+
{
|
922
|
+
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
|
923
|
+
typedef typename SparseMatrixType::Scalar Scalar;
|
924
|
+
typedef typename SparseMatrixType::StorageIndex StorageIndex;
|
925
|
+
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());
|
926
|
+
|
927
|
+
if(begin!=end)
|
928
|
+
{
|
929
|
+
// pass 1: count the nnz per inner-vector
|
930
|
+
typename SparseMatrixType::IndexVector wi(trMat.outerSize());
|
931
|
+
wi.setZero();
|
932
|
+
for(InputIterator it(begin); it!=end; ++it)
|
933
|
+
{
|
934
|
+
eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
|
935
|
+
wi(IsRowMajor ? it->col() : it->row())++;
|
936
|
+
}
|
937
|
+
|
938
|
+
// pass 2: insert all the elements into trMat
|
939
|
+
trMat.reserve(wi);
|
940
|
+
for(InputIterator it(begin); it!=end; ++it)
|
941
|
+
trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
|
942
|
+
|
943
|
+
// pass 3:
|
944
|
+
trMat.collapseDuplicates(dup_func);
|
945
|
+
}
|
946
|
+
|
947
|
+
// pass 4: transposed copy -> implicit sorting
|
948
|
+
mat = trMat;
|
949
|
+
}
|
950
|
+
|
951
|
+
}
|
952
|
+
|
953
|
+
|
954
|
+
/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
|
955
|
+
*
|
956
|
+
* A \em triplet is a tuple (i,j,value) defining a non-zero element.
|
957
|
+
* The input list of triplets does not have to be sorted, and can contains duplicated elements.
|
958
|
+
* In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
|
959
|
+
* This is a \em O(n) operation, with \em n the number of triplet elements.
|
960
|
+
* The initial contents of \c *this is destroyed.
|
961
|
+
* The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
|
962
|
+
* or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
|
963
|
+
*
|
964
|
+
* The \a InputIterators value_type must provide the following interface:
|
965
|
+
* \code
|
966
|
+
* Scalar value() const; // the value
|
967
|
+
* Scalar row() const; // the row index i
|
968
|
+
* Scalar col() const; // the column index j
|
969
|
+
* \endcode
|
970
|
+
* See for instance the Eigen::Triplet template class.
|
971
|
+
*
|
972
|
+
* Here is a typical usage example:
|
973
|
+
* \code
|
974
|
+
typedef Triplet<double> T;
|
975
|
+
std::vector<T> tripletList;
|
976
|
+
triplets.reserve(estimation_of_entries);
|
977
|
+
for(...)
|
978
|
+
{
|
979
|
+
// ...
|
980
|
+
tripletList.push_back(T(i,j,v_ij));
|
981
|
+
}
|
982
|
+
SparseMatrixType m(rows,cols);
|
983
|
+
m.setFromTriplets(tripletList.begin(), tripletList.end());
|
984
|
+
// m is ready to go!
|
985
|
+
* \endcode
|
986
|
+
*
|
987
|
+
* \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
|
988
|
+
* an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
|
989
|
+
* be explicitely stored into a std::vector for instance.
|
990
|
+
*/
|
991
|
+
template<typename Scalar, int _Options, typename _StorageIndex>
|
992
|
+
template<typename InputIterators>
|
993
|
+
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
|
994
|
+
{
|
995
|
+
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
|
996
|
+
}
|
997
|
+
|
998
|
+
/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
|
999
|
+
* \code
|
1000
|
+
* value = dup_func(OldValue, NewValue)
|
1001
|
+
* \endcode
|
1002
|
+
* Here is a C++11 example keeping the latest entry only:
|
1003
|
+
* \code
|
1004
|
+
* mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
|
1005
|
+
* \endcode
|
1006
|
+
*/
|
1007
|
+
template<typename Scalar, int _Options, typename _StorageIndex>
|
1008
|
+
template<typename InputIterators,typename DupFunctor>
|
1009
|
+
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
|
1010
|
+
{
|
1011
|
+
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
|
1012
|
+
}
|
1013
|
+
|
1014
|
+
/** \internal */
|
1015
|
+
template<typename Scalar, int _Options, typename _StorageIndex>
|
1016
|
+
template<typename DupFunctor>
|
1017
|
+
void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
|
1018
|
+
{
|
1019
|
+
eigen_assert(!isCompressed());
|
1020
|
+
// TODO, in practice we should be able to use m_innerNonZeros for that task
|
1021
|
+
IndexVector wi(innerSize());
|
1022
|
+
wi.fill(-1);
|
1023
|
+
StorageIndex count = 0;
|
1024
|
+
// for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
|
1025
|
+
for(Index j=0; j<outerSize(); ++j)
|
1026
|
+
{
|
1027
|
+
StorageIndex start = count;
|
1028
|
+
Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
|
1029
|
+
for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
|
1030
|
+
{
|
1031
|
+
Index i = m_data.index(k);
|
1032
|
+
if(wi(i)>=start)
|
1033
|
+
{
|
1034
|
+
// we already meet this entry => accumulate it
|
1035
|
+
m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
|
1036
|
+
}
|
1037
|
+
else
|
1038
|
+
{
|
1039
|
+
m_data.value(count) = m_data.value(k);
|
1040
|
+
m_data.index(count) = m_data.index(k);
|
1041
|
+
wi(i) = count;
|
1042
|
+
++count;
|
1043
|
+
}
|
1044
|
+
}
|
1045
|
+
m_outerIndex[j] = start;
|
1046
|
+
}
|
1047
|
+
m_outerIndex[m_outerSize] = count;
|
1048
|
+
|
1049
|
+
// turn the matrix into compressed form
|
1050
|
+
std::free(m_innerNonZeros);
|
1051
|
+
m_innerNonZeros = 0;
|
1052
|
+
m_data.resize(m_outerIndex[m_outerSize]);
|
1053
|
+
}
|
1054
|
+
|
1055
|
+
template<typename Scalar, int _Options, typename _StorageIndex>
|
1056
|
+
template<typename OtherDerived>
|
1057
|
+
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
|
1058
|
+
{
|
1059
|
+
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
1060
|
+
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
1061
|
+
|
1062
|
+
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
1063
|
+
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
1064
|
+
#endif
|
1065
|
+
|
1066
|
+
const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
|
1067
|
+
if (needToTranspose)
|
1068
|
+
{
|
1069
|
+
#ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
|
1070
|
+
EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
|
1071
|
+
#endif
|
1072
|
+
// two passes algorithm:
|
1073
|
+
// 1 - compute the number of coeffs per dest inner vector
|
1074
|
+
// 2 - do the actual copy/eval
|
1075
|
+
// Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
|
1076
|
+
typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
|
1077
|
+
typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
|
1078
|
+
typedef internal::evaluator<_OtherCopy> OtherCopyEval;
|
1079
|
+
OtherCopy otherCopy(other.derived());
|
1080
|
+
OtherCopyEval otherCopyEval(otherCopy);
|
1081
|
+
|
1082
|
+
SparseMatrix dest(other.rows(),other.cols());
|
1083
|
+
Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();
|
1084
|
+
|
1085
|
+
// pass 1
|
1086
|
+
// FIXME the above copy could be merged with that pass
|
1087
|
+
for (Index j=0; j<otherCopy.outerSize(); ++j)
|
1088
|
+
for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
|
1089
|
+
++dest.m_outerIndex[it.index()];
|
1090
|
+
|
1091
|
+
// prefix sum
|
1092
|
+
StorageIndex count = 0;
|
1093
|
+
IndexVector positions(dest.outerSize());
|
1094
|
+
for (Index j=0; j<dest.outerSize(); ++j)
|
1095
|
+
{
|
1096
|
+
StorageIndex tmp = dest.m_outerIndex[j];
|
1097
|
+
dest.m_outerIndex[j] = count;
|
1098
|
+
positions[j] = count;
|
1099
|
+
count += tmp;
|
1100
|
+
}
|
1101
|
+
dest.m_outerIndex[dest.outerSize()] = count;
|
1102
|
+
// alloc
|
1103
|
+
dest.m_data.resize(count);
|
1104
|
+
// pass 2
|
1105
|
+
for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
|
1106
|
+
{
|
1107
|
+
for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
|
1108
|
+
{
|
1109
|
+
Index pos = positions[it.index()]++;
|
1110
|
+
dest.m_data.index(pos) = j;
|
1111
|
+
dest.m_data.value(pos) = it.value();
|
1112
|
+
}
|
1113
|
+
}
|
1114
|
+
this->swap(dest);
|
1115
|
+
return *this;
|
1116
|
+
}
|
1117
|
+
else
|
1118
|
+
{
|
1119
|
+
if(other.isRValue())
|
1120
|
+
{
|
1121
|
+
initAssignment(other.derived());
|
1122
|
+
}
|
1123
|
+
// there is no special optimization
|
1124
|
+
return Base::operator=(other.derived());
|
1125
|
+
}
|
1126
|
+
}
|
1127
|
+
|
1128
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
1129
|
+
typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
|
1130
|
+
{
|
1131
|
+
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
|
1132
|
+
|
1133
|
+
const Index outer = IsRowMajor ? row : col;
|
1134
|
+
const Index inner = IsRowMajor ? col : row;
|
1135
|
+
|
1136
|
+
if(isCompressed())
|
1137
|
+
{
|
1138
|
+
if(nonZeros()==0)
|
1139
|
+
{
|
1140
|
+
// reserve space if not already done
|
1141
|
+
if(m_data.allocatedSize()==0)
|
1142
|
+
m_data.reserve(2*m_innerSize);
|
1143
|
+
|
1144
|
+
// turn the matrix into non-compressed mode
|
1145
|
+
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
|
1146
|
+
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
|
1147
|
+
|
1148
|
+
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
|
1149
|
+
|
1150
|
+
// pack all inner-vectors to the end of the pre-allocated space
|
1151
|
+
// and allocate the entire free-space to the first inner-vector
|
1152
|
+
StorageIndex end = convert_index(m_data.allocatedSize());
|
1153
|
+
for(Index j=1; j<=m_outerSize; ++j)
|
1154
|
+
m_outerIndex[j] = end;
|
1155
|
+
}
|
1156
|
+
else
|
1157
|
+
{
|
1158
|
+
// turn the matrix into non-compressed mode
|
1159
|
+
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
|
1160
|
+
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
|
1161
|
+
for(Index j=0; j<m_outerSize; ++j)
|
1162
|
+
m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
|
1163
|
+
}
|
1164
|
+
}
|
1165
|
+
|
1166
|
+
// check whether we can do a fast "push back" insertion
|
1167
|
+
Index data_end = m_data.allocatedSize();
|
1168
|
+
|
1169
|
+
// First case: we are filling a new inner vector which is packed at the end.
|
1170
|
+
// We assume that all remaining inner-vectors are also empty and packed to the end.
|
1171
|
+
if(m_outerIndex[outer]==data_end)
|
1172
|
+
{
|
1173
|
+
eigen_internal_assert(m_innerNonZeros[outer]==0);
|
1174
|
+
|
1175
|
+
// pack previous empty inner-vectors to end of the used-space
|
1176
|
+
// and allocate the entire free-space to the current inner-vector.
|
1177
|
+
StorageIndex p = convert_index(m_data.size());
|
1178
|
+
Index j = outer;
|
1179
|
+
while(j>=0 && m_innerNonZeros[j]==0)
|
1180
|
+
m_outerIndex[j--] = p;
|
1181
|
+
|
1182
|
+
// push back the new element
|
1183
|
+
++m_innerNonZeros[outer];
|
1184
|
+
m_data.append(Scalar(0), inner);
|
1185
|
+
|
1186
|
+
// check for reallocation
|
1187
|
+
if(data_end != m_data.allocatedSize())
|
1188
|
+
{
|
1189
|
+
// m_data has been reallocated
|
1190
|
+
// -> move remaining inner-vectors back to the end of the free-space
|
1191
|
+
// so that the entire free-space is allocated to the current inner-vector.
|
1192
|
+
eigen_internal_assert(data_end < m_data.allocatedSize());
|
1193
|
+
StorageIndex new_end = convert_index(m_data.allocatedSize());
|
1194
|
+
for(Index k=outer+1; k<=m_outerSize; ++k)
|
1195
|
+
if(m_outerIndex[k]==data_end)
|
1196
|
+
m_outerIndex[k] = new_end;
|
1197
|
+
}
|
1198
|
+
return m_data.value(p);
|
1199
|
+
}
|
1200
|
+
|
1201
|
+
// Second case: the next inner-vector is packed to the end
|
1202
|
+
// and the current inner-vector end match the used-space.
|
1203
|
+
if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
|
1204
|
+
{
|
1205
|
+
eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
|
1206
|
+
|
1207
|
+
// add space for the new element
|
1208
|
+
++m_innerNonZeros[outer];
|
1209
|
+
m_data.resize(m_data.size()+1);
|
1210
|
+
|
1211
|
+
// check for reallocation
|
1212
|
+
if(data_end != m_data.allocatedSize())
|
1213
|
+
{
|
1214
|
+
// m_data has been reallocated
|
1215
|
+
// -> move remaining inner-vectors back to the end of the free-space
|
1216
|
+
// so that the entire free-space is allocated to the current inner-vector.
|
1217
|
+
eigen_internal_assert(data_end < m_data.allocatedSize());
|
1218
|
+
StorageIndex new_end = convert_index(m_data.allocatedSize());
|
1219
|
+
for(Index k=outer+1; k<=m_outerSize; ++k)
|
1220
|
+
if(m_outerIndex[k]==data_end)
|
1221
|
+
m_outerIndex[k] = new_end;
|
1222
|
+
}
|
1223
|
+
|
1224
|
+
// and insert it at the right position (sorted insertion)
|
1225
|
+
Index startId = m_outerIndex[outer];
|
1226
|
+
Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
|
1227
|
+
while ( (p > startId) && (m_data.index(p-1) > inner) )
|
1228
|
+
{
|
1229
|
+
m_data.index(p) = m_data.index(p-1);
|
1230
|
+
m_data.value(p) = m_data.value(p-1);
|
1231
|
+
--p;
|
1232
|
+
}
|
1233
|
+
|
1234
|
+
m_data.index(p) = convert_index(inner);
|
1235
|
+
return (m_data.value(p) = 0);
|
1236
|
+
}
|
1237
|
+
|
1238
|
+
if(m_data.size() != m_data.allocatedSize())
|
1239
|
+
{
|
1240
|
+
// make sure the matrix is compatible to random un-compressed insertion:
|
1241
|
+
m_data.resize(m_data.allocatedSize());
|
1242
|
+
this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
|
1243
|
+
}
|
1244
|
+
|
1245
|
+
return insertUncompressed(row,col);
|
1246
|
+
}
|
1247
|
+
|
1248
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
1249
|
+
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
|
1250
|
+
{
|
1251
|
+
eigen_assert(!isCompressed());
|
1252
|
+
|
1253
|
+
const Index outer = IsRowMajor ? row : col;
|
1254
|
+
const StorageIndex inner = convert_index(IsRowMajor ? col : row);
|
1255
|
+
|
1256
|
+
Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
|
1257
|
+
StorageIndex innerNNZ = m_innerNonZeros[outer];
|
1258
|
+
if(innerNNZ>=room)
|
1259
|
+
{
|
1260
|
+
// this inner vector is full, we need to reallocate the whole buffer :(
|
1261
|
+
reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
|
1262
|
+
}
|
1263
|
+
|
1264
|
+
Index startId = m_outerIndex[outer];
|
1265
|
+
Index p = startId + m_innerNonZeros[outer];
|
1266
|
+
while ( (p > startId) && (m_data.index(p-1) > inner) )
|
1267
|
+
{
|
1268
|
+
m_data.index(p) = m_data.index(p-1);
|
1269
|
+
m_data.value(p) = m_data.value(p-1);
|
1270
|
+
--p;
|
1271
|
+
}
|
1272
|
+
eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");
|
1273
|
+
|
1274
|
+
m_innerNonZeros[outer]++;
|
1275
|
+
|
1276
|
+
m_data.index(p) = inner;
|
1277
|
+
return (m_data.value(p) = Scalar(0));
|
1278
|
+
}
|
1279
|
+
|
1280
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
1281
|
+
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
|
1282
|
+
{
|
1283
|
+
eigen_assert(isCompressed());
|
1284
|
+
|
1285
|
+
const Index outer = IsRowMajor ? row : col;
|
1286
|
+
const Index inner = IsRowMajor ? col : row;
|
1287
|
+
|
1288
|
+
Index previousOuter = outer;
|
1289
|
+
if (m_outerIndex[outer+1]==0)
|
1290
|
+
{
|
1291
|
+
// we start a new inner vector
|
1292
|
+
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
|
1293
|
+
{
|
1294
|
+
m_outerIndex[previousOuter] = convert_index(m_data.size());
|
1295
|
+
--previousOuter;
|
1296
|
+
}
|
1297
|
+
m_outerIndex[outer+1] = m_outerIndex[outer];
|
1298
|
+
}
|
1299
|
+
|
1300
|
+
// here we have to handle the tricky case where the outerIndex array
|
1301
|
+
// starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
|
1302
|
+
// the 2nd inner vector...
|
1303
|
+
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
|
1304
|
+
&& (std::size_t(m_outerIndex[outer+1]) == m_data.size());
|
1305
|
+
|
1306
|
+
std::size_t startId = m_outerIndex[outer];
|
1307
|
+
// FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
|
1308
|
+
std::size_t p = m_outerIndex[outer+1];
|
1309
|
+
++m_outerIndex[outer+1];
|
1310
|
+
|
1311
|
+
double reallocRatio = 1;
|
1312
|
+
if (m_data.allocatedSize()<=m_data.size())
|
1313
|
+
{
|
1314
|
+
// if there is no preallocated memory, let's reserve a minimum of 32 elements
|
1315
|
+
if (m_data.size()==0)
|
1316
|
+
{
|
1317
|
+
m_data.reserve(32);
|
1318
|
+
}
|
1319
|
+
else
|
1320
|
+
{
|
1321
|
+
// we need to reallocate the data, to reduce multiple reallocations
|
1322
|
+
// we use a smart resize algorithm based on the current filling ratio
|
1323
|
+
// in addition, we use double to avoid integers overflows
|
1324
|
+
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
|
1325
|
+
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
|
1326
|
+
// furthermore we bound the realloc ratio to:
|
1327
|
+
// 1) reduce multiple minor realloc when the matrix is almost filled
|
1328
|
+
// 2) avoid to allocate too much memory when the matrix is almost empty
|
1329
|
+
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
|
1330
|
+
}
|
1331
|
+
}
|
1332
|
+
m_data.resize(m_data.size()+1,reallocRatio);
|
1333
|
+
|
1334
|
+
if (!isLastVec)
|
1335
|
+
{
|
1336
|
+
if (previousOuter==-1)
|
1337
|
+
{
|
1338
|
+
// oops wrong guess.
|
1339
|
+
// let's correct the outer offsets
|
1340
|
+
for (Index k=0; k<=(outer+1); ++k)
|
1341
|
+
m_outerIndex[k] = 0;
|
1342
|
+
Index k=outer+1;
|
1343
|
+
while(m_outerIndex[k]==0)
|
1344
|
+
m_outerIndex[k++] = 1;
|
1345
|
+
while (k<=m_outerSize && m_outerIndex[k]!=0)
|
1346
|
+
m_outerIndex[k++]++;
|
1347
|
+
p = 0;
|
1348
|
+
--k;
|
1349
|
+
k = m_outerIndex[k]-1;
|
1350
|
+
while (k>0)
|
1351
|
+
{
|
1352
|
+
m_data.index(k) = m_data.index(k-1);
|
1353
|
+
m_data.value(k) = m_data.value(k-1);
|
1354
|
+
k--;
|
1355
|
+
}
|
1356
|
+
}
|
1357
|
+
else
|
1358
|
+
{
|
1359
|
+
// we are not inserting into the last inner vec
|
1360
|
+
// update outer indices:
|
1361
|
+
Index j = outer+2;
|
1362
|
+
while (j<=m_outerSize && m_outerIndex[j]!=0)
|
1363
|
+
m_outerIndex[j++]++;
|
1364
|
+
--j;
|
1365
|
+
// shift data of last vecs:
|
1366
|
+
Index k = m_outerIndex[j]-1;
|
1367
|
+
while (k>=Index(p))
|
1368
|
+
{
|
1369
|
+
m_data.index(k) = m_data.index(k-1);
|
1370
|
+
m_data.value(k) = m_data.value(k-1);
|
1371
|
+
k--;
|
1372
|
+
}
|
1373
|
+
}
|
1374
|
+
}
|
1375
|
+
|
1376
|
+
while ( (p > startId) && (m_data.index(p-1) > inner) )
|
1377
|
+
{
|
1378
|
+
m_data.index(p) = m_data.index(p-1);
|
1379
|
+
m_data.value(p) = m_data.value(p-1);
|
1380
|
+
--p;
|
1381
|
+
}
|
1382
|
+
|
1383
|
+
m_data.index(p) = inner;
|
1384
|
+
return (m_data.value(p) = Scalar(0));
|
1385
|
+
}
|
1386
|
+
|
1387
|
+
namespace internal {
|
1388
|
+
|
1389
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
1390
|
+
struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
|
1391
|
+
: evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
|
1392
|
+
{
|
1393
|
+
typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
|
1394
|
+
typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
|
1395
|
+
evaluator() : Base() {}
|
1396
|
+
explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
|
1397
|
+
};
|
1398
|
+
|
1399
|
+
}
|
1400
|
+
|
1401
|
+
} // end namespace Eigen
|
1402
|
+
|
1403
|
+
#endif // EIGEN_SPARSEMATRIX_H
|