tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,394 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
11
+ #define EIGEN_ITERATIVE_SOLVER_BASE_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+ template<typename MatrixType>
18
+ struct is_ref_compatible_impl
19
+ {
20
+ private:
21
+ template <typename T0>
22
+ struct any_conversion
23
+ {
24
+ template <typename T> any_conversion(const volatile T&);
25
+ template <typename T> any_conversion(T&);
26
+ };
27
+ struct yes {int a[1];};
28
+ struct no {int a[2];};
29
+
30
+ template<typename T>
31
+ static yes test(const Ref<const T>&, int);
32
+ template<typename T>
33
+ static no test(any_conversion<T>, ...);
34
+
35
+ public:
36
+ static MatrixType ms_from;
37
+ enum { value = sizeof(test<MatrixType>(ms_from, 0))==sizeof(yes) };
38
+ };
39
+
40
+ template<typename MatrixType>
41
+ struct is_ref_compatible
42
+ {
43
+ enum { value = is_ref_compatible_impl<typename remove_all<MatrixType>::type>::value };
44
+ };
45
+
46
+ template<typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
47
+ class generic_matrix_wrapper;
48
+
49
+ // We have an explicit matrix at hand, compatible with Ref<>
50
+ template<typename MatrixType>
51
+ class generic_matrix_wrapper<MatrixType,false>
52
+ {
53
+ public:
54
+ typedef Ref<const MatrixType> ActualMatrixType;
55
+ template<int UpLo> struct ConstSelfAdjointViewReturnType {
56
+ typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
57
+ };
58
+
59
+ enum {
60
+ MatrixFree = false
61
+ };
62
+
63
+ generic_matrix_wrapper()
64
+ : m_dummy(0,0), m_matrix(m_dummy)
65
+ {}
66
+
67
+ template<typename InputType>
68
+ generic_matrix_wrapper(const InputType &mat)
69
+ : m_matrix(mat)
70
+ {}
71
+
72
+ const ActualMatrixType& matrix() const
73
+ {
74
+ return m_matrix;
75
+ }
76
+
77
+ template<typename MatrixDerived>
78
+ void grab(const EigenBase<MatrixDerived> &mat)
79
+ {
80
+ m_matrix.~Ref<const MatrixType>();
81
+ ::new (&m_matrix) Ref<const MatrixType>(mat.derived());
82
+ }
83
+
84
+ void grab(const Ref<const MatrixType> &mat)
85
+ {
86
+ if(&(mat.derived()) != &m_matrix)
87
+ {
88
+ m_matrix.~Ref<const MatrixType>();
89
+ ::new (&m_matrix) Ref<const MatrixType>(mat);
90
+ }
91
+ }
92
+
93
+ protected:
94
+ MatrixType m_dummy; // used to default initialize the Ref<> object
95
+ ActualMatrixType m_matrix;
96
+ };
97
+
98
+ // MatrixType is not compatible with Ref<> -> matrix-free wrapper
99
+ template<typename MatrixType>
100
+ class generic_matrix_wrapper<MatrixType,true>
101
+ {
102
+ public:
103
+ typedef MatrixType ActualMatrixType;
104
+ template<int UpLo> struct ConstSelfAdjointViewReturnType
105
+ {
106
+ typedef ActualMatrixType Type;
107
+ };
108
+
109
+ enum {
110
+ MatrixFree = true
111
+ };
112
+
113
+ generic_matrix_wrapper()
114
+ : mp_matrix(0)
115
+ {}
116
+
117
+ generic_matrix_wrapper(const MatrixType &mat)
118
+ : mp_matrix(&mat)
119
+ {}
120
+
121
+ const ActualMatrixType& matrix() const
122
+ {
123
+ return *mp_matrix;
124
+ }
125
+
126
+ void grab(const MatrixType &mat)
127
+ {
128
+ mp_matrix = &mat;
129
+ }
130
+
131
+ protected:
132
+ const ActualMatrixType *mp_matrix;
133
+ };
134
+
135
+ }
136
+
137
+ /** \ingroup IterativeLinearSolvers_Module
138
+ * \brief Base class for linear iterative solvers
139
+ *
140
+ * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
141
+ */
142
+ template< typename Derived>
143
+ class IterativeSolverBase : public SparseSolverBase<Derived>
144
+ {
145
+ protected:
146
+ typedef SparseSolverBase<Derived> Base;
147
+ using Base::m_isInitialized;
148
+
149
+ public:
150
+ typedef typename internal::traits<Derived>::MatrixType MatrixType;
151
+ typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
152
+ typedef typename MatrixType::Scalar Scalar;
153
+ typedef typename MatrixType::StorageIndex StorageIndex;
154
+ typedef typename MatrixType::RealScalar RealScalar;
155
+
156
+ enum {
157
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
158
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
159
+ };
160
+
161
+ public:
162
+
163
+ using Base::derived;
164
+
165
+ /** Default constructor. */
166
+ IterativeSolverBase()
167
+ {
168
+ init();
169
+ }
170
+
171
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
172
+ *
173
+ * This constructor is a shortcut for the default constructor followed
174
+ * by a call to compute().
175
+ *
176
+ * \warning this class stores a reference to the matrix A as well as some
177
+ * precomputed values that depend on it. Therefore, if \a A is changed
178
+ * this class becomes invalid. Call compute() to update it with the new
179
+ * matrix A, or modify a copy of A.
180
+ */
181
+ template<typename MatrixDerived>
182
+ explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
183
+ : m_matrixWrapper(A.derived())
184
+ {
185
+ init();
186
+ compute(matrix());
187
+ }
188
+
189
+ ~IterativeSolverBase() {}
190
+
191
+ /** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
192
+ *
193
+ * Currently, this function mostly calls analyzePattern on the preconditioner. In the future
194
+ * we might, for instance, implement column reordering for faster matrix vector products.
195
+ */
196
+ template<typename MatrixDerived>
197
+ Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
198
+ {
199
+ grab(A.derived());
200
+ m_preconditioner.analyzePattern(matrix());
201
+ m_isInitialized = true;
202
+ m_analysisIsOk = true;
203
+ m_info = m_preconditioner.info();
204
+ return derived();
205
+ }
206
+
207
+ /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
208
+ *
209
+ * Currently, this function mostly calls factorize on the preconditioner.
210
+ *
211
+ * \warning this class stores a reference to the matrix A as well as some
212
+ * precomputed values that depend on it. Therefore, if \a A is changed
213
+ * this class becomes invalid. Call compute() to update it with the new
214
+ * matrix A, or modify a copy of A.
215
+ */
216
+ template<typename MatrixDerived>
217
+ Derived& factorize(const EigenBase<MatrixDerived>& A)
218
+ {
219
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
220
+ grab(A.derived());
221
+ m_preconditioner.factorize(matrix());
222
+ m_factorizationIsOk = true;
223
+ m_info = m_preconditioner.info();
224
+ return derived();
225
+ }
226
+
227
+ /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
228
+ *
229
+ * Currently, this function mostly initializes/computes the preconditioner. In the future
230
+ * we might, for instance, implement column reordering for faster matrix vector products.
231
+ *
232
+ * \warning this class stores a reference to the matrix A as well as some
233
+ * precomputed values that depend on it. Therefore, if \a A is changed
234
+ * this class becomes invalid. Call compute() to update it with the new
235
+ * matrix A, or modify a copy of A.
236
+ */
237
+ template<typename MatrixDerived>
238
+ Derived& compute(const EigenBase<MatrixDerived>& A)
239
+ {
240
+ grab(A.derived());
241
+ m_preconditioner.compute(matrix());
242
+ m_isInitialized = true;
243
+ m_analysisIsOk = true;
244
+ m_factorizationIsOk = true;
245
+ m_info = m_preconditioner.info();
246
+ return derived();
247
+ }
248
+
249
+ /** \internal */
250
+ Index rows() const { return matrix().rows(); }
251
+
252
+ /** \internal */
253
+ Index cols() const { return matrix().cols(); }
254
+
255
+ /** \returns the tolerance threshold used by the stopping criteria.
256
+ * \sa setTolerance()
257
+ */
258
+ RealScalar tolerance() const { return m_tolerance; }
259
+
260
+ /** Sets the tolerance threshold used by the stopping criteria.
261
+ *
262
+ * This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
263
+ * The default value is the machine precision given by NumTraits<Scalar>::epsilon()
264
+ */
265
+ Derived& setTolerance(const RealScalar& tolerance)
266
+ {
267
+ m_tolerance = tolerance;
268
+ return derived();
269
+ }
270
+
271
+ /** \returns a read-write reference to the preconditioner for custom configuration. */
272
+ Preconditioner& preconditioner() { return m_preconditioner; }
273
+
274
+ /** \returns a read-only reference to the preconditioner. */
275
+ const Preconditioner& preconditioner() const { return m_preconditioner; }
276
+
277
+ /** \returns the max number of iterations.
278
+ * It is either the value setted by setMaxIterations or, by default,
279
+ * twice the number of columns of the matrix.
280
+ */
281
+ Index maxIterations() const
282
+ {
283
+ return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
284
+ }
285
+
286
+ /** Sets the max number of iterations.
287
+ * Default is twice the number of columns of the matrix.
288
+ */
289
+ Derived& setMaxIterations(Index maxIters)
290
+ {
291
+ m_maxIterations = maxIters;
292
+ return derived();
293
+ }
294
+
295
+ /** \returns the number of iterations performed during the last solve */
296
+ Index iterations() const
297
+ {
298
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
299
+ return m_iterations;
300
+ }
301
+
302
+ /** \returns the tolerance error reached during the last solve.
303
+ * It is a close approximation of the true relative residual error |Ax-b|/|b|.
304
+ */
305
+ RealScalar error() const
306
+ {
307
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
308
+ return m_error;
309
+ }
310
+
311
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
312
+ * and \a x0 as an initial solution.
313
+ *
314
+ * \sa solve(), compute()
315
+ */
316
+ template<typename Rhs,typename Guess>
317
+ inline const SolveWithGuess<Derived, Rhs, Guess>
318
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
319
+ {
320
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
321
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
322
+ return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
323
+ }
324
+
325
+ /** \returns Success if the iterations converged, and NoConvergence otherwise. */
326
+ ComputationInfo info() const
327
+ {
328
+ eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
329
+ return m_info;
330
+ }
331
+
332
+ /** \internal */
333
+ template<typename Rhs, typename DestDerived>
334
+ void _solve_impl(const Rhs& b, SparseMatrixBase<DestDerived> &aDest) const
335
+ {
336
+ eigen_assert(rows()==b.rows());
337
+
338
+ Index rhsCols = b.cols();
339
+ Index size = b.rows();
340
+ DestDerived& dest(aDest.derived());
341
+ typedef typename DestDerived::Scalar DestScalar;
342
+ Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
343
+ Eigen::Matrix<DestScalar,Dynamic,1> tx(cols());
344
+ // We do not directly fill dest because sparse expressions have to be free of aliasing issue.
345
+ // For non square least-square problems, b and dest might not have the same size whereas they might alias each-other.
346
+ typename DestDerived::PlainObject tmp(cols(),rhsCols);
347
+ for(Index k=0; k<rhsCols; ++k)
348
+ {
349
+ tb = b.col(k);
350
+ tx = derived().solve(tb);
351
+ tmp.col(k) = tx.sparseView(0);
352
+ }
353
+ dest.swap(tmp);
354
+ }
355
+
356
+ protected:
357
+ void init()
358
+ {
359
+ m_isInitialized = false;
360
+ m_analysisIsOk = false;
361
+ m_factorizationIsOk = false;
362
+ m_maxIterations = -1;
363
+ m_tolerance = NumTraits<Scalar>::epsilon();
364
+ }
365
+
366
+ typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
367
+ typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
368
+
369
+ const ActualMatrixType& matrix() const
370
+ {
371
+ return m_matrixWrapper.matrix();
372
+ }
373
+
374
+ template<typename InputType>
375
+ void grab(const InputType &A)
376
+ {
377
+ m_matrixWrapper.grab(A);
378
+ }
379
+
380
+ MatrixWrapper m_matrixWrapper;
381
+ Preconditioner m_preconditioner;
382
+
383
+ Index m_maxIterations;
384
+ RealScalar m_tolerance;
385
+
386
+ mutable RealScalar m_error;
387
+ mutable Index m_iterations;
388
+ mutable ComputationInfo m_info;
389
+ mutable bool m_analysisIsOk, m_factorizationIsOk;
390
+ };
391
+
392
+ } // end namespace Eigen
393
+
394
+ #endif // EIGEN_ITERATIVE_SOLVER_BASE_H
@@ -0,0 +1,216 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
11
+ #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+ /** \internal Low-level conjugate gradient algorithm for least-square problems
18
+ * \param mat The matrix A
19
+ * \param rhs The right hand side vector b
20
+ * \param x On input and initial solution, on output the computed solution.
21
+ * \param precond A preconditioner being able to efficiently solve for an
22
+ * approximation of A'Ax=b (regardless of b)
23
+ * \param iters On input the max number of iteration, on output the number of performed iterations.
24
+ * \param tol_error On input the tolerance error, on output an estimation of the relative error.
25
+ */
26
+ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
27
+ EIGEN_DONT_INLINE
28
+ void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
29
+ const Preconditioner& precond, Index& iters,
30
+ typename Dest::RealScalar& tol_error)
31
+ {
32
+ using std::sqrt;
33
+ using std::abs;
34
+ typedef typename Dest::RealScalar RealScalar;
35
+ typedef typename Dest::Scalar Scalar;
36
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
37
+
38
+ RealScalar tol = tol_error;
39
+ Index maxIters = iters;
40
+
41
+ Index m = mat.rows(), n = mat.cols();
42
+
43
+ VectorType residual = rhs - mat * x;
44
+ VectorType normal_residual = mat.adjoint() * residual;
45
+
46
+ RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
47
+ if(rhsNorm2 == 0)
48
+ {
49
+ x.setZero();
50
+ iters = 0;
51
+ tol_error = 0;
52
+ return;
53
+ }
54
+ RealScalar threshold = tol*tol*rhsNorm2;
55
+ RealScalar residualNorm2 = normal_residual.squaredNorm();
56
+ if (residualNorm2 < threshold)
57
+ {
58
+ iters = 0;
59
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
60
+ return;
61
+ }
62
+
63
+ VectorType p(n);
64
+ p = precond.solve(normal_residual); // initial search direction
65
+
66
+ VectorType z(n), tmp(m);
67
+ RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
68
+ Index i = 0;
69
+ while(i < maxIters)
70
+ {
71
+ tmp.noalias() = mat * p;
72
+
73
+ Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
74
+ x += alpha * p; // update solution
75
+ residual -= alpha * tmp; // update residual
76
+ normal_residual = mat.adjoint() * residual; // update residual of the normal equation
77
+
78
+ residualNorm2 = normal_residual.squaredNorm();
79
+ if(residualNorm2 < threshold)
80
+ break;
81
+
82
+ z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
83
+
84
+ RealScalar absOld = absNew;
85
+ absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
86
+ RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
87
+ p = z + beta * p; // update search direction
88
+ i++;
89
+ }
90
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
91
+ iters = i;
92
+ }
93
+
94
+ }
95
+
96
+ template< typename _MatrixType,
97
+ typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
98
+ class LeastSquaresConjugateGradient;
99
+
100
+ namespace internal {
101
+
102
+ template< typename _MatrixType, typename _Preconditioner>
103
+ struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
104
+ {
105
+ typedef _MatrixType MatrixType;
106
+ typedef _Preconditioner Preconditioner;
107
+ };
108
+
109
+ }
110
+
111
+ /** \ingroup IterativeLinearSolvers_Module
112
+ * \brief A conjugate gradient solver for sparse (or dense) least-square problems
113
+ *
114
+ * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
115
+ * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
116
+ * Otherwise, the SparseLU or SparseQR classes might be preferable.
117
+ * The matrix A and the vectors x and b can be either dense or sparse.
118
+ *
119
+ * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
120
+ * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
121
+ *
122
+ * \implsparsesolverconcept
123
+ *
124
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
125
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
126
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
127
+ *
128
+ * This class can be used as the direct solver classes. Here is a typical usage example:
129
+ \code
130
+ int m=1000000, n = 10000;
131
+ VectorXd x(n), b(m);
132
+ SparseMatrix<double> A(m,n);
133
+ // fill A and b
134
+ LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
135
+ lscg.compute(A);
136
+ x = lscg.solve(b);
137
+ std::cout << "#iterations: " << lscg.iterations() << std::endl;
138
+ std::cout << "estimated error: " << lscg.error() << std::endl;
139
+ // update b, and solve again
140
+ x = lscg.solve(b);
141
+ \endcode
142
+ *
143
+ * By default the iterations start with x=0 as an initial guess of the solution.
144
+ * One can control the start using the solveWithGuess() method.
145
+ *
146
+ * \sa class ConjugateGradient, SparseLU, SparseQR
147
+ */
148
+ template< typename _MatrixType, typename _Preconditioner>
149
+ class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
150
+ {
151
+ typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
152
+ using Base::matrix;
153
+ using Base::m_error;
154
+ using Base::m_iterations;
155
+ using Base::m_info;
156
+ using Base::m_isInitialized;
157
+ public:
158
+ typedef _MatrixType MatrixType;
159
+ typedef typename MatrixType::Scalar Scalar;
160
+ typedef typename MatrixType::RealScalar RealScalar;
161
+ typedef _Preconditioner Preconditioner;
162
+
163
+ public:
164
+
165
+ /** Default constructor. */
166
+ LeastSquaresConjugateGradient() : Base() {}
167
+
168
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
169
+ *
170
+ * This constructor is a shortcut for the default constructor followed
171
+ * by a call to compute().
172
+ *
173
+ * \warning this class stores a reference to the matrix A as well as some
174
+ * precomputed values that depend on it. Therefore, if \a A is changed
175
+ * this class becomes invalid. Call compute() to update it with the new
176
+ * matrix A, or modify a copy of A.
177
+ */
178
+ template<typename MatrixDerived>
179
+ explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
180
+
181
+ ~LeastSquaresConjugateGradient() {}
182
+
183
+ /** \internal */
184
+ template<typename Rhs,typename Dest>
185
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
186
+ {
187
+ m_iterations = Base::maxIterations();
188
+ m_error = Base::m_tolerance;
189
+
190
+ for(Index j=0; j<b.cols(); ++j)
191
+ {
192
+ m_iterations = Base::maxIterations();
193
+ m_error = Base::m_tolerance;
194
+
195
+ typename Dest::ColXpr xj(x,j);
196
+ internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
197
+ }
198
+
199
+ m_isInitialized = true;
200
+ m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
201
+ }
202
+
203
+ /** \internal */
204
+ using Base::_solve_impl;
205
+ template<typename Rhs,typename Dest>
206
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
207
+ {
208
+ x.setZero();
209
+ _solve_with_guess_impl(b.derived(),x);
210
+ }
211
+
212
+ };
213
+
214
+ } // end namespace Eigen
215
+
216
+ #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H