tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,394 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
|
11
|
+
#define EIGEN_ITERATIVE_SOLVER_BASE_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
|
17
|
+
template<typename MatrixType>
|
18
|
+
struct is_ref_compatible_impl
|
19
|
+
{
|
20
|
+
private:
|
21
|
+
template <typename T0>
|
22
|
+
struct any_conversion
|
23
|
+
{
|
24
|
+
template <typename T> any_conversion(const volatile T&);
|
25
|
+
template <typename T> any_conversion(T&);
|
26
|
+
};
|
27
|
+
struct yes {int a[1];};
|
28
|
+
struct no {int a[2];};
|
29
|
+
|
30
|
+
template<typename T>
|
31
|
+
static yes test(const Ref<const T>&, int);
|
32
|
+
template<typename T>
|
33
|
+
static no test(any_conversion<T>, ...);
|
34
|
+
|
35
|
+
public:
|
36
|
+
static MatrixType ms_from;
|
37
|
+
enum { value = sizeof(test<MatrixType>(ms_from, 0))==sizeof(yes) };
|
38
|
+
};
|
39
|
+
|
40
|
+
template<typename MatrixType>
|
41
|
+
struct is_ref_compatible
|
42
|
+
{
|
43
|
+
enum { value = is_ref_compatible_impl<typename remove_all<MatrixType>::type>::value };
|
44
|
+
};
|
45
|
+
|
46
|
+
template<typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
|
47
|
+
class generic_matrix_wrapper;
|
48
|
+
|
49
|
+
// We have an explicit matrix at hand, compatible with Ref<>
|
50
|
+
template<typename MatrixType>
|
51
|
+
class generic_matrix_wrapper<MatrixType,false>
|
52
|
+
{
|
53
|
+
public:
|
54
|
+
typedef Ref<const MatrixType> ActualMatrixType;
|
55
|
+
template<int UpLo> struct ConstSelfAdjointViewReturnType {
|
56
|
+
typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
|
57
|
+
};
|
58
|
+
|
59
|
+
enum {
|
60
|
+
MatrixFree = false
|
61
|
+
};
|
62
|
+
|
63
|
+
generic_matrix_wrapper()
|
64
|
+
: m_dummy(0,0), m_matrix(m_dummy)
|
65
|
+
{}
|
66
|
+
|
67
|
+
template<typename InputType>
|
68
|
+
generic_matrix_wrapper(const InputType &mat)
|
69
|
+
: m_matrix(mat)
|
70
|
+
{}
|
71
|
+
|
72
|
+
const ActualMatrixType& matrix() const
|
73
|
+
{
|
74
|
+
return m_matrix;
|
75
|
+
}
|
76
|
+
|
77
|
+
template<typename MatrixDerived>
|
78
|
+
void grab(const EigenBase<MatrixDerived> &mat)
|
79
|
+
{
|
80
|
+
m_matrix.~Ref<const MatrixType>();
|
81
|
+
::new (&m_matrix) Ref<const MatrixType>(mat.derived());
|
82
|
+
}
|
83
|
+
|
84
|
+
void grab(const Ref<const MatrixType> &mat)
|
85
|
+
{
|
86
|
+
if(&(mat.derived()) != &m_matrix)
|
87
|
+
{
|
88
|
+
m_matrix.~Ref<const MatrixType>();
|
89
|
+
::new (&m_matrix) Ref<const MatrixType>(mat);
|
90
|
+
}
|
91
|
+
}
|
92
|
+
|
93
|
+
protected:
|
94
|
+
MatrixType m_dummy; // used to default initialize the Ref<> object
|
95
|
+
ActualMatrixType m_matrix;
|
96
|
+
};
|
97
|
+
|
98
|
+
// MatrixType is not compatible with Ref<> -> matrix-free wrapper
|
99
|
+
template<typename MatrixType>
|
100
|
+
class generic_matrix_wrapper<MatrixType,true>
|
101
|
+
{
|
102
|
+
public:
|
103
|
+
typedef MatrixType ActualMatrixType;
|
104
|
+
template<int UpLo> struct ConstSelfAdjointViewReturnType
|
105
|
+
{
|
106
|
+
typedef ActualMatrixType Type;
|
107
|
+
};
|
108
|
+
|
109
|
+
enum {
|
110
|
+
MatrixFree = true
|
111
|
+
};
|
112
|
+
|
113
|
+
generic_matrix_wrapper()
|
114
|
+
: mp_matrix(0)
|
115
|
+
{}
|
116
|
+
|
117
|
+
generic_matrix_wrapper(const MatrixType &mat)
|
118
|
+
: mp_matrix(&mat)
|
119
|
+
{}
|
120
|
+
|
121
|
+
const ActualMatrixType& matrix() const
|
122
|
+
{
|
123
|
+
return *mp_matrix;
|
124
|
+
}
|
125
|
+
|
126
|
+
void grab(const MatrixType &mat)
|
127
|
+
{
|
128
|
+
mp_matrix = &mat;
|
129
|
+
}
|
130
|
+
|
131
|
+
protected:
|
132
|
+
const ActualMatrixType *mp_matrix;
|
133
|
+
};
|
134
|
+
|
135
|
+
}
|
136
|
+
|
137
|
+
/** \ingroup IterativeLinearSolvers_Module
|
138
|
+
* \brief Base class for linear iterative solvers
|
139
|
+
*
|
140
|
+
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
141
|
+
*/
|
142
|
+
template< typename Derived>
|
143
|
+
class IterativeSolverBase : public SparseSolverBase<Derived>
|
144
|
+
{
|
145
|
+
protected:
|
146
|
+
typedef SparseSolverBase<Derived> Base;
|
147
|
+
using Base::m_isInitialized;
|
148
|
+
|
149
|
+
public:
|
150
|
+
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
151
|
+
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
|
152
|
+
typedef typename MatrixType::Scalar Scalar;
|
153
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
154
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
155
|
+
|
156
|
+
enum {
|
157
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
158
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
159
|
+
};
|
160
|
+
|
161
|
+
public:
|
162
|
+
|
163
|
+
using Base::derived;
|
164
|
+
|
165
|
+
/** Default constructor. */
|
166
|
+
IterativeSolverBase()
|
167
|
+
{
|
168
|
+
init();
|
169
|
+
}
|
170
|
+
|
171
|
+
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
172
|
+
*
|
173
|
+
* This constructor is a shortcut for the default constructor followed
|
174
|
+
* by a call to compute().
|
175
|
+
*
|
176
|
+
* \warning this class stores a reference to the matrix A as well as some
|
177
|
+
* precomputed values that depend on it. Therefore, if \a A is changed
|
178
|
+
* this class becomes invalid. Call compute() to update it with the new
|
179
|
+
* matrix A, or modify a copy of A.
|
180
|
+
*/
|
181
|
+
template<typename MatrixDerived>
|
182
|
+
explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
|
183
|
+
: m_matrixWrapper(A.derived())
|
184
|
+
{
|
185
|
+
init();
|
186
|
+
compute(matrix());
|
187
|
+
}
|
188
|
+
|
189
|
+
~IterativeSolverBase() {}
|
190
|
+
|
191
|
+
/** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
|
192
|
+
*
|
193
|
+
* Currently, this function mostly calls analyzePattern on the preconditioner. In the future
|
194
|
+
* we might, for instance, implement column reordering for faster matrix vector products.
|
195
|
+
*/
|
196
|
+
template<typename MatrixDerived>
|
197
|
+
Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
|
198
|
+
{
|
199
|
+
grab(A.derived());
|
200
|
+
m_preconditioner.analyzePattern(matrix());
|
201
|
+
m_isInitialized = true;
|
202
|
+
m_analysisIsOk = true;
|
203
|
+
m_info = m_preconditioner.info();
|
204
|
+
return derived();
|
205
|
+
}
|
206
|
+
|
207
|
+
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
|
208
|
+
*
|
209
|
+
* Currently, this function mostly calls factorize on the preconditioner.
|
210
|
+
*
|
211
|
+
* \warning this class stores a reference to the matrix A as well as some
|
212
|
+
* precomputed values that depend on it. Therefore, if \a A is changed
|
213
|
+
* this class becomes invalid. Call compute() to update it with the new
|
214
|
+
* matrix A, or modify a copy of A.
|
215
|
+
*/
|
216
|
+
template<typename MatrixDerived>
|
217
|
+
Derived& factorize(const EigenBase<MatrixDerived>& A)
|
218
|
+
{
|
219
|
+
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
220
|
+
grab(A.derived());
|
221
|
+
m_preconditioner.factorize(matrix());
|
222
|
+
m_factorizationIsOk = true;
|
223
|
+
m_info = m_preconditioner.info();
|
224
|
+
return derived();
|
225
|
+
}
|
226
|
+
|
227
|
+
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
228
|
+
*
|
229
|
+
* Currently, this function mostly initializes/computes the preconditioner. In the future
|
230
|
+
* we might, for instance, implement column reordering for faster matrix vector products.
|
231
|
+
*
|
232
|
+
* \warning this class stores a reference to the matrix A as well as some
|
233
|
+
* precomputed values that depend on it. Therefore, if \a A is changed
|
234
|
+
* this class becomes invalid. Call compute() to update it with the new
|
235
|
+
* matrix A, or modify a copy of A.
|
236
|
+
*/
|
237
|
+
template<typename MatrixDerived>
|
238
|
+
Derived& compute(const EigenBase<MatrixDerived>& A)
|
239
|
+
{
|
240
|
+
grab(A.derived());
|
241
|
+
m_preconditioner.compute(matrix());
|
242
|
+
m_isInitialized = true;
|
243
|
+
m_analysisIsOk = true;
|
244
|
+
m_factorizationIsOk = true;
|
245
|
+
m_info = m_preconditioner.info();
|
246
|
+
return derived();
|
247
|
+
}
|
248
|
+
|
249
|
+
/** \internal */
|
250
|
+
Index rows() const { return matrix().rows(); }
|
251
|
+
|
252
|
+
/** \internal */
|
253
|
+
Index cols() const { return matrix().cols(); }
|
254
|
+
|
255
|
+
/** \returns the tolerance threshold used by the stopping criteria.
|
256
|
+
* \sa setTolerance()
|
257
|
+
*/
|
258
|
+
RealScalar tolerance() const { return m_tolerance; }
|
259
|
+
|
260
|
+
/** Sets the tolerance threshold used by the stopping criteria.
|
261
|
+
*
|
262
|
+
* This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
|
263
|
+
* The default value is the machine precision given by NumTraits<Scalar>::epsilon()
|
264
|
+
*/
|
265
|
+
Derived& setTolerance(const RealScalar& tolerance)
|
266
|
+
{
|
267
|
+
m_tolerance = tolerance;
|
268
|
+
return derived();
|
269
|
+
}
|
270
|
+
|
271
|
+
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
272
|
+
Preconditioner& preconditioner() { return m_preconditioner; }
|
273
|
+
|
274
|
+
/** \returns a read-only reference to the preconditioner. */
|
275
|
+
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
276
|
+
|
277
|
+
/** \returns the max number of iterations.
|
278
|
+
* It is either the value setted by setMaxIterations or, by default,
|
279
|
+
* twice the number of columns of the matrix.
|
280
|
+
*/
|
281
|
+
Index maxIterations() const
|
282
|
+
{
|
283
|
+
return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
|
284
|
+
}
|
285
|
+
|
286
|
+
/** Sets the max number of iterations.
|
287
|
+
* Default is twice the number of columns of the matrix.
|
288
|
+
*/
|
289
|
+
Derived& setMaxIterations(Index maxIters)
|
290
|
+
{
|
291
|
+
m_maxIterations = maxIters;
|
292
|
+
return derived();
|
293
|
+
}
|
294
|
+
|
295
|
+
/** \returns the number of iterations performed during the last solve */
|
296
|
+
Index iterations() const
|
297
|
+
{
|
298
|
+
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
299
|
+
return m_iterations;
|
300
|
+
}
|
301
|
+
|
302
|
+
/** \returns the tolerance error reached during the last solve.
|
303
|
+
* It is a close approximation of the true relative residual error |Ax-b|/|b|.
|
304
|
+
*/
|
305
|
+
RealScalar error() const
|
306
|
+
{
|
307
|
+
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
308
|
+
return m_error;
|
309
|
+
}
|
310
|
+
|
311
|
+
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
312
|
+
* and \a x0 as an initial solution.
|
313
|
+
*
|
314
|
+
* \sa solve(), compute()
|
315
|
+
*/
|
316
|
+
template<typename Rhs,typename Guess>
|
317
|
+
inline const SolveWithGuess<Derived, Rhs, Guess>
|
318
|
+
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
319
|
+
{
|
320
|
+
eigen_assert(m_isInitialized && "Solver is not initialized.");
|
321
|
+
eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
|
322
|
+
return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
|
323
|
+
}
|
324
|
+
|
325
|
+
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
326
|
+
ComputationInfo info() const
|
327
|
+
{
|
328
|
+
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
329
|
+
return m_info;
|
330
|
+
}
|
331
|
+
|
332
|
+
/** \internal */
|
333
|
+
template<typename Rhs, typename DestDerived>
|
334
|
+
void _solve_impl(const Rhs& b, SparseMatrixBase<DestDerived> &aDest) const
|
335
|
+
{
|
336
|
+
eigen_assert(rows()==b.rows());
|
337
|
+
|
338
|
+
Index rhsCols = b.cols();
|
339
|
+
Index size = b.rows();
|
340
|
+
DestDerived& dest(aDest.derived());
|
341
|
+
typedef typename DestDerived::Scalar DestScalar;
|
342
|
+
Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
|
343
|
+
Eigen::Matrix<DestScalar,Dynamic,1> tx(cols());
|
344
|
+
// We do not directly fill dest because sparse expressions have to be free of aliasing issue.
|
345
|
+
// For non square least-square problems, b and dest might not have the same size whereas they might alias each-other.
|
346
|
+
typename DestDerived::PlainObject tmp(cols(),rhsCols);
|
347
|
+
for(Index k=0; k<rhsCols; ++k)
|
348
|
+
{
|
349
|
+
tb = b.col(k);
|
350
|
+
tx = derived().solve(tb);
|
351
|
+
tmp.col(k) = tx.sparseView(0);
|
352
|
+
}
|
353
|
+
dest.swap(tmp);
|
354
|
+
}
|
355
|
+
|
356
|
+
protected:
|
357
|
+
void init()
|
358
|
+
{
|
359
|
+
m_isInitialized = false;
|
360
|
+
m_analysisIsOk = false;
|
361
|
+
m_factorizationIsOk = false;
|
362
|
+
m_maxIterations = -1;
|
363
|
+
m_tolerance = NumTraits<Scalar>::epsilon();
|
364
|
+
}
|
365
|
+
|
366
|
+
typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
|
367
|
+
typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
|
368
|
+
|
369
|
+
const ActualMatrixType& matrix() const
|
370
|
+
{
|
371
|
+
return m_matrixWrapper.matrix();
|
372
|
+
}
|
373
|
+
|
374
|
+
template<typename InputType>
|
375
|
+
void grab(const InputType &A)
|
376
|
+
{
|
377
|
+
m_matrixWrapper.grab(A);
|
378
|
+
}
|
379
|
+
|
380
|
+
MatrixWrapper m_matrixWrapper;
|
381
|
+
Preconditioner m_preconditioner;
|
382
|
+
|
383
|
+
Index m_maxIterations;
|
384
|
+
RealScalar m_tolerance;
|
385
|
+
|
386
|
+
mutable RealScalar m_error;
|
387
|
+
mutable Index m_iterations;
|
388
|
+
mutable ComputationInfo m_info;
|
389
|
+
mutable bool m_analysisIsOk, m_factorizationIsOk;
|
390
|
+
};
|
391
|
+
|
392
|
+
} // end namespace Eigen
|
393
|
+
|
394
|
+
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
|
@@ -0,0 +1,216 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
11
|
+
#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
|
17
|
+
/** \internal Low-level conjugate gradient algorithm for least-square problems
|
18
|
+
* \param mat The matrix A
|
19
|
+
* \param rhs The right hand side vector b
|
20
|
+
* \param x On input and initial solution, on output the computed solution.
|
21
|
+
* \param precond A preconditioner being able to efficiently solve for an
|
22
|
+
* approximation of A'Ax=b (regardless of b)
|
23
|
+
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
24
|
+
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
25
|
+
*/
|
26
|
+
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
27
|
+
EIGEN_DONT_INLINE
|
28
|
+
void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
29
|
+
const Preconditioner& precond, Index& iters,
|
30
|
+
typename Dest::RealScalar& tol_error)
|
31
|
+
{
|
32
|
+
using std::sqrt;
|
33
|
+
using std::abs;
|
34
|
+
typedef typename Dest::RealScalar RealScalar;
|
35
|
+
typedef typename Dest::Scalar Scalar;
|
36
|
+
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
37
|
+
|
38
|
+
RealScalar tol = tol_error;
|
39
|
+
Index maxIters = iters;
|
40
|
+
|
41
|
+
Index m = mat.rows(), n = mat.cols();
|
42
|
+
|
43
|
+
VectorType residual = rhs - mat * x;
|
44
|
+
VectorType normal_residual = mat.adjoint() * residual;
|
45
|
+
|
46
|
+
RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
|
47
|
+
if(rhsNorm2 == 0)
|
48
|
+
{
|
49
|
+
x.setZero();
|
50
|
+
iters = 0;
|
51
|
+
tol_error = 0;
|
52
|
+
return;
|
53
|
+
}
|
54
|
+
RealScalar threshold = tol*tol*rhsNorm2;
|
55
|
+
RealScalar residualNorm2 = normal_residual.squaredNorm();
|
56
|
+
if (residualNorm2 < threshold)
|
57
|
+
{
|
58
|
+
iters = 0;
|
59
|
+
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
60
|
+
return;
|
61
|
+
}
|
62
|
+
|
63
|
+
VectorType p(n);
|
64
|
+
p = precond.solve(normal_residual); // initial search direction
|
65
|
+
|
66
|
+
VectorType z(n), tmp(m);
|
67
|
+
RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
|
68
|
+
Index i = 0;
|
69
|
+
while(i < maxIters)
|
70
|
+
{
|
71
|
+
tmp.noalias() = mat * p;
|
72
|
+
|
73
|
+
Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
|
74
|
+
x += alpha * p; // update solution
|
75
|
+
residual -= alpha * tmp; // update residual
|
76
|
+
normal_residual = mat.adjoint() * residual; // update residual of the normal equation
|
77
|
+
|
78
|
+
residualNorm2 = normal_residual.squaredNorm();
|
79
|
+
if(residualNorm2 < threshold)
|
80
|
+
break;
|
81
|
+
|
82
|
+
z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
|
83
|
+
|
84
|
+
RealScalar absOld = absNew;
|
85
|
+
absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
|
86
|
+
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
87
|
+
p = z + beta * p; // update search direction
|
88
|
+
i++;
|
89
|
+
}
|
90
|
+
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
91
|
+
iters = i;
|
92
|
+
}
|
93
|
+
|
94
|
+
}
|
95
|
+
|
96
|
+
template< typename _MatrixType,
|
97
|
+
typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
|
98
|
+
class LeastSquaresConjugateGradient;
|
99
|
+
|
100
|
+
namespace internal {
|
101
|
+
|
102
|
+
template< typename _MatrixType, typename _Preconditioner>
|
103
|
+
struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
|
104
|
+
{
|
105
|
+
typedef _MatrixType MatrixType;
|
106
|
+
typedef _Preconditioner Preconditioner;
|
107
|
+
};
|
108
|
+
|
109
|
+
}
|
110
|
+
|
111
|
+
/** \ingroup IterativeLinearSolvers_Module
|
112
|
+
* \brief A conjugate gradient solver for sparse (or dense) least-square problems
|
113
|
+
*
|
114
|
+
* This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
|
115
|
+
* The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
|
116
|
+
* Otherwise, the SparseLU or SparseQR classes might be preferable.
|
117
|
+
* The matrix A and the vectors x and b can be either dense or sparse.
|
118
|
+
*
|
119
|
+
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
120
|
+
* \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
|
121
|
+
*
|
122
|
+
* \implsparsesolverconcept
|
123
|
+
*
|
124
|
+
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
125
|
+
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
126
|
+
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
127
|
+
*
|
128
|
+
* This class can be used as the direct solver classes. Here is a typical usage example:
|
129
|
+
\code
|
130
|
+
int m=1000000, n = 10000;
|
131
|
+
VectorXd x(n), b(m);
|
132
|
+
SparseMatrix<double> A(m,n);
|
133
|
+
// fill A and b
|
134
|
+
LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
|
135
|
+
lscg.compute(A);
|
136
|
+
x = lscg.solve(b);
|
137
|
+
std::cout << "#iterations: " << lscg.iterations() << std::endl;
|
138
|
+
std::cout << "estimated error: " << lscg.error() << std::endl;
|
139
|
+
// update b, and solve again
|
140
|
+
x = lscg.solve(b);
|
141
|
+
\endcode
|
142
|
+
*
|
143
|
+
* By default the iterations start with x=0 as an initial guess of the solution.
|
144
|
+
* One can control the start using the solveWithGuess() method.
|
145
|
+
*
|
146
|
+
* \sa class ConjugateGradient, SparseLU, SparseQR
|
147
|
+
*/
|
148
|
+
template< typename _MatrixType, typename _Preconditioner>
|
149
|
+
class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
|
150
|
+
{
|
151
|
+
typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
|
152
|
+
using Base::matrix;
|
153
|
+
using Base::m_error;
|
154
|
+
using Base::m_iterations;
|
155
|
+
using Base::m_info;
|
156
|
+
using Base::m_isInitialized;
|
157
|
+
public:
|
158
|
+
typedef _MatrixType MatrixType;
|
159
|
+
typedef typename MatrixType::Scalar Scalar;
|
160
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
161
|
+
typedef _Preconditioner Preconditioner;
|
162
|
+
|
163
|
+
public:
|
164
|
+
|
165
|
+
/** Default constructor. */
|
166
|
+
LeastSquaresConjugateGradient() : Base() {}
|
167
|
+
|
168
|
+
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
169
|
+
*
|
170
|
+
* This constructor is a shortcut for the default constructor followed
|
171
|
+
* by a call to compute().
|
172
|
+
*
|
173
|
+
* \warning this class stores a reference to the matrix A as well as some
|
174
|
+
* precomputed values that depend on it. Therefore, if \a A is changed
|
175
|
+
* this class becomes invalid. Call compute() to update it with the new
|
176
|
+
* matrix A, or modify a copy of A.
|
177
|
+
*/
|
178
|
+
template<typename MatrixDerived>
|
179
|
+
explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
180
|
+
|
181
|
+
~LeastSquaresConjugateGradient() {}
|
182
|
+
|
183
|
+
/** \internal */
|
184
|
+
template<typename Rhs,typename Dest>
|
185
|
+
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
186
|
+
{
|
187
|
+
m_iterations = Base::maxIterations();
|
188
|
+
m_error = Base::m_tolerance;
|
189
|
+
|
190
|
+
for(Index j=0; j<b.cols(); ++j)
|
191
|
+
{
|
192
|
+
m_iterations = Base::maxIterations();
|
193
|
+
m_error = Base::m_tolerance;
|
194
|
+
|
195
|
+
typename Dest::ColXpr xj(x,j);
|
196
|
+
internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
197
|
+
}
|
198
|
+
|
199
|
+
m_isInitialized = true;
|
200
|
+
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
201
|
+
}
|
202
|
+
|
203
|
+
/** \internal */
|
204
|
+
using Base::_solve_impl;
|
205
|
+
template<typename Rhs,typename Dest>
|
206
|
+
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
207
|
+
{
|
208
|
+
x.setZero();
|
209
|
+
_solve_with_guess_impl(b.derived(),x);
|
210
|
+
}
|
211
|
+
|
212
|
+
};
|
213
|
+
|
214
|
+
} // end namespace Eigen
|
215
|
+
|
216
|
+
#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|