tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,186 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_PRODUCT_H
|
11
|
+
#define EIGEN_PRODUCT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
|
16
|
+
|
17
|
+
namespace internal {
|
18
|
+
|
19
|
+
template<typename Lhs, typename Rhs, int Option>
|
20
|
+
struct traits<Product<Lhs, Rhs, Option> >
|
21
|
+
{
|
22
|
+
typedef typename remove_all<Lhs>::type LhsCleaned;
|
23
|
+
typedef typename remove_all<Rhs>::type RhsCleaned;
|
24
|
+
typedef traits<LhsCleaned> LhsTraits;
|
25
|
+
typedef traits<RhsCleaned> RhsTraits;
|
26
|
+
|
27
|
+
typedef MatrixXpr XprKind;
|
28
|
+
|
29
|
+
typedef typename ScalarBinaryOpTraits<typename traits<LhsCleaned>::Scalar, typename traits<RhsCleaned>::Scalar>::ReturnType Scalar;
|
30
|
+
typedef typename product_promote_storage_type<typename LhsTraits::StorageKind,
|
31
|
+
typename RhsTraits::StorageKind,
|
32
|
+
internal::product_type<Lhs,Rhs>::ret>::ret StorageKind;
|
33
|
+
typedef typename promote_index_type<typename LhsTraits::StorageIndex,
|
34
|
+
typename RhsTraits::StorageIndex>::type StorageIndex;
|
35
|
+
|
36
|
+
enum {
|
37
|
+
RowsAtCompileTime = LhsTraits::RowsAtCompileTime,
|
38
|
+
ColsAtCompileTime = RhsTraits::ColsAtCompileTime,
|
39
|
+
MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime,
|
40
|
+
MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
|
41
|
+
|
42
|
+
// FIXME: only needed by GeneralMatrixMatrixTriangular
|
43
|
+
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
|
44
|
+
|
45
|
+
// The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
|
46
|
+
Flags = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? RowMajorBit
|
47
|
+
: (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
|
48
|
+
: ( ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit))
|
49
|
+
|| ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) ) ? RowMajorBit
|
50
|
+
: NoPreferredStorageOrderBit
|
51
|
+
};
|
52
|
+
};
|
53
|
+
|
54
|
+
} // end namespace internal
|
55
|
+
|
56
|
+
/** \class Product
|
57
|
+
* \ingroup Core_Module
|
58
|
+
*
|
59
|
+
* \brief Expression of the product of two arbitrary matrices or vectors
|
60
|
+
*
|
61
|
+
* \tparam _Lhs the type of the left-hand side expression
|
62
|
+
* \tparam _Rhs the type of the right-hand side expression
|
63
|
+
*
|
64
|
+
* This class represents an expression of the product of two arbitrary matrices.
|
65
|
+
*
|
66
|
+
* The other template parameters are:
|
67
|
+
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
|
68
|
+
*
|
69
|
+
*/
|
70
|
+
template<typename _Lhs, typename _Rhs, int Option>
|
71
|
+
class Product : public ProductImpl<_Lhs,_Rhs,Option,
|
72
|
+
typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
|
73
|
+
typename internal::traits<_Rhs>::StorageKind,
|
74
|
+
internal::product_type<_Lhs,_Rhs>::ret>::ret>
|
75
|
+
{
|
76
|
+
public:
|
77
|
+
|
78
|
+
typedef _Lhs Lhs;
|
79
|
+
typedef _Rhs Rhs;
|
80
|
+
|
81
|
+
typedef typename ProductImpl<
|
82
|
+
Lhs, Rhs, Option,
|
83
|
+
typename internal::product_promote_storage_type<typename internal::traits<Lhs>::StorageKind,
|
84
|
+
typename internal::traits<Rhs>::StorageKind,
|
85
|
+
internal::product_type<Lhs,Rhs>::ret>::ret>::Base Base;
|
86
|
+
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
|
87
|
+
|
88
|
+
typedef typename internal::ref_selector<Lhs>::type LhsNested;
|
89
|
+
typedef typename internal::ref_selector<Rhs>::type RhsNested;
|
90
|
+
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
91
|
+
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
92
|
+
|
93
|
+
EIGEN_DEVICE_FUNC Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
|
94
|
+
{
|
95
|
+
eigen_assert(lhs.cols() == rhs.rows()
|
96
|
+
&& "invalid matrix product"
|
97
|
+
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
98
|
+
}
|
99
|
+
|
100
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
|
101
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
|
102
|
+
|
103
|
+
EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; }
|
104
|
+
EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; }
|
105
|
+
|
106
|
+
protected:
|
107
|
+
|
108
|
+
LhsNested m_lhs;
|
109
|
+
RhsNested m_rhs;
|
110
|
+
};
|
111
|
+
|
112
|
+
namespace internal {
|
113
|
+
|
114
|
+
template<typename Lhs, typename Rhs, int Option, int ProductTag = internal::product_type<Lhs,Rhs>::ret>
|
115
|
+
class dense_product_base
|
116
|
+
: public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
|
117
|
+
{};
|
118
|
+
|
119
|
+
/** Convertion to scalar for inner-products */
|
120
|
+
template<typename Lhs, typename Rhs, int Option>
|
121
|
+
class dense_product_base<Lhs, Rhs, Option, InnerProduct>
|
122
|
+
: public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
|
123
|
+
{
|
124
|
+
typedef Product<Lhs,Rhs,Option> ProductXpr;
|
125
|
+
typedef typename internal::dense_xpr_base<ProductXpr>::type Base;
|
126
|
+
public:
|
127
|
+
using Base::derived;
|
128
|
+
typedef typename Base::Scalar Scalar;
|
129
|
+
|
130
|
+
EIGEN_STRONG_INLINE operator const Scalar() const
|
131
|
+
{
|
132
|
+
return internal::evaluator<ProductXpr>(derived()).coeff(0,0);
|
133
|
+
}
|
134
|
+
};
|
135
|
+
|
136
|
+
} // namespace internal
|
137
|
+
|
138
|
+
// Generic API dispatcher
|
139
|
+
template<typename Lhs, typename Rhs, int Option, typename StorageKind>
|
140
|
+
class ProductImpl : public internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type
|
141
|
+
{
|
142
|
+
public:
|
143
|
+
typedef typename internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type Base;
|
144
|
+
};
|
145
|
+
|
146
|
+
template<typename Lhs, typename Rhs, int Option>
|
147
|
+
class ProductImpl<Lhs,Rhs,Option,Dense>
|
148
|
+
: public internal::dense_product_base<Lhs,Rhs,Option>
|
149
|
+
{
|
150
|
+
typedef Product<Lhs, Rhs, Option> Derived;
|
151
|
+
|
152
|
+
public:
|
153
|
+
|
154
|
+
typedef typename internal::dense_product_base<Lhs, Rhs, Option> Base;
|
155
|
+
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
156
|
+
protected:
|
157
|
+
enum {
|
158
|
+
IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) &&
|
159
|
+
(ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic),
|
160
|
+
EnableCoeff = IsOneByOne || Option==LazyProduct
|
161
|
+
};
|
162
|
+
|
163
|
+
public:
|
164
|
+
|
165
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index row, Index col) const
|
166
|
+
{
|
167
|
+
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
|
168
|
+
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
|
169
|
+
|
170
|
+
return internal::evaluator<Derived>(derived()).coeff(row,col);
|
171
|
+
}
|
172
|
+
|
173
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index i) const
|
174
|
+
{
|
175
|
+
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
|
176
|
+
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
|
177
|
+
|
178
|
+
return internal::evaluator<Derived>(derived()).coeff(i);
|
179
|
+
}
|
180
|
+
|
181
|
+
|
182
|
+
};
|
183
|
+
|
184
|
+
} // end namespace Eigen
|
185
|
+
|
186
|
+
#endif // EIGEN_PRODUCT_H
|
@@ -0,0 +1,1112 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
5
|
+
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
6
|
+
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
7
|
+
//
|
8
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
9
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
10
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
11
|
+
|
12
|
+
|
13
|
+
#ifndef EIGEN_PRODUCTEVALUATORS_H
|
14
|
+
#define EIGEN_PRODUCTEVALUATORS_H
|
15
|
+
|
16
|
+
namespace Eigen {
|
17
|
+
|
18
|
+
namespace internal {
|
19
|
+
|
20
|
+
/** \internal
|
21
|
+
* Evaluator of a product expression.
|
22
|
+
* Since products require special treatments to handle all possible cases,
|
23
|
+
* we simply deffer the evaluation logic to a product_evaluator class
|
24
|
+
* which offers more partial specialization possibilities.
|
25
|
+
*
|
26
|
+
* \sa class product_evaluator
|
27
|
+
*/
|
28
|
+
template<typename Lhs, typename Rhs, int Options>
|
29
|
+
struct evaluator<Product<Lhs, Rhs, Options> >
|
30
|
+
: public product_evaluator<Product<Lhs, Rhs, Options> >
|
31
|
+
{
|
32
|
+
typedef Product<Lhs, Rhs, Options> XprType;
|
33
|
+
typedef product_evaluator<XprType> Base;
|
34
|
+
|
35
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
|
36
|
+
};
|
37
|
+
|
38
|
+
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
|
39
|
+
// TODO we should apply that rule only if that's really helpful
|
40
|
+
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
|
41
|
+
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
|
42
|
+
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
|
43
|
+
const Product<Lhs, Rhs, DefaultProduct> > >
|
44
|
+
{
|
45
|
+
static const bool value = true;
|
46
|
+
};
|
47
|
+
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
|
48
|
+
struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
|
49
|
+
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
|
50
|
+
const Product<Lhs, Rhs, DefaultProduct> > >
|
51
|
+
: public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
|
52
|
+
{
|
53
|
+
typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
|
54
|
+
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
|
55
|
+
const Product<Lhs, Rhs, DefaultProduct> > XprType;
|
56
|
+
typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
|
57
|
+
|
58
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
|
59
|
+
: Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
|
60
|
+
{}
|
61
|
+
};
|
62
|
+
|
63
|
+
|
64
|
+
template<typename Lhs, typename Rhs, int DiagIndex>
|
65
|
+
struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
|
66
|
+
: public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
|
67
|
+
{
|
68
|
+
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
|
69
|
+
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
|
70
|
+
|
71
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
|
72
|
+
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
|
73
|
+
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
|
74
|
+
xpr.index() ))
|
75
|
+
{}
|
76
|
+
};
|
77
|
+
|
78
|
+
|
79
|
+
// Helper class to perform a matrix product with the destination at hand.
|
80
|
+
// Depending on the sizes of the factors, there are different evaluation strategies
|
81
|
+
// as controlled by internal::product_type.
|
82
|
+
template< typename Lhs, typename Rhs,
|
83
|
+
typename LhsShape = typename evaluator_traits<Lhs>::Shape,
|
84
|
+
typename RhsShape = typename evaluator_traits<Rhs>::Shape,
|
85
|
+
int ProductType = internal::product_type<Lhs,Rhs>::value>
|
86
|
+
struct generic_product_impl;
|
87
|
+
|
88
|
+
template<typename Lhs, typename Rhs>
|
89
|
+
struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
|
90
|
+
static const bool value = true;
|
91
|
+
};
|
92
|
+
|
93
|
+
// This is the default evaluator implementation for products:
|
94
|
+
// It creates a temporary and call generic_product_impl
|
95
|
+
template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
|
96
|
+
struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
|
97
|
+
: public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
|
98
|
+
{
|
99
|
+
typedef Product<Lhs, Rhs, Options> XprType;
|
100
|
+
typedef typename XprType::PlainObject PlainObject;
|
101
|
+
typedef evaluator<PlainObject> Base;
|
102
|
+
enum {
|
103
|
+
Flags = Base::Flags | EvalBeforeNestingBit
|
104
|
+
};
|
105
|
+
|
106
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
107
|
+
explicit product_evaluator(const XprType& xpr)
|
108
|
+
: m_result(xpr.rows(), xpr.cols())
|
109
|
+
{
|
110
|
+
::new (static_cast<Base*>(this)) Base(m_result);
|
111
|
+
|
112
|
+
// FIXME shall we handle nested_eval here?,
|
113
|
+
// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
|
114
|
+
// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
115
|
+
// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
116
|
+
// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
117
|
+
// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
118
|
+
//
|
119
|
+
// const LhsNested lhs(xpr.lhs());
|
120
|
+
// const RhsNested rhs(xpr.rhs());
|
121
|
+
//
|
122
|
+
// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
|
123
|
+
|
124
|
+
generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
|
125
|
+
}
|
126
|
+
|
127
|
+
protected:
|
128
|
+
PlainObject m_result;
|
129
|
+
};
|
130
|
+
|
131
|
+
// The following three shortcuts are enabled only if the scalar types match excatly.
|
132
|
+
// TODO: we could enable them for different scalar types when the product is not vectorized.
|
133
|
+
|
134
|
+
// Dense = Product
|
135
|
+
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
|
136
|
+
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
|
137
|
+
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
|
138
|
+
{
|
139
|
+
typedef Product<Lhs,Rhs,Options> SrcXprType;
|
140
|
+
static EIGEN_STRONG_INLINE
|
141
|
+
void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
|
142
|
+
{
|
143
|
+
Index dstRows = src.rows();
|
144
|
+
Index dstCols = src.cols();
|
145
|
+
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
146
|
+
dst.resize(dstRows, dstCols);
|
147
|
+
// FIXME shall we handle nested_eval here?
|
148
|
+
generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
|
149
|
+
}
|
150
|
+
};
|
151
|
+
|
152
|
+
// Dense += Product
|
153
|
+
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
|
154
|
+
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
|
155
|
+
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
|
156
|
+
{
|
157
|
+
typedef Product<Lhs,Rhs,Options> SrcXprType;
|
158
|
+
static EIGEN_STRONG_INLINE
|
159
|
+
void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
|
160
|
+
{
|
161
|
+
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
|
162
|
+
// FIXME shall we handle nested_eval here?
|
163
|
+
generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
|
164
|
+
}
|
165
|
+
};
|
166
|
+
|
167
|
+
// Dense -= Product
|
168
|
+
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
|
169
|
+
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
|
170
|
+
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
|
171
|
+
{
|
172
|
+
typedef Product<Lhs,Rhs,Options> SrcXprType;
|
173
|
+
static EIGEN_STRONG_INLINE
|
174
|
+
void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
|
175
|
+
{
|
176
|
+
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
|
177
|
+
// FIXME shall we handle nested_eval here?
|
178
|
+
generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
|
179
|
+
}
|
180
|
+
};
|
181
|
+
|
182
|
+
|
183
|
+
// Dense ?= scalar * Product
|
184
|
+
// TODO we should apply that rule if that's really helpful
|
185
|
+
// for instance, this is not good for inner products
|
186
|
+
template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
|
187
|
+
struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
|
188
|
+
const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
|
189
|
+
{
|
190
|
+
typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
|
191
|
+
const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
|
192
|
+
const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
|
193
|
+
static EIGEN_STRONG_INLINE
|
194
|
+
void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
|
195
|
+
{
|
196
|
+
call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
|
197
|
+
}
|
198
|
+
};
|
199
|
+
|
200
|
+
//----------------------------------------
|
201
|
+
// Catch "Dense ?= xpr + Product<>" expression to save one temporary
|
202
|
+
// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
|
203
|
+
|
204
|
+
template<typename OtherXpr, typename Lhs, typename Rhs>
|
205
|
+
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
|
206
|
+
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
|
207
|
+
static const bool value = true;
|
208
|
+
};
|
209
|
+
|
210
|
+
template<typename OtherXpr, typename Lhs, typename Rhs>
|
211
|
+
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
|
212
|
+
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
|
213
|
+
static const bool value = true;
|
214
|
+
};
|
215
|
+
|
216
|
+
template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
|
217
|
+
struct assignment_from_xpr_op_product
|
218
|
+
{
|
219
|
+
template<typename SrcXprType, typename InitialFunc>
|
220
|
+
static EIGEN_STRONG_INLINE
|
221
|
+
void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
|
222
|
+
{
|
223
|
+
call_assignment_no_alias(dst, src.lhs(), Func1());
|
224
|
+
call_assignment_no_alias(dst, src.rhs(), Func2());
|
225
|
+
}
|
226
|
+
};
|
227
|
+
|
228
|
+
#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
|
229
|
+
template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
|
230
|
+
struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
|
231
|
+
const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
|
232
|
+
: assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
|
233
|
+
{}
|
234
|
+
|
235
|
+
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op);
|
236
|
+
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
|
237
|
+
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);
|
238
|
+
|
239
|
+
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op);
|
240
|
+
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
|
241
|
+
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);
|
242
|
+
|
243
|
+
//----------------------------------------
|
244
|
+
|
245
|
+
template<typename Lhs, typename Rhs>
|
246
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
|
247
|
+
{
|
248
|
+
template<typename Dst>
|
249
|
+
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
250
|
+
{
|
251
|
+
dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
252
|
+
}
|
253
|
+
|
254
|
+
template<typename Dst>
|
255
|
+
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
256
|
+
{
|
257
|
+
dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
|
258
|
+
}
|
259
|
+
|
260
|
+
template<typename Dst>
|
261
|
+
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
262
|
+
{ dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
|
263
|
+
};
|
264
|
+
|
265
|
+
|
266
|
+
/***********************************************************************
|
267
|
+
* Implementation of outer dense * dense vector product
|
268
|
+
***********************************************************************/
|
269
|
+
|
270
|
+
// Column major result
|
271
|
+
template<typename Dst, typename Lhs, typename Rhs, typename Func>
|
272
|
+
void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
|
273
|
+
{
|
274
|
+
evaluator<Rhs> rhsEval(rhs);
|
275
|
+
typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs);
|
276
|
+
// FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
|
277
|
+
// FIXME not very good if rhs is real and lhs complex while alpha is real too
|
278
|
+
const Index cols = dst.cols();
|
279
|
+
for (Index j=0; j<cols; ++j)
|
280
|
+
func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
|
281
|
+
}
|
282
|
+
|
283
|
+
// Row major result
|
284
|
+
template<typename Dst, typename Lhs, typename Rhs, typename Func>
|
285
|
+
void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
|
286
|
+
{
|
287
|
+
evaluator<Lhs> lhsEval(lhs);
|
288
|
+
typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs);
|
289
|
+
// FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
|
290
|
+
// FIXME not very good if lhs is real and rhs complex while alpha is real too
|
291
|
+
const Index rows = dst.rows();
|
292
|
+
for (Index i=0; i<rows; ++i)
|
293
|
+
func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
|
294
|
+
}
|
295
|
+
|
296
|
+
template<typename Lhs, typename Rhs>
|
297
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
|
298
|
+
{
|
299
|
+
template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
|
300
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
301
|
+
|
302
|
+
// TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
|
303
|
+
struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
|
304
|
+
struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
|
305
|
+
struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
|
306
|
+
struct adds {
|
307
|
+
Scalar m_scale;
|
308
|
+
explicit adds(const Scalar& s) : m_scale(s) {}
|
309
|
+
template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
|
310
|
+
dst.const_cast_derived() += m_scale * src;
|
311
|
+
}
|
312
|
+
};
|
313
|
+
|
314
|
+
template<typename Dst>
|
315
|
+
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
316
|
+
{
|
317
|
+
internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
|
318
|
+
}
|
319
|
+
|
320
|
+
template<typename Dst>
|
321
|
+
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
322
|
+
{
|
323
|
+
internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
|
324
|
+
}
|
325
|
+
|
326
|
+
template<typename Dst>
|
327
|
+
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
328
|
+
{
|
329
|
+
internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
|
330
|
+
}
|
331
|
+
|
332
|
+
template<typename Dst>
|
333
|
+
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
334
|
+
{
|
335
|
+
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
|
336
|
+
}
|
337
|
+
|
338
|
+
};
|
339
|
+
|
340
|
+
|
341
|
+
// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
|
342
|
+
template<typename Lhs, typename Rhs, typename Derived>
|
343
|
+
struct generic_product_impl_base
|
344
|
+
{
|
345
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
346
|
+
|
347
|
+
template<typename Dst>
|
348
|
+
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
349
|
+
{ dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
|
350
|
+
|
351
|
+
template<typename Dst>
|
352
|
+
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
353
|
+
{ scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
|
354
|
+
|
355
|
+
template<typename Dst>
|
356
|
+
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
357
|
+
{ scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
|
358
|
+
|
359
|
+
template<typename Dst>
|
360
|
+
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
361
|
+
{ Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
|
362
|
+
|
363
|
+
};
|
364
|
+
|
365
|
+
template<typename Lhs, typename Rhs>
|
366
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
|
367
|
+
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
|
368
|
+
{
|
369
|
+
typedef typename nested_eval<Lhs,1>::type LhsNested;
|
370
|
+
typedef typename nested_eval<Rhs,1>::type RhsNested;
|
371
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
372
|
+
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
|
373
|
+
typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
|
374
|
+
|
375
|
+
template<typename Dest>
|
376
|
+
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
377
|
+
{
|
378
|
+
LhsNested actual_lhs(lhs);
|
379
|
+
RhsNested actual_rhs(rhs);
|
380
|
+
internal::gemv_dense_selector<Side,
|
381
|
+
(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
|
382
|
+
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
|
383
|
+
>::run(actual_lhs, actual_rhs, dst, alpha);
|
384
|
+
}
|
385
|
+
};
|
386
|
+
|
387
|
+
template<typename Lhs, typename Rhs>
|
388
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
|
389
|
+
{
|
390
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
391
|
+
|
392
|
+
template<typename Dst>
|
393
|
+
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
394
|
+
{
|
395
|
+
// Same as: dst.noalias() = lhs.lazyProduct(rhs);
|
396
|
+
// but easier on the compiler side
|
397
|
+
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
|
398
|
+
}
|
399
|
+
|
400
|
+
template<typename Dst>
|
401
|
+
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
402
|
+
{
|
403
|
+
// dst.noalias() += lhs.lazyProduct(rhs);
|
404
|
+
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
|
405
|
+
}
|
406
|
+
|
407
|
+
template<typename Dst>
|
408
|
+
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
409
|
+
{
|
410
|
+
// dst.noalias() -= lhs.lazyProduct(rhs);
|
411
|
+
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
|
412
|
+
}
|
413
|
+
|
414
|
+
// template<typename Dst>
|
415
|
+
// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
416
|
+
// { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
|
417
|
+
};
|
418
|
+
|
419
|
+
// This specialization enforces the use of a coefficient-based evaluation strategy
|
420
|
+
template<typename Lhs, typename Rhs>
|
421
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
|
422
|
+
: generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
|
423
|
+
|
424
|
+
// Case 2: Evaluate coeff by coeff
|
425
|
+
//
|
426
|
+
// This is mostly taken from CoeffBasedProduct.h
|
427
|
+
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
|
428
|
+
// for the inner dimension of the product, because evaluator object do not know their size.
|
429
|
+
|
430
|
+
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
|
431
|
+
struct etor_product_coeff_impl;
|
432
|
+
|
433
|
+
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
434
|
+
struct etor_product_packet_impl;
|
435
|
+
|
436
|
+
template<typename Lhs, typename Rhs, int ProductTag>
|
437
|
+
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
|
438
|
+
: evaluator_base<Product<Lhs, Rhs, LazyProduct> >
|
439
|
+
{
|
440
|
+
typedef Product<Lhs, Rhs, LazyProduct> XprType;
|
441
|
+
typedef typename XprType::Scalar Scalar;
|
442
|
+
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
443
|
+
|
444
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
445
|
+
explicit product_evaluator(const XprType& xpr)
|
446
|
+
: m_lhs(xpr.lhs()),
|
447
|
+
m_rhs(xpr.rhs()),
|
448
|
+
m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
|
449
|
+
m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
|
450
|
+
// or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
|
451
|
+
m_innerDim(xpr.lhs().cols())
|
452
|
+
{
|
453
|
+
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
|
454
|
+
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
|
455
|
+
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
456
|
+
#if 0
|
457
|
+
std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n";
|
458
|
+
std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n";
|
459
|
+
std::cerr << "LhsAlignment= " << LhsAlignment << "\n";
|
460
|
+
std::cerr << "RhsAlignment= " << RhsAlignment << "\n";
|
461
|
+
std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n";
|
462
|
+
std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n";
|
463
|
+
std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n";
|
464
|
+
std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n";
|
465
|
+
std::cerr << "Alignment= " << Alignment << "\n";
|
466
|
+
std::cerr << "Flags= " << Flags << "\n";
|
467
|
+
#endif
|
468
|
+
}
|
469
|
+
|
470
|
+
// Everything below here is taken from CoeffBasedProduct.h
|
471
|
+
|
472
|
+
typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
473
|
+
typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
474
|
+
|
475
|
+
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
476
|
+
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
477
|
+
|
478
|
+
typedef evaluator<LhsNestedCleaned> LhsEtorType;
|
479
|
+
typedef evaluator<RhsNestedCleaned> RhsEtorType;
|
480
|
+
|
481
|
+
enum {
|
482
|
+
RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
|
483
|
+
ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
|
484
|
+
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
|
485
|
+
MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
|
486
|
+
MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
|
487
|
+
};
|
488
|
+
|
489
|
+
typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
|
490
|
+
typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;
|
491
|
+
|
492
|
+
enum {
|
493
|
+
|
494
|
+
LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
|
495
|
+
RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
|
496
|
+
CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
|
497
|
+
: InnerSize == Dynamic ? HugeCost
|
498
|
+
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
|
499
|
+
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
|
500
|
+
|
501
|
+
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
|
502
|
+
|
503
|
+
LhsFlags = LhsEtorType::Flags,
|
504
|
+
RhsFlags = RhsEtorType::Flags,
|
505
|
+
|
506
|
+
LhsRowMajor = LhsFlags & RowMajorBit,
|
507
|
+
RhsRowMajor = RhsFlags & RowMajorBit,
|
508
|
+
|
509
|
+
LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
|
510
|
+
RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
|
511
|
+
|
512
|
+
// Here, we don't care about alignment larger than the usable packet size.
|
513
|
+
LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
|
514
|
+
RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
|
515
|
+
|
516
|
+
SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
|
517
|
+
|
518
|
+
CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
|
519
|
+
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),
|
520
|
+
|
521
|
+
EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
522
|
+
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
523
|
+
: (bool(RhsRowMajor) && !CanVectorizeLhs),
|
524
|
+
|
525
|
+
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
|
526
|
+
| (EvalToRowMajor ? RowMajorBit : 0)
|
527
|
+
// TODO enable vectorization for mixed types
|
528
|
+
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
|
529
|
+
| (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
|
530
|
+
|
531
|
+
LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
|
532
|
+
RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
|
533
|
+
|
534
|
+
Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
|
535
|
+
: bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
|
536
|
+
: 0,
|
537
|
+
|
538
|
+
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
|
539
|
+
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
|
540
|
+
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
|
541
|
+
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
|
542
|
+
*/
|
543
|
+
CanVectorizeInner = SameType
|
544
|
+
&& LhsRowMajor
|
545
|
+
&& (!RhsRowMajor)
|
546
|
+
&& (LhsFlags & RhsFlags & ActualPacketAccessBit)
|
547
|
+
&& (InnerSize % packet_traits<Scalar>::size == 0)
|
548
|
+
};
|
549
|
+
|
550
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
|
551
|
+
{
|
552
|
+
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
|
553
|
+
}
|
554
|
+
|
555
|
+
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
|
556
|
+
* which is why we don't set the LinearAccessBit.
|
557
|
+
* TODO: this seems possible when the result is a vector
|
558
|
+
*/
|
559
|
+
EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
|
560
|
+
{
|
561
|
+
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
|
562
|
+
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
|
563
|
+
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
|
564
|
+
}
|
565
|
+
|
566
|
+
template<int LoadMode, typename PacketType>
|
567
|
+
const PacketType packet(Index row, Index col) const
|
568
|
+
{
|
569
|
+
PacketType res;
|
570
|
+
typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
|
571
|
+
Unroll ? int(InnerSize) : Dynamic,
|
572
|
+
LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
|
573
|
+
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
|
574
|
+
return res;
|
575
|
+
}
|
576
|
+
|
577
|
+
template<int LoadMode, typename PacketType>
|
578
|
+
const PacketType packet(Index index) const
|
579
|
+
{
|
580
|
+
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
|
581
|
+
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
|
582
|
+
return packet<LoadMode,PacketType>(row,col);
|
583
|
+
}
|
584
|
+
|
585
|
+
protected:
|
586
|
+
typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
|
587
|
+
typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
|
588
|
+
|
589
|
+
LhsEtorType m_lhsImpl;
|
590
|
+
RhsEtorType m_rhsImpl;
|
591
|
+
|
592
|
+
// TODO: Get rid of m_innerDim if known at compile time
|
593
|
+
Index m_innerDim;
|
594
|
+
};
|
595
|
+
|
596
|
+
template<typename Lhs, typename Rhs>
|
597
|
+
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
|
598
|
+
: product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
|
599
|
+
{
|
600
|
+
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
|
601
|
+
typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
|
602
|
+
typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
|
603
|
+
enum {
|
604
|
+
Flags = Base::Flags | EvalBeforeNestingBit
|
605
|
+
};
|
606
|
+
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
607
|
+
: Base(BaseProduct(xpr.lhs(),xpr.rhs()))
|
608
|
+
{}
|
609
|
+
};
|
610
|
+
|
611
|
+
/****************************************
|
612
|
+
*** Coeff based product, Packet path ***
|
613
|
+
****************************************/
|
614
|
+
|
615
|
+
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
616
|
+
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
617
|
+
{
|
618
|
+
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
|
619
|
+
{
|
620
|
+
etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
|
621
|
+
res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
|
622
|
+
}
|
623
|
+
};
|
624
|
+
|
625
|
+
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
626
|
+
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
627
|
+
{
|
628
|
+
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
|
629
|
+
{
|
630
|
+
etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
|
631
|
+
res = pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
|
632
|
+
}
|
633
|
+
};
|
634
|
+
|
635
|
+
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
636
|
+
struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
|
637
|
+
{
|
638
|
+
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
|
639
|
+
{
|
640
|
+
res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
|
641
|
+
}
|
642
|
+
};
|
643
|
+
|
644
|
+
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
645
|
+
struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
|
646
|
+
{
|
647
|
+
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
|
648
|
+
{
|
649
|
+
res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
|
650
|
+
}
|
651
|
+
};
|
652
|
+
|
653
|
+
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
654
|
+
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
655
|
+
{
|
656
|
+
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
|
657
|
+
{
|
658
|
+
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
|
659
|
+
}
|
660
|
+
};
|
661
|
+
|
662
|
+
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
663
|
+
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
664
|
+
{
|
665
|
+
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
|
666
|
+
{
|
667
|
+
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
|
668
|
+
}
|
669
|
+
};
|
670
|
+
|
671
|
+
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
672
|
+
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
673
|
+
{
|
674
|
+
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
|
675
|
+
{
|
676
|
+
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
|
677
|
+
for(Index i = 0; i < innerDim; ++i)
|
678
|
+
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
|
679
|
+
}
|
680
|
+
};
|
681
|
+
|
682
|
+
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
683
|
+
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
684
|
+
{
|
685
|
+
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
|
686
|
+
{
|
687
|
+
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
|
688
|
+
for(Index i = 0; i < innerDim; ++i)
|
689
|
+
res = pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
|
690
|
+
}
|
691
|
+
};
|
692
|
+
|
693
|
+
|
694
|
+
/***************************************************************************
|
695
|
+
* Triangular products
|
696
|
+
***************************************************************************/
|
697
|
+
template<int Mode, bool LhsIsTriangular,
|
698
|
+
typename Lhs, bool LhsIsVector,
|
699
|
+
typename Rhs, bool RhsIsVector>
|
700
|
+
struct triangular_product_impl;
|
701
|
+
|
702
|
+
template<typename Lhs, typename Rhs, int ProductTag>
|
703
|
+
struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
|
704
|
+
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
|
705
|
+
{
|
706
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
707
|
+
|
708
|
+
template<typename Dest>
|
709
|
+
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
710
|
+
{
|
711
|
+
triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
|
712
|
+
::run(dst, lhs.nestedExpression(), rhs, alpha);
|
713
|
+
}
|
714
|
+
};
|
715
|
+
|
716
|
+
template<typename Lhs, typename Rhs, int ProductTag>
|
717
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
|
718
|
+
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
|
719
|
+
{
|
720
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
721
|
+
|
722
|
+
template<typename Dest>
|
723
|
+
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
724
|
+
{
|
725
|
+
triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
|
726
|
+
}
|
727
|
+
};
|
728
|
+
|
729
|
+
|
730
|
+
/***************************************************************************
|
731
|
+
* SelfAdjoint products
|
732
|
+
***************************************************************************/
|
733
|
+
template <typename Lhs, int LhsMode, bool LhsIsVector,
|
734
|
+
typename Rhs, int RhsMode, bool RhsIsVector>
|
735
|
+
struct selfadjoint_product_impl;
|
736
|
+
|
737
|
+
template<typename Lhs, typename Rhs, int ProductTag>
|
738
|
+
struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
|
739
|
+
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
|
740
|
+
{
|
741
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
742
|
+
|
743
|
+
template<typename Dest>
|
744
|
+
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
745
|
+
{
|
746
|
+
selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
|
747
|
+
}
|
748
|
+
};
|
749
|
+
|
750
|
+
template<typename Lhs, typename Rhs, int ProductTag>
|
751
|
+
struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
|
752
|
+
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
|
753
|
+
{
|
754
|
+
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
755
|
+
|
756
|
+
template<typename Dest>
|
757
|
+
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
758
|
+
{
|
759
|
+
selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
|
760
|
+
}
|
761
|
+
};
|
762
|
+
|
763
|
+
|
764
|
+
/***************************************************************************
|
765
|
+
* Diagonal products
|
766
|
+
***************************************************************************/
|
767
|
+
|
768
|
+
template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
|
769
|
+
struct diagonal_product_evaluator_base
|
770
|
+
: evaluator_base<Derived>
|
771
|
+
{
|
772
|
+
typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
|
773
|
+
public:
|
774
|
+
enum {
|
775
|
+
CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
|
776
|
+
|
777
|
+
MatrixFlags = evaluator<MatrixType>::Flags,
|
778
|
+
DiagFlags = evaluator<DiagonalType>::Flags,
|
779
|
+
_StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
|
780
|
+
_ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
|
781
|
+
||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
|
782
|
+
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
|
783
|
+
// FIXME currently we need same types, but in the future the next rule should be the one
|
784
|
+
//_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
|
785
|
+
_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
|
786
|
+
_LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
|
787
|
+
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
|
788
|
+
Alignment = evaluator<MatrixType>::Alignment,
|
789
|
+
|
790
|
+
AsScalarProduct = (DiagonalType::SizeAtCompileTime==1)
|
791
|
+
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft)
|
792
|
+
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight)
|
793
|
+
};
|
794
|
+
|
795
|
+
diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
|
796
|
+
: m_diagImpl(diag), m_matImpl(mat)
|
797
|
+
{
|
798
|
+
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
|
799
|
+
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
800
|
+
}
|
801
|
+
|
802
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
|
803
|
+
{
|
804
|
+
if(AsScalarProduct)
|
805
|
+
return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
|
806
|
+
else
|
807
|
+
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
|
808
|
+
}
|
809
|
+
|
810
|
+
protected:
|
811
|
+
template<int LoadMode,typename PacketType>
|
812
|
+
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
|
813
|
+
{
|
814
|
+
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
|
815
|
+
internal::pset1<PacketType>(m_diagImpl.coeff(id)));
|
816
|
+
}
|
817
|
+
|
818
|
+
template<int LoadMode,typename PacketType>
|
819
|
+
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
|
820
|
+
{
|
821
|
+
enum {
|
822
|
+
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
|
823
|
+
DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
|
824
|
+
};
|
825
|
+
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
|
826
|
+
m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
|
827
|
+
}
|
828
|
+
|
829
|
+
evaluator<DiagonalType> m_diagImpl;
|
830
|
+
evaluator<MatrixType> m_matImpl;
|
831
|
+
};
|
832
|
+
|
833
|
+
// diagonal * dense
|
834
|
+
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
|
835
|
+
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
|
836
|
+
: diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
|
837
|
+
{
|
838
|
+
typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
|
839
|
+
using Base::m_diagImpl;
|
840
|
+
using Base::m_matImpl;
|
841
|
+
using Base::coeff;
|
842
|
+
typedef typename Base::Scalar Scalar;
|
843
|
+
|
844
|
+
typedef Product<Lhs, Rhs, ProductKind> XprType;
|
845
|
+
typedef typename XprType::PlainObject PlainObject;
|
846
|
+
|
847
|
+
enum {
|
848
|
+
StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
|
849
|
+
};
|
850
|
+
|
851
|
+
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
852
|
+
: Base(xpr.rhs(), xpr.lhs().diagonal())
|
853
|
+
{
|
854
|
+
}
|
855
|
+
|
856
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
|
857
|
+
{
|
858
|
+
return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
|
859
|
+
}
|
860
|
+
|
861
|
+
#ifndef __CUDACC__
|
862
|
+
template<int LoadMode,typename PacketType>
|
863
|
+
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
|
864
|
+
{
|
865
|
+
// FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
|
866
|
+
// See also similar calls below.
|
867
|
+
return this->template packet_impl<LoadMode,PacketType>(row,col, row,
|
868
|
+
typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
|
869
|
+
}
|
870
|
+
|
871
|
+
template<int LoadMode,typename PacketType>
|
872
|
+
EIGEN_STRONG_INLINE PacketType packet(Index idx) const
|
873
|
+
{
|
874
|
+
return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
|
875
|
+
}
|
876
|
+
#endif
|
877
|
+
};
|
878
|
+
|
879
|
+
// dense * diagonal
|
880
|
+
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
|
881
|
+
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
|
882
|
+
: diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
|
883
|
+
{
|
884
|
+
typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
|
885
|
+
using Base::m_diagImpl;
|
886
|
+
using Base::m_matImpl;
|
887
|
+
using Base::coeff;
|
888
|
+
typedef typename Base::Scalar Scalar;
|
889
|
+
|
890
|
+
typedef Product<Lhs, Rhs, ProductKind> XprType;
|
891
|
+
typedef typename XprType::PlainObject PlainObject;
|
892
|
+
|
893
|
+
enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
|
894
|
+
|
895
|
+
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
896
|
+
: Base(xpr.lhs(), xpr.rhs().diagonal())
|
897
|
+
{
|
898
|
+
}
|
899
|
+
|
900
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
|
901
|
+
{
|
902
|
+
return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
|
903
|
+
}
|
904
|
+
|
905
|
+
#ifndef __CUDACC__
|
906
|
+
template<int LoadMode,typename PacketType>
|
907
|
+
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
|
908
|
+
{
|
909
|
+
return this->template packet_impl<LoadMode,PacketType>(row,col, col,
|
910
|
+
typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
|
911
|
+
}
|
912
|
+
|
913
|
+
template<int LoadMode,typename PacketType>
|
914
|
+
EIGEN_STRONG_INLINE PacketType packet(Index idx) const
|
915
|
+
{
|
916
|
+
return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
|
917
|
+
}
|
918
|
+
#endif
|
919
|
+
};
|
920
|
+
|
921
|
+
/***************************************************************************
|
922
|
+
* Products with permutation matrices
|
923
|
+
***************************************************************************/
|
924
|
+
|
925
|
+
/** \internal
|
926
|
+
* \class permutation_matrix_product
|
927
|
+
* Internal helper class implementing the product between a permutation matrix and a matrix.
|
928
|
+
* This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
|
929
|
+
*/
|
930
|
+
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
|
931
|
+
struct permutation_matrix_product;
|
932
|
+
|
933
|
+
template<typename ExpressionType, int Side, bool Transposed>
|
934
|
+
struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
|
935
|
+
{
|
936
|
+
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
|
937
|
+
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
938
|
+
|
939
|
+
template<typename Dest, typename PermutationType>
|
940
|
+
static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
|
941
|
+
{
|
942
|
+
MatrixType mat(xpr);
|
943
|
+
const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
|
944
|
+
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
|
945
|
+
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
|
946
|
+
//if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
|
947
|
+
if(is_same_dense(dst, mat))
|
948
|
+
{
|
949
|
+
// apply the permutation inplace
|
950
|
+
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
|
951
|
+
mask.fill(false);
|
952
|
+
Index r = 0;
|
953
|
+
while(r < perm.size())
|
954
|
+
{
|
955
|
+
// search for the next seed
|
956
|
+
while(r<perm.size() && mask[r]) r++;
|
957
|
+
if(r>=perm.size())
|
958
|
+
break;
|
959
|
+
// we got one, let's follow it until we are back to the seed
|
960
|
+
Index k0 = r++;
|
961
|
+
Index kPrev = k0;
|
962
|
+
mask.coeffRef(k0) = true;
|
963
|
+
for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
|
964
|
+
{
|
965
|
+
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
|
966
|
+
.swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
|
967
|
+
(dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
|
968
|
+
|
969
|
+
mask.coeffRef(k) = true;
|
970
|
+
kPrev = k;
|
971
|
+
}
|
972
|
+
}
|
973
|
+
}
|
974
|
+
else
|
975
|
+
{
|
976
|
+
for(Index i = 0; i < n; ++i)
|
977
|
+
{
|
978
|
+
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
|
979
|
+
(dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
|
980
|
+
|
981
|
+
=
|
982
|
+
|
983
|
+
Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
|
984
|
+
(mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
|
985
|
+
}
|
986
|
+
}
|
987
|
+
}
|
988
|
+
};
|
989
|
+
|
990
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
991
|
+
struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
|
992
|
+
{
|
993
|
+
template<typename Dest>
|
994
|
+
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
995
|
+
{
|
996
|
+
permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
|
997
|
+
}
|
998
|
+
};
|
999
|
+
|
1000
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1001
|
+
struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
|
1002
|
+
{
|
1003
|
+
template<typename Dest>
|
1004
|
+
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
1005
|
+
{
|
1006
|
+
permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
|
1007
|
+
}
|
1008
|
+
};
|
1009
|
+
|
1010
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1011
|
+
struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
|
1012
|
+
{
|
1013
|
+
template<typename Dest>
|
1014
|
+
static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
|
1015
|
+
{
|
1016
|
+
permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
|
1017
|
+
}
|
1018
|
+
};
|
1019
|
+
|
1020
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1021
|
+
struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
|
1022
|
+
{
|
1023
|
+
template<typename Dest>
|
1024
|
+
static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
|
1025
|
+
{
|
1026
|
+
permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
|
1027
|
+
}
|
1028
|
+
};
|
1029
|
+
|
1030
|
+
|
1031
|
+
/***************************************************************************
|
1032
|
+
* Products with transpositions matrices
|
1033
|
+
***************************************************************************/
|
1034
|
+
|
1035
|
+
// FIXME could we unify Transpositions and Permutation into a single "shape"??
|
1036
|
+
|
1037
|
+
/** \internal
|
1038
|
+
* \class transposition_matrix_product
|
1039
|
+
* Internal helper class implementing the product between a permutation matrix and a matrix.
|
1040
|
+
*/
|
1041
|
+
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
|
1042
|
+
struct transposition_matrix_product
|
1043
|
+
{
|
1044
|
+
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
|
1045
|
+
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
1046
|
+
|
1047
|
+
template<typename Dest, typename TranspositionType>
|
1048
|
+
static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
|
1049
|
+
{
|
1050
|
+
MatrixType mat(xpr);
|
1051
|
+
typedef typename TranspositionType::StorageIndex StorageIndex;
|
1052
|
+
const Index size = tr.size();
|
1053
|
+
StorageIndex j = 0;
|
1054
|
+
|
1055
|
+
if(!is_same_dense(dst,mat))
|
1056
|
+
dst = mat;
|
1057
|
+
|
1058
|
+
for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
|
1059
|
+
if(Index(j=tr.coeff(k))!=k)
|
1060
|
+
{
|
1061
|
+
if(Side==OnTheLeft) dst.row(k).swap(dst.row(j));
|
1062
|
+
else if(Side==OnTheRight) dst.col(k).swap(dst.col(j));
|
1063
|
+
}
|
1064
|
+
}
|
1065
|
+
};
|
1066
|
+
|
1067
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1068
|
+
struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
|
1069
|
+
{
|
1070
|
+
template<typename Dest>
|
1071
|
+
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
1072
|
+
{
|
1073
|
+
transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
|
1074
|
+
}
|
1075
|
+
};
|
1076
|
+
|
1077
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1078
|
+
struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
|
1079
|
+
{
|
1080
|
+
template<typename Dest>
|
1081
|
+
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
1082
|
+
{
|
1083
|
+
transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
|
1084
|
+
}
|
1085
|
+
};
|
1086
|
+
|
1087
|
+
|
1088
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1089
|
+
struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
|
1090
|
+
{
|
1091
|
+
template<typename Dest>
|
1092
|
+
static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
|
1093
|
+
{
|
1094
|
+
transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
|
1095
|
+
}
|
1096
|
+
};
|
1097
|
+
|
1098
|
+
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
1099
|
+
struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
|
1100
|
+
{
|
1101
|
+
template<typename Dest>
|
1102
|
+
static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
|
1103
|
+
{
|
1104
|
+
transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
|
1105
|
+
}
|
1106
|
+
};
|
1107
|
+
|
1108
|
+
} // end namespace internal
|
1109
|
+
|
1110
|
+
} // end namespace Eigen
|
1111
|
+
|
1112
|
+
#endif // EIGEN_PRODUCT_EVALUATORS_H
|