tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,97 @@
|
|
1
|
+
/*
|
2
|
+
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
this list of conditions and the following disclaimer in the documentation
|
11
|
+
and/or other materials provided with the distribution.
|
12
|
+
* Neither the name of Intel Corporation nor the names of its contributors may
|
13
|
+
be used to endorse or promote products derived from this software without
|
14
|
+
specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
20
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
21
|
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
22
|
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
23
|
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
24
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
25
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
|
27
|
+
********************************************************************************
|
28
|
+
* Content : Eigen bindings to LAPACKe
|
29
|
+
* Householder QR decomposition of a matrix with column pivoting based on
|
30
|
+
* LAPACKE_?geqp3 function.
|
31
|
+
********************************************************************************
|
32
|
+
*/
|
33
|
+
|
34
|
+
#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
|
35
|
+
#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
|
36
|
+
|
37
|
+
namespace Eigen {
|
38
|
+
|
39
|
+
/** \internal Specialization for the data types supported by LAPACKe */
|
40
|
+
|
41
|
+
#define EIGEN_LAPACKE_QR_COLPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
|
42
|
+
template<> template<typename InputType> inline \
|
43
|
+
ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >& \
|
44
|
+
ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >::compute( \
|
45
|
+
const EigenBase<InputType>& matrix) \
|
46
|
+
\
|
47
|
+
{ \
|
48
|
+
using std::abs; \
|
49
|
+
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
|
50
|
+
typedef MatrixType::RealScalar RealScalar; \
|
51
|
+
Index rows = matrix.rows();\
|
52
|
+
Index cols = matrix.cols();\
|
53
|
+
\
|
54
|
+
m_qr = matrix;\
|
55
|
+
Index size = m_qr.diagonalSize();\
|
56
|
+
m_hCoeffs.resize(size);\
|
57
|
+
\
|
58
|
+
m_colsTranspositions.resize(cols);\
|
59
|
+
/*Index number_of_transpositions = 0;*/ \
|
60
|
+
\
|
61
|
+
m_nonzero_pivots = 0; \
|
62
|
+
m_maxpivot = RealScalar(0);\
|
63
|
+
m_colsPermutation.resize(cols); \
|
64
|
+
m_colsPermutation.indices().setZero(); \
|
65
|
+
\
|
66
|
+
lapack_int lda = internal::convert_index<lapack_int,Index>(m_qr.outerStride()); \
|
67
|
+
lapack_int matrix_order = LAPACKE_COLROW; \
|
68
|
+
LAPACKE_##LAPACKE_PREFIX##geqp3( matrix_order, internal::convert_index<lapack_int,Index>(rows), internal::convert_index<lapack_int,Index>(cols), \
|
69
|
+
(LAPACKE_TYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (LAPACKE_TYPE*)m_hCoeffs.data()); \
|
70
|
+
m_isInitialized = true; \
|
71
|
+
m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
|
72
|
+
m_hCoeffs.adjointInPlace(); \
|
73
|
+
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); \
|
74
|
+
lapack_int *perm = m_colsPermutation.indices().data(); \
|
75
|
+
for(Index i=0;i<size;i++) { \
|
76
|
+
m_nonzero_pivots += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);\
|
77
|
+
} \
|
78
|
+
for(Index i=0;i<cols;i++) perm[i]--;\
|
79
|
+
\
|
80
|
+
/*m_det_pq = (number_of_transpositions%2) ? -1 : 1; // TODO: It's not needed now; fix upon availability in Eigen */ \
|
81
|
+
\
|
82
|
+
return *this; \
|
83
|
+
}
|
84
|
+
|
85
|
+
EIGEN_LAPACKE_QR_COLPIV(double, double, d, ColMajor, LAPACK_COL_MAJOR)
|
86
|
+
EIGEN_LAPACKE_QR_COLPIV(float, float, s, ColMajor, LAPACK_COL_MAJOR)
|
87
|
+
EIGEN_LAPACKE_QR_COLPIV(dcomplex, lapack_complex_double, z, ColMajor, LAPACK_COL_MAJOR)
|
88
|
+
EIGEN_LAPACKE_QR_COLPIV(scomplex, lapack_complex_float, c, ColMajor, LAPACK_COL_MAJOR)
|
89
|
+
|
90
|
+
EIGEN_LAPACKE_QR_COLPIV(double, double, d, RowMajor, LAPACK_ROW_MAJOR)
|
91
|
+
EIGEN_LAPACKE_QR_COLPIV(float, float, s, RowMajor, LAPACK_ROW_MAJOR)
|
92
|
+
EIGEN_LAPACKE_QR_COLPIV(dcomplex, lapack_complex_double, z, RowMajor, LAPACK_ROW_MAJOR)
|
93
|
+
EIGEN_LAPACKE_QR_COLPIV(scomplex, lapack_complex_float, c, RowMajor, LAPACK_ROW_MAJOR)
|
94
|
+
|
95
|
+
} // end namespace Eigen
|
96
|
+
|
97
|
+
#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
|
@@ -0,0 +1,562 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
|
11
|
+
#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
template <typename _MatrixType>
|
17
|
+
struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
|
18
|
+
: traits<_MatrixType> {
|
19
|
+
enum { Flags = 0 };
|
20
|
+
};
|
21
|
+
|
22
|
+
} // end namespace internal
|
23
|
+
|
24
|
+
/** \ingroup QR_Module
|
25
|
+
*
|
26
|
+
* \class CompleteOrthogonalDecomposition
|
27
|
+
*
|
28
|
+
* \brief Complete orthogonal decomposition (COD) of a matrix.
|
29
|
+
*
|
30
|
+
* \param MatrixType the type of the matrix of which we are computing the COD.
|
31
|
+
*
|
32
|
+
* This class performs a rank-revealing complete orthogonal decomposition of a
|
33
|
+
* matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that
|
34
|
+
* \f[
|
35
|
+
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \,
|
36
|
+
* \begin{bmatrix} \mathbf{T} & \mathbf{0} \\
|
37
|
+
* \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z}
|
38
|
+
* \f]
|
39
|
+
* by using Householder transformations. Here, \b P is a permutation matrix,
|
40
|
+
* \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
|
41
|
+
* size rank-by-rank. \b A may be rank deficient.
|
42
|
+
*
|
43
|
+
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
44
|
+
*
|
45
|
+
* \sa MatrixBase::completeOrthogonalDecomposition()
|
46
|
+
*/
|
47
|
+
template <typename _MatrixType>
|
48
|
+
class CompleteOrthogonalDecomposition {
|
49
|
+
public:
|
50
|
+
typedef _MatrixType MatrixType;
|
51
|
+
enum {
|
52
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
53
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
54
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
55
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
56
|
+
};
|
57
|
+
typedef typename MatrixType::Scalar Scalar;
|
58
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
59
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
60
|
+
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
61
|
+
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
|
62
|
+
PermutationType;
|
63
|
+
typedef typename internal::plain_row_type<MatrixType, Index>::type
|
64
|
+
IntRowVectorType;
|
65
|
+
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
|
66
|
+
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
|
67
|
+
RealRowVectorType;
|
68
|
+
typedef HouseholderSequence<
|
69
|
+
MatrixType, typename internal::remove_all<
|
70
|
+
typename HCoeffsType::ConjugateReturnType>::type>
|
71
|
+
HouseholderSequenceType;
|
72
|
+
typedef typename MatrixType::PlainObject PlainObject;
|
73
|
+
|
74
|
+
private:
|
75
|
+
typedef typename PermutationType::Index PermIndexType;
|
76
|
+
|
77
|
+
public:
|
78
|
+
/**
|
79
|
+
* \brief Default Constructor.
|
80
|
+
*
|
81
|
+
* The default constructor is useful in cases in which the user intends to
|
82
|
+
* perform decompositions via
|
83
|
+
* \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
|
84
|
+
*/
|
85
|
+
CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}
|
86
|
+
|
87
|
+
/** \brief Default Constructor with memory preallocation
|
88
|
+
*
|
89
|
+
* Like the default constructor but with preallocation of the internal data
|
90
|
+
* according to the specified problem \a size.
|
91
|
+
* \sa CompleteOrthogonalDecomposition()
|
92
|
+
*/
|
93
|
+
CompleteOrthogonalDecomposition(Index rows, Index cols)
|
94
|
+
: m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}
|
95
|
+
|
96
|
+
/** \brief Constructs a complete orthogonal decomposition from a given
|
97
|
+
* matrix.
|
98
|
+
*
|
99
|
+
* This constructor computes the complete orthogonal decomposition of the
|
100
|
+
* matrix \a matrix by calling the method compute(). The default
|
101
|
+
* threshold for rank determination will be used. It is a short cut for:
|
102
|
+
*
|
103
|
+
* \code
|
104
|
+
* CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
|
105
|
+
* matrix.cols());
|
106
|
+
* cod.setThreshold(Default);
|
107
|
+
* cod.compute(matrix);
|
108
|
+
* \endcode
|
109
|
+
*
|
110
|
+
* \sa compute()
|
111
|
+
*/
|
112
|
+
template <typename InputType>
|
113
|
+
explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
|
114
|
+
: m_cpqr(matrix.rows(), matrix.cols()),
|
115
|
+
m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
|
116
|
+
m_temp(matrix.cols())
|
117
|
+
{
|
118
|
+
compute(matrix.derived());
|
119
|
+
}
|
120
|
+
|
121
|
+
/** \brief Constructs a complete orthogonal decomposition from a given matrix
|
122
|
+
*
|
123
|
+
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
|
124
|
+
*
|
125
|
+
* \sa CompleteOrthogonalDecomposition(const EigenBase&)
|
126
|
+
*/
|
127
|
+
template<typename InputType>
|
128
|
+
explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix)
|
129
|
+
: m_cpqr(matrix.derived()),
|
130
|
+
m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
|
131
|
+
m_temp(matrix.cols())
|
132
|
+
{
|
133
|
+
computeInPlace();
|
134
|
+
}
|
135
|
+
|
136
|
+
|
137
|
+
/** This method computes the minimum-norm solution X to a least squares
|
138
|
+
* problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of
|
139
|
+
* which \c *this is the complete orthogonal decomposition.
|
140
|
+
*
|
141
|
+
* \param b the right-hand sides of the problem to solve.
|
142
|
+
*
|
143
|
+
* \returns a solution.
|
144
|
+
*
|
145
|
+
*/
|
146
|
+
template <typename Rhs>
|
147
|
+
inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
|
148
|
+
const MatrixBase<Rhs>& b) const {
|
149
|
+
eigen_assert(m_cpqr.m_isInitialized &&
|
150
|
+
"CompleteOrthogonalDecomposition is not initialized.");
|
151
|
+
return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived());
|
152
|
+
}
|
153
|
+
|
154
|
+
HouseholderSequenceType householderQ(void) const;
|
155
|
+
HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }
|
156
|
+
|
157
|
+
/** \returns the matrix \b Z.
|
158
|
+
*/
|
159
|
+
MatrixType matrixZ() const {
|
160
|
+
MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
|
161
|
+
applyZAdjointOnTheLeftInPlace(Z);
|
162
|
+
return Z.adjoint();
|
163
|
+
}
|
164
|
+
|
165
|
+
/** \returns a reference to the matrix where the complete orthogonal
|
166
|
+
* decomposition is stored
|
167
|
+
*/
|
168
|
+
const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }
|
169
|
+
|
170
|
+
/** \returns a reference to the matrix where the complete orthogonal
|
171
|
+
* decomposition is stored.
|
172
|
+
* \warning The strict lower part and \code cols() - rank() \endcode right
|
173
|
+
* columns of this matrix contains internal values.
|
174
|
+
* Only the upper triangular part should be referenced. To get it, use
|
175
|
+
* \code matrixT().template triangularView<Upper>() \endcode
|
176
|
+
* For rank-deficient matrices, use
|
177
|
+
* \code
|
178
|
+
* matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
|
179
|
+
* \endcode
|
180
|
+
*/
|
181
|
+
const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
|
182
|
+
|
183
|
+
template <typename InputType>
|
184
|
+
CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) {
|
185
|
+
// Compute the column pivoted QR factorization A P = Q R.
|
186
|
+
m_cpqr.compute(matrix);
|
187
|
+
computeInPlace();
|
188
|
+
return *this;
|
189
|
+
}
|
190
|
+
|
191
|
+
/** \returns a const reference to the column permutation matrix */
|
192
|
+
const PermutationType& colsPermutation() const {
|
193
|
+
return m_cpqr.colsPermutation();
|
194
|
+
}
|
195
|
+
|
196
|
+
/** \returns the absolute value of the determinant of the matrix of which
|
197
|
+
* *this is the complete orthogonal decomposition. It has only linear
|
198
|
+
* complexity (that is, O(n) where n is the dimension of the square matrix)
|
199
|
+
* as the complete orthogonal decomposition has already been computed.
|
200
|
+
*
|
201
|
+
* \note This is only for square matrices.
|
202
|
+
*
|
203
|
+
* \warning a determinant can be very big or small, so for matrices
|
204
|
+
* of large enough dimension, there is a risk of overflow/underflow.
|
205
|
+
* One way to work around that is to use logAbsDeterminant() instead.
|
206
|
+
*
|
207
|
+
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
208
|
+
*/
|
209
|
+
typename MatrixType::RealScalar absDeterminant() const;
|
210
|
+
|
211
|
+
/** \returns the natural log of the absolute value of the determinant of the
|
212
|
+
* matrix of which *this is the complete orthogonal decomposition. It has
|
213
|
+
* only linear complexity (that is, O(n) where n is the dimension of the
|
214
|
+
* square matrix) as the complete orthogonal decomposition has already been
|
215
|
+
* computed.
|
216
|
+
*
|
217
|
+
* \note This is only for square matrices.
|
218
|
+
*
|
219
|
+
* \note This method is useful to work around the risk of overflow/underflow
|
220
|
+
* that's inherent to determinant computation.
|
221
|
+
*
|
222
|
+
* \sa absDeterminant(), MatrixBase::determinant()
|
223
|
+
*/
|
224
|
+
typename MatrixType::RealScalar logAbsDeterminant() const;
|
225
|
+
|
226
|
+
/** \returns the rank of the matrix of which *this is the complete orthogonal
|
227
|
+
* decomposition.
|
228
|
+
*
|
229
|
+
* \note This method has to determine which pivots should be considered
|
230
|
+
* nonzero. For that, it uses the threshold value that you can control by
|
231
|
+
* calling setThreshold(const RealScalar&).
|
232
|
+
*/
|
233
|
+
inline Index rank() const { return m_cpqr.rank(); }
|
234
|
+
|
235
|
+
/** \returns the dimension of the kernel of the matrix of which *this is the
|
236
|
+
* complete orthogonal decomposition.
|
237
|
+
*
|
238
|
+
* \note This method has to determine which pivots should be considered
|
239
|
+
* nonzero. For that, it uses the threshold value that you can control by
|
240
|
+
* calling setThreshold(const RealScalar&).
|
241
|
+
*/
|
242
|
+
inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }
|
243
|
+
|
244
|
+
/** \returns true if the matrix of which *this is the decomposition represents
|
245
|
+
* an injective linear map, i.e. has trivial kernel; false otherwise.
|
246
|
+
*
|
247
|
+
* \note This method has to determine which pivots should be considered
|
248
|
+
* nonzero. For that, it uses the threshold value that you can control by
|
249
|
+
* calling setThreshold(const RealScalar&).
|
250
|
+
*/
|
251
|
+
inline bool isInjective() const { return m_cpqr.isInjective(); }
|
252
|
+
|
253
|
+
/** \returns true if the matrix of which *this is the decomposition represents
|
254
|
+
* a surjective linear map; false otherwise.
|
255
|
+
*
|
256
|
+
* \note This method has to determine which pivots should be considered
|
257
|
+
* nonzero. For that, it uses the threshold value that you can control by
|
258
|
+
* calling setThreshold(const RealScalar&).
|
259
|
+
*/
|
260
|
+
inline bool isSurjective() const { return m_cpqr.isSurjective(); }
|
261
|
+
|
262
|
+
/** \returns true if the matrix of which *this is the complete orthogonal
|
263
|
+
* decomposition is invertible.
|
264
|
+
*
|
265
|
+
* \note This method has to determine which pivots should be considered
|
266
|
+
* nonzero. For that, it uses the threshold value that you can control by
|
267
|
+
* calling setThreshold(const RealScalar&).
|
268
|
+
*/
|
269
|
+
inline bool isInvertible() const { return m_cpqr.isInvertible(); }
|
270
|
+
|
271
|
+
/** \returns the pseudo-inverse of the matrix of which *this is the complete
|
272
|
+
* orthogonal decomposition.
|
273
|
+
* \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems.
|
274
|
+
* It is more efficient and numerically stable to call \c this->solve(rhs).
|
275
|
+
*/
|
276
|
+
inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const
|
277
|
+
{
|
278
|
+
return Inverse<CompleteOrthogonalDecomposition>(*this);
|
279
|
+
}
|
280
|
+
|
281
|
+
inline Index rows() const { return m_cpqr.rows(); }
|
282
|
+
inline Index cols() const { return m_cpqr.cols(); }
|
283
|
+
|
284
|
+
/** \returns a const reference to the vector of Householder coefficients used
|
285
|
+
* to represent the factor \c Q.
|
286
|
+
*
|
287
|
+
* For advanced uses only.
|
288
|
+
*/
|
289
|
+
inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }
|
290
|
+
|
291
|
+
/** \returns a const reference to the vector of Householder coefficients
|
292
|
+
* used to represent the factor \c Z.
|
293
|
+
*
|
294
|
+
* For advanced uses only.
|
295
|
+
*/
|
296
|
+
const HCoeffsType& zCoeffs() const { return m_zCoeffs; }
|
297
|
+
|
298
|
+
/** Allows to prescribe a threshold to be used by certain methods, such as
|
299
|
+
* rank(), who need to determine when pivots are to be considered nonzero.
|
300
|
+
* Most be called before calling compute().
|
301
|
+
*
|
302
|
+
* When it needs to get the threshold value, Eigen calls threshold(). By
|
303
|
+
* default, this uses a formula to automatically determine a reasonable
|
304
|
+
* threshold. Once you have called the present method
|
305
|
+
* setThreshold(const RealScalar&), your value is used instead.
|
306
|
+
*
|
307
|
+
* \param threshold The new value to use as the threshold.
|
308
|
+
*
|
309
|
+
* A pivot will be considered nonzero if its absolute value is strictly
|
310
|
+
* greater than
|
311
|
+
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
|
312
|
+
* where maxpivot is the biggest pivot.
|
313
|
+
*
|
314
|
+
* If you want to come back to the default behavior, call
|
315
|
+
* setThreshold(Default_t)
|
316
|
+
*/
|
317
|
+
CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
|
318
|
+
m_cpqr.setThreshold(threshold);
|
319
|
+
return *this;
|
320
|
+
}
|
321
|
+
|
322
|
+
/** Allows to come back to the default behavior, letting Eigen use its default
|
323
|
+
* formula for determining the threshold.
|
324
|
+
*
|
325
|
+
* You should pass the special object Eigen::Default as parameter here.
|
326
|
+
* \code qr.setThreshold(Eigen::Default); \endcode
|
327
|
+
*
|
328
|
+
* See the documentation of setThreshold(const RealScalar&).
|
329
|
+
*/
|
330
|
+
CompleteOrthogonalDecomposition& setThreshold(Default_t) {
|
331
|
+
m_cpqr.setThreshold(Default);
|
332
|
+
return *this;
|
333
|
+
}
|
334
|
+
|
335
|
+
/** Returns the threshold that will be used by certain methods such as rank().
|
336
|
+
*
|
337
|
+
* See the documentation of setThreshold(const RealScalar&).
|
338
|
+
*/
|
339
|
+
RealScalar threshold() const { return m_cpqr.threshold(); }
|
340
|
+
|
341
|
+
/** \returns the number of nonzero pivots in the complete orthogonal
|
342
|
+
* decomposition. Here nonzero is meant in the exact sense, not in a
|
343
|
+
* fuzzy sense. So that notion isn't really intrinsically interesting,
|
344
|
+
* but it is still useful when implementing algorithms.
|
345
|
+
*
|
346
|
+
* \sa rank()
|
347
|
+
*/
|
348
|
+
inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }
|
349
|
+
|
350
|
+
/** \returns the absolute value of the biggest pivot, i.e. the biggest
|
351
|
+
* diagonal coefficient of R.
|
352
|
+
*/
|
353
|
+
inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }
|
354
|
+
|
355
|
+
/** \brief Reports whether the complete orthogonal decomposition was
|
356
|
+
* succesful.
|
357
|
+
*
|
358
|
+
* \note This function always returns \c Success. It is provided for
|
359
|
+
* compatibility
|
360
|
+
* with other factorization routines.
|
361
|
+
* \returns \c Success
|
362
|
+
*/
|
363
|
+
ComputationInfo info() const {
|
364
|
+
eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
|
365
|
+
return Success;
|
366
|
+
}
|
367
|
+
|
368
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
369
|
+
template <typename RhsType, typename DstType>
|
370
|
+
EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const;
|
371
|
+
#endif
|
372
|
+
|
373
|
+
protected:
|
374
|
+
static void check_template_parameters() {
|
375
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
376
|
+
}
|
377
|
+
|
378
|
+
void computeInPlace();
|
379
|
+
|
380
|
+
/** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
|
381
|
+
*/
|
382
|
+
template <typename Rhs>
|
383
|
+
void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;
|
384
|
+
|
385
|
+
ColPivHouseholderQR<MatrixType> m_cpqr;
|
386
|
+
HCoeffsType m_zCoeffs;
|
387
|
+
RowVectorType m_temp;
|
388
|
+
};
|
389
|
+
|
390
|
+
template <typename MatrixType>
|
391
|
+
typename MatrixType::RealScalar
|
392
|
+
CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
|
393
|
+
return m_cpqr.absDeterminant();
|
394
|
+
}
|
395
|
+
|
396
|
+
template <typename MatrixType>
|
397
|
+
typename MatrixType::RealScalar
|
398
|
+
CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
|
399
|
+
return m_cpqr.logAbsDeterminant();
|
400
|
+
}
|
401
|
+
|
402
|
+
/** Performs the complete orthogonal decomposition of the given matrix \a
|
403
|
+
* matrix. The result of the factorization is stored into \c *this, and a
|
404
|
+
* reference to \c *this is returned.
|
405
|
+
*
|
406
|
+
* \sa class CompleteOrthogonalDecomposition,
|
407
|
+
* CompleteOrthogonalDecomposition(const MatrixType&)
|
408
|
+
*/
|
409
|
+
template <typename MatrixType>
|
410
|
+
void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace()
|
411
|
+
{
|
412
|
+
check_template_parameters();
|
413
|
+
|
414
|
+
// the column permutation is stored as int indices, so just to be sure:
|
415
|
+
eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest());
|
416
|
+
|
417
|
+
const Index rank = m_cpqr.rank();
|
418
|
+
const Index cols = m_cpqr.cols();
|
419
|
+
const Index rows = m_cpqr.rows();
|
420
|
+
m_zCoeffs.resize((std::min)(rows, cols));
|
421
|
+
m_temp.resize(cols);
|
422
|
+
|
423
|
+
if (rank < cols) {
|
424
|
+
// We have reduced the (permuted) matrix to the form
|
425
|
+
// [R11 R12]
|
426
|
+
// [ 0 R22]
|
427
|
+
// where R11 is r-by-r (r = rank) upper triangular, R12 is
|
428
|
+
// r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
|
429
|
+
// We now compute the complete orthogonal decomposition by applying
|
430
|
+
// Householder transformations from the right to the upper trapezoidal
|
431
|
+
// matrix X = [R11 R12] to zero out R12 and obtain the factorization
|
432
|
+
// [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
|
433
|
+
// Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
|
434
|
+
// We store the data representing Z in R12 and m_zCoeffs.
|
435
|
+
for (Index k = rank - 1; k >= 0; --k) {
|
436
|
+
if (k != rank - 1) {
|
437
|
+
// Given the API for Householder reflectors, it is more convenient if
|
438
|
+
// we swap the leading parts of columns k and r-1 (zero-based) to form
|
439
|
+
// the matrix X_k = [X(0:k, k), X(0:k, r:n)]
|
440
|
+
m_cpqr.m_qr.col(k).head(k + 1).swap(
|
441
|
+
m_cpqr.m_qr.col(rank - 1).head(k + 1));
|
442
|
+
}
|
443
|
+
// Construct Householder reflector Z(k) to zero out the last row of X_k,
|
444
|
+
// i.e. choose Z(k) such that
|
445
|
+
// [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
|
446
|
+
RealScalar beta;
|
447
|
+
m_cpqr.m_qr.row(k)
|
448
|
+
.tail(cols - rank + 1)
|
449
|
+
.makeHouseholderInPlace(m_zCoeffs(k), beta);
|
450
|
+
m_cpqr.m_qr(k, rank - 1) = beta;
|
451
|
+
if (k > 0) {
|
452
|
+
// Apply Z(k) to the first k rows of X_k
|
453
|
+
m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
|
454
|
+
.applyHouseholderOnTheRight(
|
455
|
+
m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k),
|
456
|
+
&m_temp(0));
|
457
|
+
}
|
458
|
+
if (k != rank - 1) {
|
459
|
+
// Swap X(0:k,k) back to its proper location.
|
460
|
+
m_cpqr.m_qr.col(k).head(k + 1).swap(
|
461
|
+
m_cpqr.m_qr.col(rank - 1).head(k + 1));
|
462
|
+
}
|
463
|
+
}
|
464
|
+
}
|
465
|
+
}
|
466
|
+
|
467
|
+
template <typename MatrixType>
|
468
|
+
template <typename Rhs>
|
469
|
+
void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
|
470
|
+
Rhs& rhs) const {
|
471
|
+
const Index cols = this->cols();
|
472
|
+
const Index nrhs = rhs.cols();
|
473
|
+
const Index rank = this->rank();
|
474
|
+
Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
|
475
|
+
for (Index k = 0; k < rank; ++k) {
|
476
|
+
if (k != rank - 1) {
|
477
|
+
rhs.row(k).swap(rhs.row(rank - 1));
|
478
|
+
}
|
479
|
+
rhs.middleRows(rank - 1, cols - rank + 1)
|
480
|
+
.applyHouseholderOnTheLeft(
|
481
|
+
matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
|
482
|
+
&temp(0));
|
483
|
+
if (k != rank - 1) {
|
484
|
+
rhs.row(k).swap(rhs.row(rank - 1));
|
485
|
+
}
|
486
|
+
}
|
487
|
+
}
|
488
|
+
|
489
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
490
|
+
template <typename _MatrixType>
|
491
|
+
template <typename RhsType, typename DstType>
|
492
|
+
void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
|
493
|
+
const RhsType& rhs, DstType& dst) const {
|
494
|
+
eigen_assert(rhs.rows() == this->rows());
|
495
|
+
|
496
|
+
const Index rank = this->rank();
|
497
|
+
if (rank == 0) {
|
498
|
+
dst.setZero();
|
499
|
+
return;
|
500
|
+
}
|
501
|
+
|
502
|
+
// Compute c = Q^* * rhs
|
503
|
+
// Note that the matrix Q = H_0^* H_1^*... so its inverse is
|
504
|
+
// Q^* = (H_0 H_1 ...)^T
|
505
|
+
typename RhsType::PlainObject c(rhs);
|
506
|
+
c.applyOnTheLeft(
|
507
|
+
householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose());
|
508
|
+
|
509
|
+
// Solve T z = c(1:rank, :)
|
510
|
+
dst.topRows(rank) = matrixT()
|
511
|
+
.topLeftCorner(rank, rank)
|
512
|
+
.template triangularView<Upper>()
|
513
|
+
.solve(c.topRows(rank));
|
514
|
+
|
515
|
+
const Index cols = this->cols();
|
516
|
+
if (rank < cols) {
|
517
|
+
// Compute y = Z^* * [ z ]
|
518
|
+
// [ 0 ]
|
519
|
+
dst.bottomRows(cols - rank).setZero();
|
520
|
+
applyZAdjointOnTheLeftInPlace(dst);
|
521
|
+
}
|
522
|
+
|
523
|
+
// Undo permutation to get x = P^{-1} * y.
|
524
|
+
dst = colsPermutation() * dst;
|
525
|
+
}
|
526
|
+
#endif
|
527
|
+
|
528
|
+
namespace internal {
|
529
|
+
|
530
|
+
template<typename DstXprType, typename MatrixType>
|
531
|
+
struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense>
|
532
|
+
{
|
533
|
+
typedef CompleteOrthogonalDecomposition<MatrixType> CodType;
|
534
|
+
typedef Inverse<CodType> SrcXprType;
|
535
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &)
|
536
|
+
{
|
537
|
+
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows()));
|
538
|
+
}
|
539
|
+
};
|
540
|
+
|
541
|
+
} // end namespace internal
|
542
|
+
|
543
|
+
/** \returns the matrix Q as a sequence of householder transformations */
|
544
|
+
template <typename MatrixType>
|
545
|
+
typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
|
546
|
+
CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
|
547
|
+
return m_cpqr.householderQ();
|
548
|
+
}
|
549
|
+
|
550
|
+
/** \return the complete orthogonal decomposition of \c *this.
|
551
|
+
*
|
552
|
+
* \sa class CompleteOrthogonalDecomposition
|
553
|
+
*/
|
554
|
+
template <typename Derived>
|
555
|
+
const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
|
556
|
+
MatrixBase<Derived>::completeOrthogonalDecomposition() const {
|
557
|
+
return CompleteOrthogonalDecomposition<PlainObject>(eval());
|
558
|
+
}
|
559
|
+
|
560
|
+
} // end namespace Eigen
|
561
|
+
|
562
|
+
#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
|