tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,137 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
/*
|
11
|
+
|
12
|
+
* NOTE: This file is the modified version of xpivotL.c file in SuperLU
|
13
|
+
|
14
|
+
* -- SuperLU routine (version 3.0) --
|
15
|
+
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
|
16
|
+
* and Lawrence Berkeley National Lab.
|
17
|
+
* October 15, 2003
|
18
|
+
*
|
19
|
+
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
20
|
+
*
|
21
|
+
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
22
|
+
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
23
|
+
*
|
24
|
+
* Permission is hereby granted to use or copy this program for any
|
25
|
+
* purpose, provided the above notices are retained on all copies.
|
26
|
+
* Permission to modify the code and to distribute modified code is
|
27
|
+
* granted, provided the above notices are retained, and a notice that
|
28
|
+
* the code was modified is included with the above copyright notice.
|
29
|
+
*/
|
30
|
+
#ifndef SPARSELU_PIVOTL_H
|
31
|
+
#define SPARSELU_PIVOTL_H
|
32
|
+
|
33
|
+
namespace Eigen {
|
34
|
+
namespace internal {
|
35
|
+
|
36
|
+
/**
|
37
|
+
* \brief Performs the numerical pivotin on the current column of L, and the CDIV operation.
|
38
|
+
*
|
39
|
+
* Pivot policy :
|
40
|
+
* (1) Compute thresh = u * max_(i>=j) abs(A_ij);
|
41
|
+
* (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
|
42
|
+
* pivot row = k;
|
43
|
+
* ELSE IF abs(A_jj) >= thresh THEN
|
44
|
+
* pivot row = j;
|
45
|
+
* ELSE
|
46
|
+
* pivot row = m;
|
47
|
+
*
|
48
|
+
* Note: If you absolutely want to use a given pivot order, then set u=0.0.
|
49
|
+
*
|
50
|
+
* \param jcol The current column of L
|
51
|
+
* \param diagpivotthresh diagonal pivoting threshold
|
52
|
+
* \param[in,out] perm_r Row permutation (threshold pivoting)
|
53
|
+
* \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
|
54
|
+
* \param[out] pivrow The pivot row
|
55
|
+
* \param glu Global LU data
|
56
|
+
* \return 0 if success, i > 0 if U(i,i) is exactly zero
|
57
|
+
*
|
58
|
+
*/
|
59
|
+
template <typename Scalar, typename StorageIndex>
|
60
|
+
Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu)
|
61
|
+
{
|
62
|
+
|
63
|
+
Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol
|
64
|
+
Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0
|
65
|
+
Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion
|
66
|
+
Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode
|
67
|
+
Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension
|
68
|
+
Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode
|
69
|
+
Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode
|
70
|
+
StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode
|
71
|
+
|
72
|
+
// Determine the largest abs numerical value for partial pivoting
|
73
|
+
Index diagind = iperm_c(jcol); // diagonal index
|
74
|
+
RealScalar pivmax(-1.0);
|
75
|
+
Index pivptr = nsupc;
|
76
|
+
Index diag = emptyIdxLU;
|
77
|
+
RealScalar rtemp;
|
78
|
+
Index isub, icol, itemp, k;
|
79
|
+
for (isub = nsupc; isub < nsupr; ++isub) {
|
80
|
+
using std::abs;
|
81
|
+
rtemp = abs(lu_col_ptr[isub]);
|
82
|
+
if (rtemp > pivmax) {
|
83
|
+
pivmax = rtemp;
|
84
|
+
pivptr = isub;
|
85
|
+
}
|
86
|
+
if (lsub_ptr[isub] == diagind) diag = isub;
|
87
|
+
}
|
88
|
+
|
89
|
+
// Test for singularity
|
90
|
+
if ( pivmax <= RealScalar(0.0) ) {
|
91
|
+
// if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero
|
92
|
+
pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr];
|
93
|
+
perm_r(pivrow) = StorageIndex(jcol);
|
94
|
+
return (jcol+1);
|
95
|
+
}
|
96
|
+
|
97
|
+
RealScalar thresh = diagpivotthresh * pivmax;
|
98
|
+
|
99
|
+
// Choose appropriate pivotal element
|
100
|
+
|
101
|
+
{
|
102
|
+
// Test if the diagonal element can be used as a pivot (given the threshold value)
|
103
|
+
if (diag >= 0 )
|
104
|
+
{
|
105
|
+
// Diagonal element exists
|
106
|
+
using std::abs;
|
107
|
+
rtemp = abs(lu_col_ptr[diag]);
|
108
|
+
if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag;
|
109
|
+
}
|
110
|
+
pivrow = lsub_ptr[pivptr];
|
111
|
+
}
|
112
|
+
|
113
|
+
// Record pivot row
|
114
|
+
perm_r(pivrow) = StorageIndex(jcol);
|
115
|
+
// Interchange row subscripts
|
116
|
+
if (pivptr != nsupc )
|
117
|
+
{
|
118
|
+
std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] );
|
119
|
+
// Interchange numerical values as well, for the two rows in the whole snode
|
120
|
+
// such that L is indexed the same way as A
|
121
|
+
for (icol = 0; icol <= nsupc; icol++)
|
122
|
+
{
|
123
|
+
itemp = pivptr + icol * lda;
|
124
|
+
std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]);
|
125
|
+
}
|
126
|
+
}
|
127
|
+
// cdiv operations
|
128
|
+
Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc];
|
129
|
+
for (k = nsupc+1; k < nsupr; k++)
|
130
|
+
lu_col_ptr[k] *= temp;
|
131
|
+
return 0;
|
132
|
+
}
|
133
|
+
|
134
|
+
} // end namespace internal
|
135
|
+
} // end namespace Eigen
|
136
|
+
|
137
|
+
#endif // SPARSELU_PIVOTL_H
|
@@ -0,0 +1,136 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
/*
|
11
|
+
|
12
|
+
* NOTE: This file is the modified version of [s,d,c,z]pruneL.c file in SuperLU
|
13
|
+
|
14
|
+
* -- SuperLU routine (version 2.0) --
|
15
|
+
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
|
16
|
+
* and Lawrence Berkeley National Lab.
|
17
|
+
* November 15, 1997
|
18
|
+
*
|
19
|
+
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
20
|
+
*
|
21
|
+
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
22
|
+
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
23
|
+
*
|
24
|
+
* Permission is hereby granted to use or copy this program for any
|
25
|
+
* purpose, provided the above notices are retained on all copies.
|
26
|
+
* Permission to modify the code and to distribute modified code is
|
27
|
+
* granted, provided the above notices are retained, and a notice that
|
28
|
+
* the code was modified is included with the above copyright notice.
|
29
|
+
*/
|
30
|
+
#ifndef SPARSELU_PRUNEL_H
|
31
|
+
#define SPARSELU_PRUNEL_H
|
32
|
+
|
33
|
+
namespace Eigen {
|
34
|
+
namespace internal {
|
35
|
+
|
36
|
+
/**
|
37
|
+
* \brief Prunes the L-structure.
|
38
|
+
*
|
39
|
+
* It prunes the L-structure of supernodes whose L-structure contains the current pivot row "pivrow"
|
40
|
+
*
|
41
|
+
*
|
42
|
+
* \param jcol The current column of L
|
43
|
+
* \param[in] perm_r Row permutation
|
44
|
+
* \param[out] pivrow The pivot row
|
45
|
+
* \param nseg Number of segments
|
46
|
+
* \param segrep
|
47
|
+
* \param repfnz
|
48
|
+
* \param[out] xprune
|
49
|
+
* \param glu Global LU data
|
50
|
+
*
|
51
|
+
*/
|
52
|
+
template <typename Scalar, typename StorageIndex>
|
53
|
+
void SparseLUImpl<Scalar,StorageIndex>::pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg,
|
54
|
+
const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu)
|
55
|
+
{
|
56
|
+
// For each supernode-rep irep in U(*,j]
|
57
|
+
Index jsupno = glu.supno(jcol);
|
58
|
+
Index i,irep,irep1;
|
59
|
+
bool movnum, do_prune = false;
|
60
|
+
Index kmin = 0, kmax = 0, minloc, maxloc,krow;
|
61
|
+
for (i = 0; i < nseg; i++)
|
62
|
+
{
|
63
|
+
irep = segrep(i);
|
64
|
+
irep1 = irep + 1;
|
65
|
+
do_prune = false;
|
66
|
+
|
67
|
+
// Don't prune with a zero U-segment
|
68
|
+
if (repfnz(irep) == emptyIdxLU) continue;
|
69
|
+
|
70
|
+
// If a snode overlaps with the next panel, then the U-segment
|
71
|
+
// is fragmented into two parts -- irep and irep1. We should let
|
72
|
+
// pruning occur at the rep-column in irep1s snode.
|
73
|
+
if (glu.supno(irep) == glu.supno(irep1) ) continue; // don't prune
|
74
|
+
|
75
|
+
// If it has not been pruned & it has a nonz in row L(pivrow,i)
|
76
|
+
if (glu.supno(irep) != jsupno )
|
77
|
+
{
|
78
|
+
if ( xprune (irep) >= glu.xlsub(irep1) )
|
79
|
+
{
|
80
|
+
kmin = glu.xlsub(irep);
|
81
|
+
kmax = glu.xlsub(irep1) - 1;
|
82
|
+
for (krow = kmin; krow <= kmax; krow++)
|
83
|
+
{
|
84
|
+
if (glu.lsub(krow) == pivrow)
|
85
|
+
{
|
86
|
+
do_prune = true;
|
87
|
+
break;
|
88
|
+
}
|
89
|
+
}
|
90
|
+
}
|
91
|
+
|
92
|
+
if (do_prune)
|
93
|
+
{
|
94
|
+
// do a quicksort-type partition
|
95
|
+
// movnum=true means that the num values have to be exchanged
|
96
|
+
movnum = false;
|
97
|
+
if (irep == glu.xsup(glu.supno(irep)) ) // Snode of size 1
|
98
|
+
movnum = true;
|
99
|
+
|
100
|
+
while (kmin <= kmax)
|
101
|
+
{
|
102
|
+
if (perm_r(glu.lsub(kmax)) == emptyIdxLU)
|
103
|
+
kmax--;
|
104
|
+
else if ( perm_r(glu.lsub(kmin)) != emptyIdxLU)
|
105
|
+
kmin++;
|
106
|
+
else
|
107
|
+
{
|
108
|
+
// kmin below pivrow (not yet pivoted), and kmax
|
109
|
+
// above pivrow: interchange the two suscripts
|
110
|
+
std::swap(glu.lsub(kmin), glu.lsub(kmax));
|
111
|
+
|
112
|
+
// If the supernode has only one column, then we
|
113
|
+
// only keep one set of subscripts. For any subscript
|
114
|
+
// intercnahge performed, similar interchange must be
|
115
|
+
// done on the numerical values.
|
116
|
+
if (movnum)
|
117
|
+
{
|
118
|
+
minloc = glu.xlusup(irep) + ( kmin - glu.xlsub(irep) );
|
119
|
+
maxloc = glu.xlusup(irep) + ( kmax - glu.xlsub(irep) );
|
120
|
+
std::swap(glu.lusup(minloc), glu.lusup(maxloc));
|
121
|
+
}
|
122
|
+
kmin++;
|
123
|
+
kmax--;
|
124
|
+
}
|
125
|
+
} // end while
|
126
|
+
|
127
|
+
xprune(irep) = StorageIndex(kmin); //Pruning
|
128
|
+
} // end if do_prune
|
129
|
+
} // end pruning
|
130
|
+
} // End for each U-segment
|
131
|
+
}
|
132
|
+
|
133
|
+
} // end namespace internal
|
134
|
+
} // end namespace Eigen
|
135
|
+
|
136
|
+
#endif // SPARSELU_PRUNEL_H
|
@@ -0,0 +1,83 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
/* This file is a modified version of heap_relax_snode.c file in SuperLU
|
11
|
+
* -- SuperLU routine (version 3.0) --
|
12
|
+
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
|
13
|
+
* and Lawrence Berkeley National Lab.
|
14
|
+
* October 15, 2003
|
15
|
+
*
|
16
|
+
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
17
|
+
*
|
18
|
+
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
19
|
+
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
20
|
+
*
|
21
|
+
* Permission is hereby granted to use or copy this program for any
|
22
|
+
* purpose, provided the above notices are retained on all copies.
|
23
|
+
* Permission to modify the code and to distribute modified code is
|
24
|
+
* granted, provided the above notices are retained, and a notice that
|
25
|
+
* the code was modified is included with the above copyright notice.
|
26
|
+
*/
|
27
|
+
|
28
|
+
#ifndef SPARSELU_RELAX_SNODE_H
|
29
|
+
#define SPARSELU_RELAX_SNODE_H
|
30
|
+
|
31
|
+
namespace Eigen {
|
32
|
+
|
33
|
+
namespace internal {
|
34
|
+
|
35
|
+
/**
|
36
|
+
* \brief Identify the initial relaxed supernodes
|
37
|
+
*
|
38
|
+
* This routine is applied to a column elimination tree.
|
39
|
+
* It assumes that the matrix has been reordered according to the postorder of the etree
|
40
|
+
* \param n the number of columns
|
41
|
+
* \param et elimination tree
|
42
|
+
* \param relax_columns Maximum number of columns allowed in a relaxed snode
|
43
|
+
* \param descendants Number of descendants of each node in the etree
|
44
|
+
* \param relax_end last column in a supernode
|
45
|
+
*/
|
46
|
+
template <typename Scalar, typename StorageIndex>
|
47
|
+
void SparseLUImpl<Scalar,StorageIndex>::relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end)
|
48
|
+
{
|
49
|
+
|
50
|
+
// compute the number of descendants of each node in the etree
|
51
|
+
Index parent;
|
52
|
+
relax_end.setConstant(emptyIdxLU);
|
53
|
+
descendants.setZero();
|
54
|
+
for (Index j = 0; j < n; j++)
|
55
|
+
{
|
56
|
+
parent = et(j);
|
57
|
+
if (parent != n) // not the dummy root
|
58
|
+
descendants(parent) += descendants(j) + 1;
|
59
|
+
}
|
60
|
+
// Identify the relaxed supernodes by postorder traversal of the etree
|
61
|
+
Index snode_start; // beginning of a snode
|
62
|
+
for (Index j = 0; j < n; )
|
63
|
+
{
|
64
|
+
parent = et(j);
|
65
|
+
snode_start = j;
|
66
|
+
while ( parent != n && descendants(parent) < relax_columns )
|
67
|
+
{
|
68
|
+
j = parent;
|
69
|
+
parent = et(j);
|
70
|
+
}
|
71
|
+
// Found a supernode in postordered etree, j is the last column
|
72
|
+
relax_end(snode_start) = StorageIndex(j); // Record last column
|
73
|
+
j++;
|
74
|
+
// Search for a new leaf
|
75
|
+
while (descendants(j) != 0 && j < n) j++;
|
76
|
+
} // End postorder traversal of the etree
|
77
|
+
|
78
|
+
}
|
79
|
+
|
80
|
+
} // end namespace internal
|
81
|
+
|
82
|
+
} // end namespace Eigen
|
83
|
+
#endif
|
@@ -0,0 +1,745 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
5
|
+
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_SPARSE_QR_H
|
12
|
+
#define EIGEN_SPARSE_QR_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
template<typename MatrixType, typename OrderingType> class SparseQR;
|
17
|
+
template<typename SparseQRType> struct SparseQRMatrixQReturnType;
|
18
|
+
template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
|
19
|
+
template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
|
20
|
+
namespace internal {
|
21
|
+
template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
|
22
|
+
{
|
23
|
+
typedef typename SparseQRType::MatrixType ReturnType;
|
24
|
+
typedef typename ReturnType::StorageIndex StorageIndex;
|
25
|
+
typedef typename ReturnType::StorageKind StorageKind;
|
26
|
+
enum {
|
27
|
+
RowsAtCompileTime = Dynamic,
|
28
|
+
ColsAtCompileTime = Dynamic
|
29
|
+
};
|
30
|
+
};
|
31
|
+
template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
|
32
|
+
{
|
33
|
+
typedef typename SparseQRType::MatrixType ReturnType;
|
34
|
+
};
|
35
|
+
template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
|
36
|
+
{
|
37
|
+
typedef typename Derived::PlainObject ReturnType;
|
38
|
+
};
|
39
|
+
} // End namespace internal
|
40
|
+
|
41
|
+
/**
|
42
|
+
* \ingroup SparseQR_Module
|
43
|
+
* \class SparseQR
|
44
|
+
* \brief Sparse left-looking rank-revealing QR factorization
|
45
|
+
*
|
46
|
+
* This class implements a left-looking rank-revealing QR decomposition
|
47
|
+
* of sparse matrices. When a column has a norm less than a given tolerance
|
48
|
+
* it is implicitly permuted to the end. The QR factorization thus obtained is
|
49
|
+
* given by A*P = Q*R where R is upper triangular or trapezoidal.
|
50
|
+
*
|
51
|
+
* P is the column permutation which is the product of the fill-reducing and the
|
52
|
+
* rank-revealing permutations. Use colsPermutation() to get it.
|
53
|
+
*
|
54
|
+
* Q is the orthogonal matrix represented as products of Householder reflectors.
|
55
|
+
* Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint.
|
56
|
+
* You can then apply it to a vector.
|
57
|
+
*
|
58
|
+
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
|
59
|
+
* matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
|
60
|
+
*
|
61
|
+
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
|
62
|
+
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
|
63
|
+
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
|
64
|
+
*
|
65
|
+
* \implsparsesolverconcept
|
66
|
+
*
|
67
|
+
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
|
68
|
+
* \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix.
|
69
|
+
*
|
70
|
+
*/
|
71
|
+
template<typename _MatrixType, typename _OrderingType>
|
72
|
+
class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> >
|
73
|
+
{
|
74
|
+
protected:
|
75
|
+
typedef SparseSolverBase<SparseQR<_MatrixType,_OrderingType> > Base;
|
76
|
+
using Base::m_isInitialized;
|
77
|
+
public:
|
78
|
+
using Base::_solve_impl;
|
79
|
+
typedef _MatrixType MatrixType;
|
80
|
+
typedef _OrderingType OrderingType;
|
81
|
+
typedef typename MatrixType::Scalar Scalar;
|
82
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
83
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
84
|
+
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> QRMatrixType;
|
85
|
+
typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
|
86
|
+
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
|
87
|
+
typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
|
88
|
+
|
89
|
+
enum {
|
90
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
91
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
92
|
+
};
|
93
|
+
|
94
|
+
public:
|
95
|
+
SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
96
|
+
{ }
|
97
|
+
|
98
|
+
/** Construct a QR factorization of the matrix \a mat.
|
99
|
+
*
|
100
|
+
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
101
|
+
*
|
102
|
+
* \sa compute()
|
103
|
+
*/
|
104
|
+
explicit SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
105
|
+
{
|
106
|
+
compute(mat);
|
107
|
+
}
|
108
|
+
|
109
|
+
/** Computes the QR factorization of the sparse matrix \a mat.
|
110
|
+
*
|
111
|
+
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
112
|
+
*
|
113
|
+
* \sa analyzePattern(), factorize()
|
114
|
+
*/
|
115
|
+
void compute(const MatrixType& mat)
|
116
|
+
{
|
117
|
+
analyzePattern(mat);
|
118
|
+
factorize(mat);
|
119
|
+
}
|
120
|
+
void analyzePattern(const MatrixType& mat);
|
121
|
+
void factorize(const MatrixType& mat);
|
122
|
+
|
123
|
+
/** \returns the number of rows of the represented matrix.
|
124
|
+
*/
|
125
|
+
inline Index rows() const { return m_pmat.rows(); }
|
126
|
+
|
127
|
+
/** \returns the number of columns of the represented matrix.
|
128
|
+
*/
|
129
|
+
inline Index cols() const { return m_pmat.cols();}
|
130
|
+
|
131
|
+
/** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
|
132
|
+
* \warning The entries of the returned matrix are not sorted. This means that using it in algorithms
|
133
|
+
* expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()),
|
134
|
+
* and coefficient-wise operations. Matrix products and triangular solves are fine though.
|
135
|
+
*
|
136
|
+
* To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix
|
137
|
+
* is required, you can copy it again:
|
138
|
+
* \code
|
139
|
+
* SparseMatrix<double> R = qr.matrixR(); // column-major, not sorted!
|
140
|
+
* SparseMatrix<double,RowMajor> Rr = qr.matrixR(); // row-major, sorted
|
141
|
+
* SparseMatrix<double> Rc = Rr; // column-major, sorted
|
142
|
+
* \endcode
|
143
|
+
*/
|
144
|
+
const QRMatrixType& matrixR() const { return m_R; }
|
145
|
+
|
146
|
+
/** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
|
147
|
+
*
|
148
|
+
* \sa setPivotThreshold()
|
149
|
+
*/
|
150
|
+
Index rank() const
|
151
|
+
{
|
152
|
+
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
|
153
|
+
return m_nonzeropivots;
|
154
|
+
}
|
155
|
+
|
156
|
+
/** \returns an expression of the matrix Q as products of sparse Householder reflectors.
|
157
|
+
* The common usage of this function is to apply it to a dense matrix or vector
|
158
|
+
* \code
|
159
|
+
* VectorXd B1, B2;
|
160
|
+
* // Initialize B1
|
161
|
+
* B2 = matrixQ() * B1;
|
162
|
+
* \endcode
|
163
|
+
*
|
164
|
+
* To get a plain SparseMatrix representation of Q:
|
165
|
+
* \code
|
166
|
+
* SparseMatrix<double> Q;
|
167
|
+
* Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
|
168
|
+
* \endcode
|
169
|
+
* Internally, this call simply performs a sparse product between the matrix Q
|
170
|
+
* and a sparse identity matrix. However, due to the fact that the sparse
|
171
|
+
* reflectors are stored unsorted, two transpositions are needed to sort
|
172
|
+
* them before performing the product.
|
173
|
+
*/
|
174
|
+
SparseQRMatrixQReturnType<SparseQR> matrixQ() const
|
175
|
+
{ return SparseQRMatrixQReturnType<SparseQR>(*this); }
|
176
|
+
|
177
|
+
/** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
|
178
|
+
* It is the combination of the fill-in reducing permutation and numerical column pivoting.
|
179
|
+
*/
|
180
|
+
const PermutationType& colsPermutation() const
|
181
|
+
{
|
182
|
+
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
183
|
+
return m_outputPerm_c;
|
184
|
+
}
|
185
|
+
|
186
|
+
/** \returns A string describing the type of error.
|
187
|
+
* This method is provided to ease debugging, not to handle errors.
|
188
|
+
*/
|
189
|
+
std::string lastErrorMessage() const { return m_lastError; }
|
190
|
+
|
191
|
+
/** \internal */
|
192
|
+
template<typename Rhs, typename Dest>
|
193
|
+
bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
|
194
|
+
{
|
195
|
+
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
|
196
|
+
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
|
197
|
+
|
198
|
+
Index rank = this->rank();
|
199
|
+
|
200
|
+
// Compute Q^* * b;
|
201
|
+
typename Dest::PlainObject y, b;
|
202
|
+
y = this->matrixQ().adjoint() * B;
|
203
|
+
b = y;
|
204
|
+
|
205
|
+
// Solve with the triangular matrix R
|
206
|
+
y.resize((std::max<Index>)(cols(),y.rows()),y.cols());
|
207
|
+
y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
|
208
|
+
y.bottomRows(y.rows()-rank).setZero();
|
209
|
+
|
210
|
+
// Apply the column permutation
|
211
|
+
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
|
212
|
+
else dest = y.topRows(cols());
|
213
|
+
|
214
|
+
m_info = Success;
|
215
|
+
return true;
|
216
|
+
}
|
217
|
+
|
218
|
+
/** Sets the threshold that is used to determine linearly dependent columns during the factorization.
|
219
|
+
*
|
220
|
+
* In practice, if during the factorization the norm of the column that has to be eliminated is below
|
221
|
+
* this threshold, then the entire column is treated as zero, and it is moved at the end.
|
222
|
+
*/
|
223
|
+
void setPivotThreshold(const RealScalar& threshold)
|
224
|
+
{
|
225
|
+
m_useDefaultThreshold = false;
|
226
|
+
m_threshold = threshold;
|
227
|
+
}
|
228
|
+
|
229
|
+
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
|
230
|
+
*
|
231
|
+
* \sa compute()
|
232
|
+
*/
|
233
|
+
template<typename Rhs>
|
234
|
+
inline const Solve<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
|
235
|
+
{
|
236
|
+
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
|
237
|
+
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
|
238
|
+
return Solve<SparseQR, Rhs>(*this, B.derived());
|
239
|
+
}
|
240
|
+
template<typename Rhs>
|
241
|
+
inline const Solve<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
|
242
|
+
{
|
243
|
+
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
|
244
|
+
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
|
245
|
+
return Solve<SparseQR, Rhs>(*this, B.derived());
|
246
|
+
}
|
247
|
+
|
248
|
+
/** \brief Reports whether previous computation was successful.
|
249
|
+
*
|
250
|
+
* \returns \c Success if computation was successful,
|
251
|
+
* \c NumericalIssue if the QR factorization reports a numerical problem
|
252
|
+
* \c InvalidInput if the input matrix is invalid
|
253
|
+
*
|
254
|
+
* \sa iparm()
|
255
|
+
*/
|
256
|
+
ComputationInfo info() const
|
257
|
+
{
|
258
|
+
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
259
|
+
return m_info;
|
260
|
+
}
|
261
|
+
|
262
|
+
|
263
|
+
/** \internal */
|
264
|
+
inline void _sort_matrix_Q()
|
265
|
+
{
|
266
|
+
if(this->m_isQSorted) return;
|
267
|
+
// The matrix Q is sorted during the transposition
|
268
|
+
SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
|
269
|
+
this->m_Q = mQrm;
|
270
|
+
this->m_isQSorted = true;
|
271
|
+
}
|
272
|
+
|
273
|
+
|
274
|
+
protected:
|
275
|
+
bool m_analysisIsok;
|
276
|
+
bool m_factorizationIsok;
|
277
|
+
mutable ComputationInfo m_info;
|
278
|
+
std::string m_lastError;
|
279
|
+
QRMatrixType m_pmat; // Temporary matrix
|
280
|
+
QRMatrixType m_R; // The triangular factor matrix
|
281
|
+
QRMatrixType m_Q; // The orthogonal reflectors
|
282
|
+
ScalarVector m_hcoeffs; // The Householder coefficients
|
283
|
+
PermutationType m_perm_c; // Fill-reducing Column permutation
|
284
|
+
PermutationType m_pivotperm; // The permutation for rank revealing
|
285
|
+
PermutationType m_outputPerm_c; // The final column permutation
|
286
|
+
RealScalar m_threshold; // Threshold to determine null Householder reflections
|
287
|
+
bool m_useDefaultThreshold; // Use default threshold
|
288
|
+
Index m_nonzeropivots; // Number of non zero pivots found
|
289
|
+
IndexVector m_etree; // Column elimination tree
|
290
|
+
IndexVector m_firstRowElt; // First element in each row
|
291
|
+
bool m_isQSorted; // whether Q is sorted or not
|
292
|
+
bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
|
293
|
+
|
294
|
+
template <typename, typename > friend struct SparseQR_QProduct;
|
295
|
+
|
296
|
+
};
|
297
|
+
|
298
|
+
/** \brief Preprocessing step of a QR factorization
|
299
|
+
*
|
300
|
+
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
301
|
+
*
|
302
|
+
* In this step, the fill-reducing permutation is computed and applied to the columns of A
|
303
|
+
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
|
304
|
+
*
|
305
|
+
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
|
306
|
+
*/
|
307
|
+
template <typename MatrixType, typename OrderingType>
|
308
|
+
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
309
|
+
{
|
310
|
+
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
|
311
|
+
// Copy to a column major matrix if the input is rowmajor
|
312
|
+
typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
|
313
|
+
// Compute the column fill reducing ordering
|
314
|
+
OrderingType ord;
|
315
|
+
ord(matCpy, m_perm_c);
|
316
|
+
Index n = mat.cols();
|
317
|
+
Index m = mat.rows();
|
318
|
+
Index diagSize = (std::min)(m,n);
|
319
|
+
|
320
|
+
if (!m_perm_c.size())
|
321
|
+
{
|
322
|
+
m_perm_c.resize(n);
|
323
|
+
m_perm_c.indices().setLinSpaced(n, 0,StorageIndex(n-1));
|
324
|
+
}
|
325
|
+
|
326
|
+
// Compute the column elimination tree of the permuted matrix
|
327
|
+
m_outputPerm_c = m_perm_c.inverse();
|
328
|
+
internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
329
|
+
m_isEtreeOk = true;
|
330
|
+
|
331
|
+
m_R.resize(m, n);
|
332
|
+
m_Q.resize(m, diagSize);
|
333
|
+
|
334
|
+
// Allocate space for nonzero elements : rough estimation
|
335
|
+
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
|
336
|
+
m_Q.reserve(2*mat.nonZeros());
|
337
|
+
m_hcoeffs.resize(diagSize);
|
338
|
+
m_analysisIsok = true;
|
339
|
+
}
|
340
|
+
|
341
|
+
/** \brief Performs the numerical QR factorization of the input matrix
|
342
|
+
*
|
343
|
+
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
|
344
|
+
* a matrix having the same sparsity pattern than \a mat.
|
345
|
+
*
|
346
|
+
* \param mat The sparse column-major matrix
|
347
|
+
*/
|
348
|
+
template <typename MatrixType, typename OrderingType>
|
349
|
+
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
350
|
+
{
|
351
|
+
using std::abs;
|
352
|
+
|
353
|
+
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
|
354
|
+
StorageIndex m = StorageIndex(mat.rows());
|
355
|
+
StorageIndex n = StorageIndex(mat.cols());
|
356
|
+
StorageIndex diagSize = (std::min)(m,n);
|
357
|
+
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
|
358
|
+
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
359
|
+
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
360
|
+
ScalarVector tval(m); // The dense vector used to compute the current column
|
361
|
+
RealScalar pivotThreshold = m_threshold;
|
362
|
+
|
363
|
+
m_R.setZero();
|
364
|
+
m_Q.setZero();
|
365
|
+
m_pmat = mat;
|
366
|
+
if(!m_isEtreeOk)
|
367
|
+
{
|
368
|
+
m_outputPerm_c = m_perm_c.inverse();
|
369
|
+
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
370
|
+
m_isEtreeOk = true;
|
371
|
+
}
|
372
|
+
|
373
|
+
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
374
|
+
|
375
|
+
// Apply the fill-in reducing permutation lazily:
|
376
|
+
{
|
377
|
+
// If the input is row major, copy the original column indices,
|
378
|
+
// otherwise directly use the input matrix
|
379
|
+
//
|
380
|
+
IndexVector originalOuterIndicesCpy;
|
381
|
+
const StorageIndex *originalOuterIndices = mat.outerIndexPtr();
|
382
|
+
if(MatrixType::IsRowMajor)
|
383
|
+
{
|
384
|
+
originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
|
385
|
+
originalOuterIndices = originalOuterIndicesCpy.data();
|
386
|
+
}
|
387
|
+
|
388
|
+
for (int i = 0; i < n; i++)
|
389
|
+
{
|
390
|
+
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
|
391
|
+
m_pmat.outerIndexPtr()[p] = originalOuterIndices[i];
|
392
|
+
m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i];
|
393
|
+
}
|
394
|
+
}
|
395
|
+
|
396
|
+
/* Compute the default threshold as in MatLab, see:
|
397
|
+
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
398
|
+
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
399
|
+
*/
|
400
|
+
if(m_useDefaultThreshold)
|
401
|
+
{
|
402
|
+
RealScalar max2Norm = 0.0;
|
403
|
+
for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm());
|
404
|
+
if(max2Norm==RealScalar(0))
|
405
|
+
max2Norm = RealScalar(1);
|
406
|
+
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
|
407
|
+
}
|
408
|
+
|
409
|
+
// Initialize the numerical permutation
|
410
|
+
m_pivotperm.setIdentity(n);
|
411
|
+
|
412
|
+
StorageIndex nonzeroCol = 0; // Record the number of valid pivots
|
413
|
+
m_Q.startVec(0);
|
414
|
+
|
415
|
+
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
|
416
|
+
for (StorageIndex col = 0; col < n; ++col)
|
417
|
+
{
|
418
|
+
mark.setConstant(-1);
|
419
|
+
m_R.startVec(col);
|
420
|
+
mark(nonzeroCol) = col;
|
421
|
+
Qidx(0) = nonzeroCol;
|
422
|
+
nzcolR = 0; nzcolQ = 1;
|
423
|
+
bool found_diag = nonzeroCol>=m;
|
424
|
+
tval.setZero();
|
425
|
+
|
426
|
+
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
|
427
|
+
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
|
428
|
+
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
|
429
|
+
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
|
430
|
+
for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
431
|
+
{
|
432
|
+
StorageIndex curIdx = nonzeroCol;
|
433
|
+
if(itp) curIdx = StorageIndex(itp.row());
|
434
|
+
if(curIdx == nonzeroCol) found_diag = true;
|
435
|
+
|
436
|
+
// Get the nonzeros indexes of the current column of R
|
437
|
+
StorageIndex st = m_firstRowElt(curIdx); // The traversal of the etree starts here
|
438
|
+
if (st < 0 )
|
439
|
+
{
|
440
|
+
m_lastError = "Empty row found during numerical factorization";
|
441
|
+
m_info = InvalidInput;
|
442
|
+
return;
|
443
|
+
}
|
444
|
+
|
445
|
+
// Traverse the etree
|
446
|
+
Index bi = nzcolR;
|
447
|
+
for (; mark(st) != col; st = m_etree(st))
|
448
|
+
{
|
449
|
+
Ridx(nzcolR) = st; // Add this row to the list,
|
450
|
+
mark(st) = col; // and mark this row as visited
|
451
|
+
nzcolR++;
|
452
|
+
}
|
453
|
+
|
454
|
+
// Reverse the list to get the topological ordering
|
455
|
+
Index nt = nzcolR-bi;
|
456
|
+
for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
|
457
|
+
|
458
|
+
// Copy the current (curIdx,pcol) value of the input matrix
|
459
|
+
if(itp) tval(curIdx) = itp.value();
|
460
|
+
else tval(curIdx) = Scalar(0);
|
461
|
+
|
462
|
+
// Compute the pattern of Q(:,k)
|
463
|
+
if(curIdx > nonzeroCol && mark(curIdx) != col )
|
464
|
+
{
|
465
|
+
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
|
466
|
+
mark(curIdx) = col; // and mark it as visited
|
467
|
+
nzcolQ++;
|
468
|
+
}
|
469
|
+
}
|
470
|
+
|
471
|
+
// Browse all the indexes of R(:,col) in reverse order
|
472
|
+
for (Index i = nzcolR-1; i >= 0; i--)
|
473
|
+
{
|
474
|
+
Index curIdx = Ridx(i);
|
475
|
+
|
476
|
+
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
|
477
|
+
Scalar tdot(0);
|
478
|
+
|
479
|
+
// First compute q' * tval
|
480
|
+
tdot = m_Q.col(curIdx).dot(tval);
|
481
|
+
|
482
|
+
tdot *= m_hcoeffs(curIdx);
|
483
|
+
|
484
|
+
// Then update tval = tval - q * tau
|
485
|
+
// FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
|
486
|
+
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
|
487
|
+
tval(itq.row()) -= itq.value() * tdot;
|
488
|
+
|
489
|
+
// Detect fill-in for the current column of Q
|
490
|
+
if(m_etree(Ridx(i)) == nonzeroCol)
|
491
|
+
{
|
492
|
+
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
|
493
|
+
{
|
494
|
+
StorageIndex iQ = StorageIndex(itq.row());
|
495
|
+
if (mark(iQ) != col)
|
496
|
+
{
|
497
|
+
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
|
498
|
+
mark(iQ) = col; // and mark it as visited
|
499
|
+
}
|
500
|
+
}
|
501
|
+
}
|
502
|
+
} // End update current column
|
503
|
+
|
504
|
+
Scalar tau = RealScalar(0);
|
505
|
+
RealScalar beta = 0;
|
506
|
+
|
507
|
+
if(nonzeroCol < diagSize)
|
508
|
+
{
|
509
|
+
// Compute the Householder reflection that eliminate the current column
|
510
|
+
// FIXME this step should call the Householder module.
|
511
|
+
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
512
|
+
|
513
|
+
// First, the squared norm of Q((col+1):m, col)
|
514
|
+
RealScalar sqrNorm = 0.;
|
515
|
+
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
516
|
+
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
517
|
+
{
|
518
|
+
beta = numext::real(c0);
|
519
|
+
tval(Qidx(0)) = 1;
|
520
|
+
}
|
521
|
+
else
|
522
|
+
{
|
523
|
+
using std::sqrt;
|
524
|
+
beta = sqrt(numext::abs2(c0) + sqrNorm);
|
525
|
+
if(numext::real(c0) >= RealScalar(0))
|
526
|
+
beta = -beta;
|
527
|
+
tval(Qidx(0)) = 1;
|
528
|
+
for (Index itq = 1; itq < nzcolQ; ++itq)
|
529
|
+
tval(Qidx(itq)) /= (c0 - beta);
|
530
|
+
tau = numext::conj((beta-c0) / beta);
|
531
|
+
|
532
|
+
}
|
533
|
+
}
|
534
|
+
|
535
|
+
// Insert values in R
|
536
|
+
for (Index i = nzcolR-1; i >= 0; i--)
|
537
|
+
{
|
538
|
+
Index curIdx = Ridx(i);
|
539
|
+
if(curIdx < nonzeroCol)
|
540
|
+
{
|
541
|
+
m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
|
542
|
+
tval(curIdx) = Scalar(0.);
|
543
|
+
}
|
544
|
+
}
|
545
|
+
|
546
|
+
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
|
547
|
+
{
|
548
|
+
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
|
549
|
+
// The householder coefficient
|
550
|
+
m_hcoeffs(nonzeroCol) = tau;
|
551
|
+
// Record the householder reflections
|
552
|
+
for (Index itq = 0; itq < nzcolQ; ++itq)
|
553
|
+
{
|
554
|
+
Index iQ = Qidx(itq);
|
555
|
+
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
|
556
|
+
tval(iQ) = Scalar(0.);
|
557
|
+
}
|
558
|
+
nonzeroCol++;
|
559
|
+
if(nonzeroCol<diagSize)
|
560
|
+
m_Q.startVec(nonzeroCol);
|
561
|
+
}
|
562
|
+
else
|
563
|
+
{
|
564
|
+
// Zero pivot found: move implicitly this column to the end
|
565
|
+
for (Index j = nonzeroCol; j < n-1; j++)
|
566
|
+
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
|
567
|
+
|
568
|
+
// Recompute the column elimination tree
|
569
|
+
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
|
570
|
+
m_isEtreeOk = false;
|
571
|
+
}
|
572
|
+
}
|
573
|
+
|
574
|
+
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
|
575
|
+
|
576
|
+
// Finalize the column pointers of the sparse matrices R and Q
|
577
|
+
m_Q.finalize();
|
578
|
+
m_Q.makeCompressed();
|
579
|
+
m_R.finalize();
|
580
|
+
m_R.makeCompressed();
|
581
|
+
m_isQSorted = false;
|
582
|
+
|
583
|
+
m_nonzeropivots = nonzeroCol;
|
584
|
+
|
585
|
+
if(nonzeroCol<n)
|
586
|
+
{
|
587
|
+
// Permute the triangular factor to put the 'dead' columns to the end
|
588
|
+
QRMatrixType tempR(m_R);
|
589
|
+
m_R = tempR * m_pivotperm;
|
590
|
+
|
591
|
+
// Update the column permutation
|
592
|
+
m_outputPerm_c = m_outputPerm_c * m_pivotperm;
|
593
|
+
}
|
594
|
+
|
595
|
+
m_isInitialized = true;
|
596
|
+
m_factorizationIsok = true;
|
597
|
+
m_info = Success;
|
598
|
+
}
|
599
|
+
|
600
|
+
template <typename SparseQRType, typename Derived>
|
601
|
+
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
|
602
|
+
{
|
603
|
+
typedef typename SparseQRType::QRMatrixType MatrixType;
|
604
|
+
typedef typename SparseQRType::Scalar Scalar;
|
605
|
+
// Get the references
|
606
|
+
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
|
607
|
+
m_qr(qr),m_other(other),m_transpose(transpose) {}
|
608
|
+
inline Index rows() const { return m_qr.matrixQ().rows(); }
|
609
|
+
inline Index cols() const { return m_other.cols(); }
|
610
|
+
|
611
|
+
// Assign to a vector
|
612
|
+
template<typename DesType>
|
613
|
+
void evalTo(DesType& res) const
|
614
|
+
{
|
615
|
+
Index m = m_qr.rows();
|
616
|
+
Index n = m_qr.cols();
|
617
|
+
Index diagSize = (std::min)(m,n);
|
618
|
+
res = m_other;
|
619
|
+
if (m_transpose)
|
620
|
+
{
|
621
|
+
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
622
|
+
//Compute res = Q' * other column by column
|
623
|
+
for(Index j = 0; j < res.cols(); j++){
|
624
|
+
for (Index k = 0; k < diagSize; k++)
|
625
|
+
{
|
626
|
+
Scalar tau = Scalar(0);
|
627
|
+
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
628
|
+
if(tau==Scalar(0)) continue;
|
629
|
+
tau = tau * m_qr.m_hcoeffs(k);
|
630
|
+
res.col(j) -= tau * m_qr.m_Q.col(k);
|
631
|
+
}
|
632
|
+
}
|
633
|
+
}
|
634
|
+
else
|
635
|
+
{
|
636
|
+
eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes");
|
637
|
+
|
638
|
+
res.conservativeResize(rows(), cols());
|
639
|
+
|
640
|
+
// Compute res = Q * other column by column
|
641
|
+
for(Index j = 0; j < res.cols(); j++)
|
642
|
+
{
|
643
|
+
for (Index k = diagSize-1; k >=0; k--)
|
644
|
+
{
|
645
|
+
Scalar tau = Scalar(0);
|
646
|
+
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
647
|
+
if(tau==Scalar(0)) continue;
|
648
|
+
tau = tau * numext::conj(m_qr.m_hcoeffs(k));
|
649
|
+
res.col(j) -= tau * m_qr.m_Q.col(k);
|
650
|
+
}
|
651
|
+
}
|
652
|
+
}
|
653
|
+
}
|
654
|
+
|
655
|
+
const SparseQRType& m_qr;
|
656
|
+
const Derived& m_other;
|
657
|
+
bool m_transpose; // TODO this actually means adjoint
|
658
|
+
};
|
659
|
+
|
660
|
+
template<typename SparseQRType>
|
661
|
+
struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
|
662
|
+
{
|
663
|
+
typedef typename SparseQRType::Scalar Scalar;
|
664
|
+
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
665
|
+
enum {
|
666
|
+
RowsAtCompileTime = Dynamic,
|
667
|
+
ColsAtCompileTime = Dynamic
|
668
|
+
};
|
669
|
+
explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
|
670
|
+
template<typename Derived>
|
671
|
+
SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
|
672
|
+
{
|
673
|
+
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
|
674
|
+
}
|
675
|
+
// To use for operations with the adjoint of Q
|
676
|
+
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
|
677
|
+
{
|
678
|
+
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
679
|
+
}
|
680
|
+
inline Index rows() const { return m_qr.rows(); }
|
681
|
+
inline Index cols() const { return m_qr.rows(); }
|
682
|
+
// To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment
|
683
|
+
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
|
684
|
+
{
|
685
|
+
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
686
|
+
}
|
687
|
+
const SparseQRType& m_qr;
|
688
|
+
};
|
689
|
+
|
690
|
+
// TODO this actually represents the adjoint of Q
|
691
|
+
template<typename SparseQRType>
|
692
|
+
struct SparseQRMatrixQTransposeReturnType
|
693
|
+
{
|
694
|
+
explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
|
695
|
+
template<typename Derived>
|
696
|
+
SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
|
697
|
+
{
|
698
|
+
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
|
699
|
+
}
|
700
|
+
const SparseQRType& m_qr;
|
701
|
+
};
|
702
|
+
|
703
|
+
namespace internal {
|
704
|
+
|
705
|
+
template<typename SparseQRType>
|
706
|
+
struct evaluator_traits<SparseQRMatrixQReturnType<SparseQRType> >
|
707
|
+
{
|
708
|
+
typedef typename SparseQRType::MatrixType MatrixType;
|
709
|
+
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
|
710
|
+
typedef SparseShape Shape;
|
711
|
+
};
|
712
|
+
|
713
|
+
template< typename DstXprType, typename SparseQRType>
|
714
|
+
struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>, Sparse2Sparse>
|
715
|
+
{
|
716
|
+
typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType;
|
717
|
+
typedef typename DstXprType::Scalar Scalar;
|
718
|
+
typedef typename DstXprType::StorageIndex StorageIndex;
|
719
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/)
|
720
|
+
{
|
721
|
+
typename DstXprType::PlainObject idMat(src.rows(), src.cols());
|
722
|
+
idMat.setIdentity();
|
723
|
+
// Sort the sparse householder reflectors if needed
|
724
|
+
const_cast<SparseQRType *>(&src.m_qr)->_sort_matrix_Q();
|
725
|
+
dst = SparseQR_QProduct<SparseQRType, DstXprType>(src.m_qr, idMat, false);
|
726
|
+
}
|
727
|
+
};
|
728
|
+
|
729
|
+
template< typename DstXprType, typename SparseQRType>
|
730
|
+
struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>, Sparse2Dense>
|
731
|
+
{
|
732
|
+
typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType;
|
733
|
+
typedef typename DstXprType::Scalar Scalar;
|
734
|
+
typedef typename DstXprType::StorageIndex StorageIndex;
|
735
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/)
|
736
|
+
{
|
737
|
+
dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows());
|
738
|
+
}
|
739
|
+
};
|
740
|
+
|
741
|
+
} // end namespace internal
|
742
|
+
|
743
|
+
} // end namespace Eigen
|
744
|
+
|
745
|
+
#endif
|