tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,654 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_REAL_QZ_H
|
11
|
+
#define EIGEN_REAL_QZ_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
16
|
+
*
|
17
|
+
*
|
18
|
+
* \class RealQZ
|
19
|
+
*
|
20
|
+
* \brief Performs a real QZ decomposition of a pair of square matrices
|
21
|
+
*
|
22
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the
|
23
|
+
* real QZ decomposition; this is expected to be an instantiation of the
|
24
|
+
* Matrix class template.
|
25
|
+
*
|
26
|
+
* Given a real square matrices A and B, this class computes the real QZ
|
27
|
+
* decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
|
28
|
+
* real orthogonal matrixes, T is upper-triangular matrix, and S is upper
|
29
|
+
* quasi-triangular matrix. An orthogonal matrix is a matrix whose
|
30
|
+
* inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
|
31
|
+
* matrix is a block-triangular matrix whose diagonal consists of 1-by-1
|
32
|
+
* blocks and 2-by-2 blocks where further reduction is impossible due to
|
33
|
+
* complex eigenvalues.
|
34
|
+
*
|
35
|
+
* The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
|
36
|
+
* 1x1 and 2x2 blocks on the diagonals of S and T.
|
37
|
+
*
|
38
|
+
* Call the function compute() to compute the real QZ decomposition of a
|
39
|
+
* given pair of matrices. Alternatively, you can use the
|
40
|
+
* RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
|
41
|
+
* constructor which computes the real QZ decomposition at construction
|
42
|
+
* time. Once the decomposition is computed, you can use the matrixS(),
|
43
|
+
* matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
|
44
|
+
* S, T, Q and Z in the decomposition. If computeQZ==false, some time
|
45
|
+
* is saved by not computing matrices Q and Z.
|
46
|
+
*
|
47
|
+
* Example: \include RealQZ_compute.cpp
|
48
|
+
* Output: \include RealQZ_compute.out
|
49
|
+
*
|
50
|
+
* \note The implementation is based on the algorithm in "Matrix Computations"
|
51
|
+
* by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
|
52
|
+
* generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
|
53
|
+
*
|
54
|
+
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
55
|
+
*/
|
56
|
+
|
57
|
+
template<typename _MatrixType> class RealQZ
|
58
|
+
{
|
59
|
+
public:
|
60
|
+
typedef _MatrixType MatrixType;
|
61
|
+
enum {
|
62
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
63
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
64
|
+
Options = MatrixType::Options,
|
65
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
66
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
67
|
+
};
|
68
|
+
typedef typename MatrixType::Scalar Scalar;
|
69
|
+
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
70
|
+
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
71
|
+
|
72
|
+
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
|
73
|
+
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
74
|
+
|
75
|
+
/** \brief Default constructor.
|
76
|
+
*
|
77
|
+
* \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed.
|
78
|
+
*
|
79
|
+
* The default constructor is useful in cases in which the user intends to
|
80
|
+
* perform decompositions via compute(). The \p size parameter is only
|
81
|
+
* used as a hint. It is not an error to give a wrong \p size, but it may
|
82
|
+
* impair performance.
|
83
|
+
*
|
84
|
+
* \sa compute() for an example.
|
85
|
+
*/
|
86
|
+
explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) :
|
87
|
+
m_S(size, size),
|
88
|
+
m_T(size, size),
|
89
|
+
m_Q(size, size),
|
90
|
+
m_Z(size, size),
|
91
|
+
m_workspace(size*2),
|
92
|
+
m_maxIters(400),
|
93
|
+
m_isInitialized(false)
|
94
|
+
{ }
|
95
|
+
|
96
|
+
/** \brief Constructor; computes real QZ decomposition of given matrices
|
97
|
+
*
|
98
|
+
* \param[in] A Matrix A.
|
99
|
+
* \param[in] B Matrix B.
|
100
|
+
* \param[in] computeQZ If false, A and Z are not computed.
|
101
|
+
*
|
102
|
+
* This constructor calls compute() to compute the QZ decomposition.
|
103
|
+
*/
|
104
|
+
RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
|
105
|
+
m_S(A.rows(),A.cols()),
|
106
|
+
m_T(A.rows(),A.cols()),
|
107
|
+
m_Q(A.rows(),A.cols()),
|
108
|
+
m_Z(A.rows(),A.cols()),
|
109
|
+
m_workspace(A.rows()*2),
|
110
|
+
m_maxIters(400),
|
111
|
+
m_isInitialized(false) {
|
112
|
+
compute(A, B, computeQZ);
|
113
|
+
}
|
114
|
+
|
115
|
+
/** \brief Returns matrix Q in the QZ decomposition.
|
116
|
+
*
|
117
|
+
* \returns A const reference to the matrix Q.
|
118
|
+
*/
|
119
|
+
const MatrixType& matrixQ() const {
|
120
|
+
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
|
121
|
+
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
|
122
|
+
return m_Q;
|
123
|
+
}
|
124
|
+
|
125
|
+
/** \brief Returns matrix Z in the QZ decomposition.
|
126
|
+
*
|
127
|
+
* \returns A const reference to the matrix Z.
|
128
|
+
*/
|
129
|
+
const MatrixType& matrixZ() const {
|
130
|
+
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
|
131
|
+
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
|
132
|
+
return m_Z;
|
133
|
+
}
|
134
|
+
|
135
|
+
/** \brief Returns matrix S in the QZ decomposition.
|
136
|
+
*
|
137
|
+
* \returns A const reference to the matrix S.
|
138
|
+
*/
|
139
|
+
const MatrixType& matrixS() const {
|
140
|
+
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
|
141
|
+
return m_S;
|
142
|
+
}
|
143
|
+
|
144
|
+
/** \brief Returns matrix S in the QZ decomposition.
|
145
|
+
*
|
146
|
+
* \returns A const reference to the matrix S.
|
147
|
+
*/
|
148
|
+
const MatrixType& matrixT() const {
|
149
|
+
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
|
150
|
+
return m_T;
|
151
|
+
}
|
152
|
+
|
153
|
+
/** \brief Computes QZ decomposition of given matrix.
|
154
|
+
*
|
155
|
+
* \param[in] A Matrix A.
|
156
|
+
* \param[in] B Matrix B.
|
157
|
+
* \param[in] computeQZ If false, A and Z are not computed.
|
158
|
+
* \returns Reference to \c *this
|
159
|
+
*/
|
160
|
+
RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
|
161
|
+
|
162
|
+
/** \brief Reports whether previous computation was successful.
|
163
|
+
*
|
164
|
+
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
165
|
+
*/
|
166
|
+
ComputationInfo info() const
|
167
|
+
{
|
168
|
+
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
|
169
|
+
return m_info;
|
170
|
+
}
|
171
|
+
|
172
|
+
/** \brief Returns number of performed QR-like iterations.
|
173
|
+
*/
|
174
|
+
Index iterations() const
|
175
|
+
{
|
176
|
+
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
|
177
|
+
return m_global_iter;
|
178
|
+
}
|
179
|
+
|
180
|
+
/** Sets the maximal number of iterations allowed to converge to one eigenvalue
|
181
|
+
* or decouple the problem.
|
182
|
+
*/
|
183
|
+
RealQZ& setMaxIterations(Index maxIters)
|
184
|
+
{
|
185
|
+
m_maxIters = maxIters;
|
186
|
+
return *this;
|
187
|
+
}
|
188
|
+
|
189
|
+
private:
|
190
|
+
|
191
|
+
MatrixType m_S, m_T, m_Q, m_Z;
|
192
|
+
Matrix<Scalar,Dynamic,1> m_workspace;
|
193
|
+
ComputationInfo m_info;
|
194
|
+
Index m_maxIters;
|
195
|
+
bool m_isInitialized;
|
196
|
+
bool m_computeQZ;
|
197
|
+
Scalar m_normOfT, m_normOfS;
|
198
|
+
Index m_global_iter;
|
199
|
+
|
200
|
+
typedef Matrix<Scalar,3,1> Vector3s;
|
201
|
+
typedef Matrix<Scalar,2,1> Vector2s;
|
202
|
+
typedef Matrix<Scalar,2,2> Matrix2s;
|
203
|
+
typedef JacobiRotation<Scalar> JRs;
|
204
|
+
|
205
|
+
void hessenbergTriangular();
|
206
|
+
void computeNorms();
|
207
|
+
Index findSmallSubdiagEntry(Index iu);
|
208
|
+
Index findSmallDiagEntry(Index f, Index l);
|
209
|
+
void splitOffTwoRows(Index i);
|
210
|
+
void pushDownZero(Index z, Index f, Index l);
|
211
|
+
void step(Index f, Index l, Index iter);
|
212
|
+
|
213
|
+
}; // RealQZ
|
214
|
+
|
215
|
+
/** \internal Reduces S and T to upper Hessenberg - triangular form */
|
216
|
+
template<typename MatrixType>
|
217
|
+
void RealQZ<MatrixType>::hessenbergTriangular()
|
218
|
+
{
|
219
|
+
|
220
|
+
const Index dim = m_S.cols();
|
221
|
+
|
222
|
+
// perform QR decomposition of T, overwrite T with R, save Q
|
223
|
+
HouseholderQR<MatrixType> qrT(m_T);
|
224
|
+
m_T = qrT.matrixQR();
|
225
|
+
m_T.template triangularView<StrictlyLower>().setZero();
|
226
|
+
m_Q = qrT.householderQ();
|
227
|
+
// overwrite S with Q* S
|
228
|
+
m_S.applyOnTheLeft(m_Q.adjoint());
|
229
|
+
// init Z as Identity
|
230
|
+
if (m_computeQZ)
|
231
|
+
m_Z = MatrixType::Identity(dim,dim);
|
232
|
+
// reduce S to upper Hessenberg with Givens rotations
|
233
|
+
for (Index j=0; j<=dim-3; j++) {
|
234
|
+
for (Index i=dim-1; i>=j+2; i--) {
|
235
|
+
JRs G;
|
236
|
+
// kill S(i,j)
|
237
|
+
if(m_S.coeff(i,j) != 0)
|
238
|
+
{
|
239
|
+
G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
|
240
|
+
m_S.coeffRef(i,j) = Scalar(0.0);
|
241
|
+
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
|
242
|
+
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
|
243
|
+
// update Q
|
244
|
+
if (m_computeQZ)
|
245
|
+
m_Q.applyOnTheRight(i-1,i,G);
|
246
|
+
}
|
247
|
+
// kill T(i,i-1)
|
248
|
+
if(m_T.coeff(i,i-1)!=Scalar(0))
|
249
|
+
{
|
250
|
+
G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
|
251
|
+
m_T.coeffRef(i,i-1) = Scalar(0.0);
|
252
|
+
m_S.applyOnTheRight(i,i-1,G);
|
253
|
+
m_T.topRows(i).applyOnTheRight(i,i-1,G);
|
254
|
+
// update Z
|
255
|
+
if (m_computeQZ)
|
256
|
+
m_Z.applyOnTheLeft(i,i-1,G.adjoint());
|
257
|
+
}
|
258
|
+
}
|
259
|
+
}
|
260
|
+
}
|
261
|
+
|
262
|
+
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
|
263
|
+
template<typename MatrixType>
|
264
|
+
inline void RealQZ<MatrixType>::computeNorms()
|
265
|
+
{
|
266
|
+
const Index size = m_S.cols();
|
267
|
+
m_normOfS = Scalar(0.0);
|
268
|
+
m_normOfT = Scalar(0.0);
|
269
|
+
for (Index j = 0; j < size; ++j)
|
270
|
+
{
|
271
|
+
m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
|
272
|
+
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
|
273
|
+
}
|
274
|
+
}
|
275
|
+
|
276
|
+
|
277
|
+
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
|
278
|
+
template<typename MatrixType>
|
279
|
+
inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
|
280
|
+
{
|
281
|
+
using std::abs;
|
282
|
+
Index res = iu;
|
283
|
+
while (res > 0)
|
284
|
+
{
|
285
|
+
Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
|
286
|
+
if (s == Scalar(0.0))
|
287
|
+
s = m_normOfS;
|
288
|
+
if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
|
289
|
+
break;
|
290
|
+
res--;
|
291
|
+
}
|
292
|
+
return res;
|
293
|
+
}
|
294
|
+
|
295
|
+
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
|
296
|
+
template<typename MatrixType>
|
297
|
+
inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
|
298
|
+
{
|
299
|
+
using std::abs;
|
300
|
+
Index res = l;
|
301
|
+
while (res >= f) {
|
302
|
+
if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
|
303
|
+
break;
|
304
|
+
res--;
|
305
|
+
}
|
306
|
+
return res;
|
307
|
+
}
|
308
|
+
|
309
|
+
/** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
|
310
|
+
template<typename MatrixType>
|
311
|
+
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
|
312
|
+
{
|
313
|
+
using std::abs;
|
314
|
+
using std::sqrt;
|
315
|
+
const Index dim=m_S.cols();
|
316
|
+
if (abs(m_S.coeff(i+1,i))==Scalar(0))
|
317
|
+
return;
|
318
|
+
Index j = findSmallDiagEntry(i,i+1);
|
319
|
+
if (j==i-1)
|
320
|
+
{
|
321
|
+
// block of (S T^{-1})
|
322
|
+
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
|
323
|
+
template solve<OnTheRight>(m_S.template block<2,2>(i,i));
|
324
|
+
Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
|
325
|
+
Scalar q = p*p + STi(1,0)*STi(0,1);
|
326
|
+
if (q>=0) {
|
327
|
+
Scalar z = sqrt(q);
|
328
|
+
// one QR-like iteration for ABi - lambda I
|
329
|
+
// is enough - when we know exact eigenvalue in advance,
|
330
|
+
// convergence is immediate
|
331
|
+
JRs G;
|
332
|
+
if (p>=0)
|
333
|
+
G.makeGivens(p + z, STi(1,0));
|
334
|
+
else
|
335
|
+
G.makeGivens(p - z, STi(1,0));
|
336
|
+
m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
|
337
|
+
m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
|
338
|
+
// update Q
|
339
|
+
if (m_computeQZ)
|
340
|
+
m_Q.applyOnTheRight(i,i+1,G);
|
341
|
+
|
342
|
+
G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
|
343
|
+
m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
|
344
|
+
m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
|
345
|
+
// update Z
|
346
|
+
if (m_computeQZ)
|
347
|
+
m_Z.applyOnTheLeft(i+1,i,G.adjoint());
|
348
|
+
|
349
|
+
m_S.coeffRef(i+1,i) = Scalar(0.0);
|
350
|
+
m_T.coeffRef(i+1,i) = Scalar(0.0);
|
351
|
+
}
|
352
|
+
}
|
353
|
+
else
|
354
|
+
{
|
355
|
+
pushDownZero(j,i,i+1);
|
356
|
+
}
|
357
|
+
}
|
358
|
+
|
359
|
+
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
|
360
|
+
template<typename MatrixType>
|
361
|
+
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
|
362
|
+
{
|
363
|
+
JRs G;
|
364
|
+
const Index dim = m_S.cols();
|
365
|
+
for (Index zz=z; zz<l; zz++)
|
366
|
+
{
|
367
|
+
// push 0 down
|
368
|
+
Index firstColS = zz>f ? (zz-1) : zz;
|
369
|
+
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
|
370
|
+
m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
|
371
|
+
m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
|
372
|
+
m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
|
373
|
+
// update Q
|
374
|
+
if (m_computeQZ)
|
375
|
+
m_Q.applyOnTheRight(zz,zz+1,G);
|
376
|
+
// kill S(zz+1, zz-1)
|
377
|
+
if (zz>f)
|
378
|
+
{
|
379
|
+
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
|
380
|
+
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
|
381
|
+
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
|
382
|
+
m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
|
383
|
+
// update Z
|
384
|
+
if (m_computeQZ)
|
385
|
+
m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
|
386
|
+
}
|
387
|
+
}
|
388
|
+
// finally kill S(l,l-1)
|
389
|
+
G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
|
390
|
+
m_S.applyOnTheRight(l,l-1,G);
|
391
|
+
m_T.applyOnTheRight(l,l-1,G);
|
392
|
+
m_S.coeffRef(l,l-1)=Scalar(0.0);
|
393
|
+
// update Z
|
394
|
+
if (m_computeQZ)
|
395
|
+
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
|
396
|
+
}
|
397
|
+
|
398
|
+
/** \internal QR-like iterative step for block f..l */
|
399
|
+
template<typename MatrixType>
|
400
|
+
inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
|
401
|
+
{
|
402
|
+
using std::abs;
|
403
|
+
const Index dim = m_S.cols();
|
404
|
+
|
405
|
+
// x, y, z
|
406
|
+
Scalar x, y, z;
|
407
|
+
if (iter==10)
|
408
|
+
{
|
409
|
+
// Wilkinson ad hoc shift
|
410
|
+
const Scalar
|
411
|
+
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
|
412
|
+
a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
|
413
|
+
b12=m_T.coeff(f+0,f+1),
|
414
|
+
b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
|
415
|
+
b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
|
416
|
+
a87=m_S.coeff(l-1,l-2),
|
417
|
+
a98=m_S.coeff(l-0,l-1),
|
418
|
+
b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
|
419
|
+
b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
|
420
|
+
Scalar ss = abs(a87*b77i) + abs(a98*b88i),
|
421
|
+
lpl = Scalar(1.5)*ss,
|
422
|
+
ll = ss*ss;
|
423
|
+
x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
|
424
|
+
- a11*a21*b12*b11i*b11i*b22i;
|
425
|
+
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
|
426
|
+
- a21*a21*b12*b11i*b11i*b22i;
|
427
|
+
z = a21*a32*b11i*b22i;
|
428
|
+
}
|
429
|
+
else if (iter==16)
|
430
|
+
{
|
431
|
+
// another exceptional shift
|
432
|
+
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
|
433
|
+
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
|
434
|
+
y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
|
435
|
+
z = 0;
|
436
|
+
}
|
437
|
+
else if (iter>23 && !(iter%8))
|
438
|
+
{
|
439
|
+
// extremely exceptional shift
|
440
|
+
x = internal::random<Scalar>(-1.0,1.0);
|
441
|
+
y = internal::random<Scalar>(-1.0,1.0);
|
442
|
+
z = internal::random<Scalar>(-1.0,1.0);
|
443
|
+
}
|
444
|
+
else
|
445
|
+
{
|
446
|
+
// Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
|
447
|
+
// where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
|
448
|
+
// U and V are 2x2 bottom right sub matrices of A and B. Thus:
|
449
|
+
// = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
|
450
|
+
// = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
|
451
|
+
// Since we are only interested in having x, y, z with a correct ratio, we have:
|
452
|
+
const Scalar
|
453
|
+
a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
|
454
|
+
a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
|
455
|
+
a32 = m_S.coeff(f+2,f+1),
|
456
|
+
|
457
|
+
a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
|
458
|
+
a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
|
459
|
+
|
460
|
+
b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
|
461
|
+
b22 = m_T.coeff(f+1,f+1),
|
462
|
+
|
463
|
+
b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
|
464
|
+
b99 = m_T.coeff(l,l);
|
465
|
+
|
466
|
+
x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
|
467
|
+
+ a12/b22 - (a11/b11)*(b12/b22);
|
468
|
+
y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
|
469
|
+
z = a32/b22;
|
470
|
+
}
|
471
|
+
|
472
|
+
JRs G;
|
473
|
+
|
474
|
+
for (Index k=f; k<=l-2; k++)
|
475
|
+
{
|
476
|
+
// variables for Householder reflections
|
477
|
+
Vector2s essential2;
|
478
|
+
Scalar tau, beta;
|
479
|
+
|
480
|
+
Vector3s hr(x,y,z);
|
481
|
+
|
482
|
+
// Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
|
483
|
+
hr.makeHouseholderInPlace(tau, beta);
|
484
|
+
essential2 = hr.template bottomRows<2>();
|
485
|
+
Index fc=(std::max)(k-1,Index(0)); // first col to update
|
486
|
+
m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
|
487
|
+
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
|
488
|
+
if (m_computeQZ)
|
489
|
+
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
|
490
|
+
if (k>f)
|
491
|
+
m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
|
492
|
+
|
493
|
+
// Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
|
494
|
+
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
|
495
|
+
hr.makeHouseholderInPlace(tau, beta);
|
496
|
+
essential2 = hr.template bottomRows<2>();
|
497
|
+
{
|
498
|
+
Index lr = (std::min)(k+4,dim); // last row to update
|
499
|
+
Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
|
500
|
+
// S
|
501
|
+
tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
|
502
|
+
tmp += m_S.col(k+2).head(lr);
|
503
|
+
m_S.col(k+2).head(lr) -= tau*tmp;
|
504
|
+
m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
|
505
|
+
// T
|
506
|
+
tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
|
507
|
+
tmp += m_T.col(k+2).head(lr);
|
508
|
+
m_T.col(k+2).head(lr) -= tau*tmp;
|
509
|
+
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
|
510
|
+
}
|
511
|
+
if (m_computeQZ)
|
512
|
+
{
|
513
|
+
// Z
|
514
|
+
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
|
515
|
+
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
|
516
|
+
tmp += m_Z.row(k+2);
|
517
|
+
m_Z.row(k+2) -= tau*tmp;
|
518
|
+
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
|
519
|
+
}
|
520
|
+
m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
|
521
|
+
|
522
|
+
// Z_{k2} to annihilate T(k+1,k)
|
523
|
+
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
|
524
|
+
m_S.applyOnTheRight(k+1,k,G);
|
525
|
+
m_T.applyOnTheRight(k+1,k,G);
|
526
|
+
// update Z
|
527
|
+
if (m_computeQZ)
|
528
|
+
m_Z.applyOnTheLeft(k+1,k,G.adjoint());
|
529
|
+
m_T.coeffRef(k+1,k) = Scalar(0.0);
|
530
|
+
|
531
|
+
// update x,y,z
|
532
|
+
x = m_S.coeff(k+1,k);
|
533
|
+
y = m_S.coeff(k+2,k);
|
534
|
+
if (k < l-2)
|
535
|
+
z = m_S.coeff(k+3,k);
|
536
|
+
} // loop over k
|
537
|
+
|
538
|
+
// Q_{n-1} to annihilate y = S(l,l-2)
|
539
|
+
G.makeGivens(x,y);
|
540
|
+
m_S.applyOnTheLeft(l-1,l,G.adjoint());
|
541
|
+
m_T.applyOnTheLeft(l-1,l,G.adjoint());
|
542
|
+
if (m_computeQZ)
|
543
|
+
m_Q.applyOnTheRight(l-1,l,G);
|
544
|
+
m_S.coeffRef(l,l-2) = Scalar(0.0);
|
545
|
+
|
546
|
+
// Z_{n-1} to annihilate T(l,l-1)
|
547
|
+
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
|
548
|
+
m_S.applyOnTheRight(l,l-1,G);
|
549
|
+
m_T.applyOnTheRight(l,l-1,G);
|
550
|
+
if (m_computeQZ)
|
551
|
+
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
|
552
|
+
m_T.coeffRef(l,l-1) = Scalar(0.0);
|
553
|
+
}
|
554
|
+
|
555
|
+
template<typename MatrixType>
|
556
|
+
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
|
557
|
+
{
|
558
|
+
|
559
|
+
const Index dim = A_in.cols();
|
560
|
+
|
561
|
+
eigen_assert (A_in.rows()==dim && A_in.cols()==dim
|
562
|
+
&& B_in.rows()==dim && B_in.cols()==dim
|
563
|
+
&& "Need square matrices of the same dimension");
|
564
|
+
|
565
|
+
m_isInitialized = true;
|
566
|
+
m_computeQZ = computeQZ;
|
567
|
+
m_S = A_in; m_T = B_in;
|
568
|
+
m_workspace.resize(dim*2);
|
569
|
+
m_global_iter = 0;
|
570
|
+
|
571
|
+
// entrance point: hessenberg triangular decomposition
|
572
|
+
hessenbergTriangular();
|
573
|
+
// compute L1 vector norms of T, S into m_normOfS, m_normOfT
|
574
|
+
computeNorms();
|
575
|
+
|
576
|
+
Index l = dim-1,
|
577
|
+
f,
|
578
|
+
local_iter = 0;
|
579
|
+
|
580
|
+
while (l>0 && local_iter<m_maxIters)
|
581
|
+
{
|
582
|
+
f = findSmallSubdiagEntry(l);
|
583
|
+
// now rows and columns f..l (including) decouple from the rest of the problem
|
584
|
+
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
|
585
|
+
if (f == l) // One root found
|
586
|
+
{
|
587
|
+
l--;
|
588
|
+
local_iter = 0;
|
589
|
+
}
|
590
|
+
else if (f == l-1) // Two roots found
|
591
|
+
{
|
592
|
+
splitOffTwoRows(f);
|
593
|
+
l -= 2;
|
594
|
+
local_iter = 0;
|
595
|
+
}
|
596
|
+
else // No convergence yet
|
597
|
+
{
|
598
|
+
// if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
|
599
|
+
Index z = findSmallDiagEntry(f,l);
|
600
|
+
if (z>=f)
|
601
|
+
{
|
602
|
+
// zero found
|
603
|
+
pushDownZero(z,f,l);
|
604
|
+
}
|
605
|
+
else
|
606
|
+
{
|
607
|
+
// We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg
|
608
|
+
// and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
|
609
|
+
// apply a QR-like iteration to rows and columns f..l.
|
610
|
+
step(f,l, local_iter);
|
611
|
+
local_iter++;
|
612
|
+
m_global_iter++;
|
613
|
+
}
|
614
|
+
}
|
615
|
+
}
|
616
|
+
// check if we converged before reaching iterations limit
|
617
|
+
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
|
618
|
+
|
619
|
+
// For each non triangular 2x2 diagonal block of S,
|
620
|
+
// reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
|
621
|
+
// This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors,
|
622
|
+
// and is in par with Lapack/Matlab QZ.
|
623
|
+
if(m_info==Success)
|
624
|
+
{
|
625
|
+
for(Index i=0; i<dim-1; ++i)
|
626
|
+
{
|
627
|
+
if(m_S.coeff(i+1, i) != Scalar(0))
|
628
|
+
{
|
629
|
+
JacobiRotation<Scalar> j_left, j_right;
|
630
|
+
internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
|
631
|
+
|
632
|
+
// Apply resulting Jacobi rotations
|
633
|
+
m_S.applyOnTheLeft(i,i+1,j_left);
|
634
|
+
m_S.applyOnTheRight(i,i+1,j_right);
|
635
|
+
m_T.applyOnTheLeft(i,i+1,j_left);
|
636
|
+
m_T.applyOnTheRight(i,i+1,j_right);
|
637
|
+
m_T(i+1,i) = m_T(i,i+1) = Scalar(0);
|
638
|
+
|
639
|
+
if(m_computeQZ) {
|
640
|
+
m_Q.applyOnTheRight(i,i+1,j_left.transpose());
|
641
|
+
m_Z.applyOnTheLeft(i,i+1,j_right.transpose());
|
642
|
+
}
|
643
|
+
|
644
|
+
i++;
|
645
|
+
}
|
646
|
+
}
|
647
|
+
}
|
648
|
+
|
649
|
+
return *this;
|
650
|
+
} // end compute
|
651
|
+
|
652
|
+
} // end namespace Eigen
|
653
|
+
|
654
|
+
#endif //EIGEN_REAL_QZ
|