tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,17 @@
|
|
1
|
+
#pragma once
|
2
|
+
#include "LLDA.h"
|
3
|
+
|
4
|
+
namespace tomoto
|
5
|
+
{
|
6
|
+
|
7
|
+
class IPLDAModel : public ILLDAModel
|
8
|
+
{
|
9
|
+
public:
|
10
|
+
using DefaultDocType = DocumentLLDA<TermWeight::one>;
|
11
|
+
static IPLDAModel* create(TermWeight _weight, size_t _numLatentTopics = 0, size_t _numTopicsPerLabel = 1,
|
12
|
+
Float alpha = 0.1, Float eta = 0.01, size_t seed = std::random_device{}(),
|
13
|
+
bool scalarRng = false);
|
14
|
+
|
15
|
+
virtual size_t getNumLatentTopics() const = 0;
|
16
|
+
};
|
17
|
+
}
|
@@ -0,0 +1,13 @@
|
|
1
|
+
#include "PLDAModel.hpp"
|
2
|
+
|
3
|
+
namespace tomoto
|
4
|
+
{
|
5
|
+
/*template class PLDAModel<TermWeight::one>;
|
6
|
+
template class PLDAModel<TermWeight::idf>;
|
7
|
+
template class PLDAModel<TermWeight::pmi>;*/
|
8
|
+
|
9
|
+
IPLDAModel* IPLDAModel::create(TermWeight _weight, size_t _numLatentTopics, size_t _numTopicsPerLabel, Float _alpha, Float _eta, size_t seed, bool scalarRng)
|
10
|
+
{
|
11
|
+
TMT_SWITCH_TW(_weight, scalarRng, PLDAModel, _numLatentTopics, _numTopicsPerLabel, _alpha, _eta, seed);
|
12
|
+
}
|
13
|
+
}
|
@@ -0,0 +1,214 @@
|
|
1
|
+
#pragma once
|
2
|
+
#include "LDAModel.hpp"
|
3
|
+
#include "PLDA.h"
|
4
|
+
|
5
|
+
/*
|
6
|
+
Implementation of Labeled LDA using Gibbs sampling by bab2min
|
7
|
+
|
8
|
+
* Ramage, D., Manning, C. D., & Dumais, S. (2011, August). Partially labeled topic models for interpretable text mining. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 457-465). ACM.
|
9
|
+
*/
|
10
|
+
|
11
|
+
namespace tomoto
|
12
|
+
{
|
13
|
+
template<TermWeight _tw, typename _RandGen,
|
14
|
+
typename _Interface = IPLDAModel,
|
15
|
+
typename _Derived = void,
|
16
|
+
typename _DocType = DocumentLLDA<_tw>,
|
17
|
+
typename _ModelState = ModelStateLDA<_tw>>
|
18
|
+
class PLDAModel : public LDAModel<_tw, _RandGen, flags::generator_by_doc | flags::partitioned_multisampling, _Interface,
|
19
|
+
typename std::conditional<std::is_same<_Derived, void>::value, PLDAModel<_tw, _RandGen>, _Derived>::type,
|
20
|
+
_DocType, _ModelState>
|
21
|
+
{
|
22
|
+
protected:
|
23
|
+
using DerivedClass = typename std::conditional<std::is_same<_Derived, void>::value, PLDAModel<_tw, _RandGen>, _Derived>::type;
|
24
|
+
using BaseClass = LDAModel<_tw, _RandGen, flags::generator_by_doc | flags::partitioned_multisampling, _Interface, DerivedClass, _DocType, _ModelState>;
|
25
|
+
friend BaseClass;
|
26
|
+
friend typename BaseClass::BaseClass;
|
27
|
+
using WeightType = typename BaseClass::WeightType;
|
28
|
+
|
29
|
+
static constexpr char TMID[] = "PLDA";
|
30
|
+
|
31
|
+
Dictionary topicLabelDict;
|
32
|
+
|
33
|
+
uint64_t numLatentTopics, numTopicsPerLabel;
|
34
|
+
|
35
|
+
template<bool _asymEta>
|
36
|
+
Float* getZLikelihoods(_ModelState& ld, const _DocType& doc, size_t docId, size_t vid) const
|
37
|
+
{
|
38
|
+
const size_t V = this->realV;
|
39
|
+
assert(vid < V);
|
40
|
+
auto etaHelper = this->template getEtaHelper<_asymEta>();
|
41
|
+
auto& zLikelihood = ld.zLikelihood;
|
42
|
+
zLikelihood = (doc.numByTopic.array().template cast<Float>() + this->alphas.array())
|
43
|
+
* (ld.numByTopicWord.col(vid).array().template cast<Float>() + etaHelper.getEta(vid))
|
44
|
+
/ (ld.numByTopic.array().template cast<Float>() + etaHelper.getEtaSum());
|
45
|
+
zLikelihood.array() *= doc.labelMask.array().template cast<Float>();
|
46
|
+
sample::prefixSum(zLikelihood.data(), this->K);
|
47
|
+
return &zLikelihood[0];
|
48
|
+
}
|
49
|
+
|
50
|
+
void prepareDoc(_DocType& doc, size_t docId, size_t wordSize) const
|
51
|
+
{
|
52
|
+
BaseClass::prepareDoc(doc, docId, wordSize);
|
53
|
+
if (doc.labelMask.size() == 0)
|
54
|
+
{
|
55
|
+
doc.labelMask.resize(this->K);
|
56
|
+
doc.labelMask.setZero();
|
57
|
+
doc.labelMask.tail(numLatentTopics).setOnes();
|
58
|
+
}
|
59
|
+
else if (doc.labelMask.size() < this->K)
|
60
|
+
{
|
61
|
+
size_t oldSize = doc.labelMask.size();
|
62
|
+
doc.labelMask.conservativeResize(this->K);
|
63
|
+
doc.labelMask.tail(this->K - oldSize).setZero();
|
64
|
+
doc.labelMask.tail(numLatentTopics).setOnes();
|
65
|
+
}
|
66
|
+
}
|
67
|
+
|
68
|
+
void initGlobalState(bool initDocs)
|
69
|
+
{
|
70
|
+
this->K = topicLabelDict.size() * numTopicsPerLabel + numLatentTopics;
|
71
|
+
this->alphas.resize(this->K);
|
72
|
+
this->alphas.array() = this->alpha;
|
73
|
+
BaseClass::initGlobalState(initDocs);
|
74
|
+
}
|
75
|
+
|
76
|
+
struct Generator
|
77
|
+
{
|
78
|
+
std::discrete_distribution<> theta;
|
79
|
+
};
|
80
|
+
|
81
|
+
Generator makeGeneratorForInit(const _DocType* doc) const
|
82
|
+
{
|
83
|
+
return Generator{
|
84
|
+
std::discrete_distribution<>{ doc->labelMask.data(), doc->labelMask.data() + doc->labelMask.size() }
|
85
|
+
};
|
86
|
+
}
|
87
|
+
|
88
|
+
template<bool _Infer>
|
89
|
+
void updateStateWithDoc(Generator& g, _ModelState& ld, _RandGen& rgs, _DocType& doc, size_t i) const
|
90
|
+
{
|
91
|
+
auto& z = doc.Zs[i];
|
92
|
+
auto w = doc.words[i];
|
93
|
+
if (this->etaByTopicWord.size())
|
94
|
+
{
|
95
|
+
Eigen::Array<Float, -1, 1> col = this->etaByTopicWord.col(w);
|
96
|
+
for (size_t k = 0; k < col.size(); ++k) col[k] *= g.theta.probabilities()[k];
|
97
|
+
z = sample::sampleFromDiscrete(col.data(), col.data() + col.size(), rgs);
|
98
|
+
}
|
99
|
+
else
|
100
|
+
{
|
101
|
+
z = g.theta(rgs);
|
102
|
+
}
|
103
|
+
this->template addWordTo<1>(ld, doc, i, w, z);
|
104
|
+
}
|
105
|
+
|
106
|
+
public:
|
107
|
+
DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 0, topicLabelDict, numLatentTopics, numTopicsPerLabel);
|
108
|
+
DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 1, 0x00010001, topicLabelDict, numLatentTopics, numTopicsPerLabel);
|
109
|
+
|
110
|
+
PLDAModel(size_t _numLatentTopics = 0, size_t _numTopicsPerLabel = 1,
|
111
|
+
Float _alpha = 1.0, Float _eta = 0.01, size_t _rg = std::random_device{}())
|
112
|
+
: BaseClass(1, _alpha, _eta, _rg),
|
113
|
+
numLatentTopics(_numLatentTopics), numTopicsPerLabel(_numTopicsPerLabel)
|
114
|
+
{
|
115
|
+
if (_numLatentTopics >= 0x80000000)
|
116
|
+
THROW_ERROR_WITH_INFO(std::runtime_error, text::format("wrong numLatentTopics value (numLatentTopics = %zd)", _numLatentTopics));
|
117
|
+
if (_numTopicsPerLabel == 0 || _numTopicsPerLabel >= 0x80000000)
|
118
|
+
THROW_ERROR_WITH_INFO(std::runtime_error, text::format("wrong numTopicsPerLabel value (numTopicsPerLabel = %zd)", _numTopicsPerLabel));
|
119
|
+
}
|
120
|
+
|
121
|
+
template<bool _const = false>
|
122
|
+
_DocType& _updateDoc(_DocType& doc, const std::vector<std::string>& labels)
|
123
|
+
{
|
124
|
+
if (_const)
|
125
|
+
{
|
126
|
+
doc.labelMask.resize(this->K);
|
127
|
+
doc.labelMask.setZero();
|
128
|
+
doc.labelMask.tail(numLatentTopics).setOnes();
|
129
|
+
|
130
|
+
std::vector<Vid> topicLabelIds;
|
131
|
+
for (auto& label : labels)
|
132
|
+
{
|
133
|
+
auto tid = topicLabelDict.toWid(label);
|
134
|
+
if (tid == (Vid)-1) continue;
|
135
|
+
topicLabelIds.emplace_back(tid);
|
136
|
+
}
|
137
|
+
|
138
|
+
for (auto tid : topicLabelIds) doc.labelMask.segment(tid * numTopicsPerLabel, numTopicsPerLabel).setOnes();
|
139
|
+
if (labels.empty()) doc.labelMask.setOnes();
|
140
|
+
}
|
141
|
+
else
|
142
|
+
{
|
143
|
+
if (!labels.empty())
|
144
|
+
{
|
145
|
+
std::vector<Vid> topicLabelIds;
|
146
|
+
for (auto& label : labels) topicLabelIds.emplace_back(topicLabelDict.add(label));
|
147
|
+
auto maxVal = *std::max_element(topicLabelIds.begin(), topicLabelIds.end());
|
148
|
+
doc.labelMask.resize((maxVal + 1) * numTopicsPerLabel);
|
149
|
+
doc.labelMask.setZero();
|
150
|
+
for (auto i : topicLabelIds) doc.labelMask.segment(i * numTopicsPerLabel, numTopicsPerLabel).setOnes();
|
151
|
+
}
|
152
|
+
}
|
153
|
+
return doc;
|
154
|
+
}
|
155
|
+
|
156
|
+
size_t addDoc(const std::vector<std::string>& words, const std::vector<std::string>& labels) override
|
157
|
+
{
|
158
|
+
auto doc = this->_makeDoc(words);
|
159
|
+
return this->_addDoc(_updateDoc(doc, labels));
|
160
|
+
}
|
161
|
+
|
162
|
+
std::unique_ptr<DocumentBase> makeDoc(const std::vector<std::string>& words, const std::vector<std::string>& labels) const override
|
163
|
+
{
|
164
|
+
auto doc = as_mutable(this)->template _makeDoc<true>(words);
|
165
|
+
return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, labels));
|
166
|
+
}
|
167
|
+
|
168
|
+
size_t addDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
|
169
|
+
const std::vector<std::string>& labels) override
|
170
|
+
{
|
171
|
+
auto doc = this->template _makeRawDoc<false>(rawStr, tokenizer);
|
172
|
+
return this->_addDoc(_updateDoc(doc, labels));
|
173
|
+
}
|
174
|
+
|
175
|
+
std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
|
176
|
+
const std::vector<std::string>& labels) const override
|
177
|
+
{
|
178
|
+
auto doc = as_mutable(this)->template _makeRawDoc<true>(rawStr, tokenizer);
|
179
|
+
return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, labels));
|
180
|
+
}
|
181
|
+
|
182
|
+
size_t addDoc(const std::string& rawStr, const std::vector<Vid>& words,
|
183
|
+
const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
|
184
|
+
const std::vector<std::string>& labels) override
|
185
|
+
{
|
186
|
+
auto doc = this->_makeRawDoc(rawStr, words, pos, len);
|
187
|
+
return this->_addDoc(_updateDoc(doc, labels));
|
188
|
+
}
|
189
|
+
|
190
|
+
std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const std::vector<Vid>& words,
|
191
|
+
const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
|
192
|
+
const std::vector<std::string>& labels) const override
|
193
|
+
{
|
194
|
+
auto doc = this->_makeRawDoc(rawStr, words, pos, len);
|
195
|
+
return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, labels));
|
196
|
+
}
|
197
|
+
|
198
|
+
std::vector<Float> getTopicsByDoc(const _DocType& doc) const
|
199
|
+
{
|
200
|
+
std::vector<Float> ret(this->K);
|
201
|
+
auto maskedAlphas = this->alphas.array() * doc.labelMask.template cast<Float>().array();
|
202
|
+
Eigen::Map<Eigen::Matrix<Float, -1, 1>> { ret.data(), this->K }.array() =
|
203
|
+
(doc.numByTopic.array().template cast<Float>() + maskedAlphas)
|
204
|
+
/ (doc.getSumWordWeight() + maskedAlphas.sum());
|
205
|
+
return ret;
|
206
|
+
}
|
207
|
+
|
208
|
+
const Dictionary& getTopicLabelDict() const override { return topicLabelDict; }
|
209
|
+
|
210
|
+
size_t getNumLatentTopics() const override { return numLatentTopics; }
|
211
|
+
|
212
|
+
size_t getNumTopicsPerLabel() const override { return numTopicsPerLabel; }
|
213
|
+
};
|
214
|
+
}
|
@@ -0,0 +1,54 @@
|
|
1
|
+
#pragma once
|
2
|
+
#include "LDA.h"
|
3
|
+
|
4
|
+
namespace tomoto
|
5
|
+
{
|
6
|
+
template<TermWeight _tw>
|
7
|
+
struct DocumentSLDA : public DocumentLDA<_tw>
|
8
|
+
{
|
9
|
+
using BaseDocument = DocumentLDA<_tw>;
|
10
|
+
using DocumentLDA<_tw>::DocumentLDA;
|
11
|
+
std::vector<Float> y;
|
12
|
+
DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseDocument, 0, y);
|
13
|
+
DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseDocument, 1, 0x00010001, y);
|
14
|
+
};
|
15
|
+
|
16
|
+
class ISLDAModel : public ILDAModel
|
17
|
+
{
|
18
|
+
public:
|
19
|
+
enum class GLM
|
20
|
+
{
|
21
|
+
linear = 0,
|
22
|
+
binary_logistic = 1,
|
23
|
+
};
|
24
|
+
|
25
|
+
using DefaultDocType = DocumentSLDA<TermWeight::one>;
|
26
|
+
static ISLDAModel* create(TermWeight _weight, size_t _K = 1,
|
27
|
+
const std::vector<ISLDAModel::GLM>& vars = {},
|
28
|
+
Float alpha = 0.1, Float _eta = 0.01,
|
29
|
+
const std::vector<Float>& _mu = {}, const std::vector<Float>& _nuSq = {},
|
30
|
+
const std::vector<Float>& _glmParam = {},
|
31
|
+
size_t seed = std::random_device{}(),
|
32
|
+
bool scalarRng = false);
|
33
|
+
|
34
|
+
virtual size_t addDoc(const std::vector<std::string>& words, const std::vector<Float>& y) = 0;
|
35
|
+
virtual std::unique_ptr<DocumentBase> makeDoc(const std::vector<std::string>& words, const std::vector<Float>& y) const = 0;
|
36
|
+
|
37
|
+
virtual size_t addDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
|
38
|
+
const std::vector<Float>& y) = 0;
|
39
|
+
virtual std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
|
40
|
+
const std::vector<Float>& y) const = 0;
|
41
|
+
|
42
|
+
virtual size_t addDoc(const std::string& rawStr, const std::vector<Vid>& words,
|
43
|
+
const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
|
44
|
+
const std::vector<Float>& y) = 0;
|
45
|
+
virtual std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const std::vector<Vid>& words,
|
46
|
+
const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
|
47
|
+
const std::vector<Float>& y) const = 0;
|
48
|
+
|
49
|
+
virtual size_t getF() const = 0;
|
50
|
+
virtual std::vector<Float> getRegressionCoef(size_t f) const = 0;
|
51
|
+
virtual GLM getTypeOfVar(size_t f) const = 0;
|
52
|
+
virtual std::vector<Float> estimateVars(const DocumentBase* doc) const = 0;
|
53
|
+
};
|
54
|
+
}
|
@@ -0,0 +1,17 @@
|
|
1
|
+
#include "SLDAModel.hpp"
|
2
|
+
|
3
|
+
namespace tomoto
|
4
|
+
{
|
5
|
+
/*template class SLDAModel<TermWeight::one>;
|
6
|
+
template class SLDAModel<TermWeight::idf>;
|
7
|
+
template class SLDAModel<TermWeight::pmi>;*/
|
8
|
+
|
9
|
+
ISLDAModel* ISLDAModel::create(TermWeight _weight, size_t _K, const std::vector<ISLDAModel::GLM>& vars,
|
10
|
+
Float _alpha, Float _eta,
|
11
|
+
const std::vector<Float>& _mu, const std::vector<Float>& _nuSq,
|
12
|
+
const std::vector<Float>& _glmParam,
|
13
|
+
size_t seed, bool scalarRng)
|
14
|
+
{
|
15
|
+
TMT_SWITCH_TW(_weight, scalarRng, SLDAModel, _K, vars, _alpha, _eta, _mu, _nuSq, _glmParam, seed);
|
16
|
+
}
|
17
|
+
}
|
@@ -0,0 +1,456 @@
|
|
1
|
+
#pragma once
|
2
|
+
#include "LDAModel.hpp"
|
3
|
+
#include "../Utils/PolyaGamma.hpp"
|
4
|
+
#include "SLDA.h"
|
5
|
+
|
6
|
+
/*
|
7
|
+
Implementation of sLDA using Gibbs sampling by bab2min
|
8
|
+
* Mcauliffe, J. D., & Blei, D. M. (2008). Supervised topic models. In Advances in neural information processing systems (pp. 121-128).
|
9
|
+
* Python version implementation using Gibbs sampling : https://github.com/Savvysherpa/slda
|
10
|
+
*/
|
11
|
+
|
12
|
+
namespace tomoto
|
13
|
+
{
|
14
|
+
namespace detail
|
15
|
+
{
|
16
|
+
template<typename _WeightType>
|
17
|
+
struct GLMFunctor
|
18
|
+
{
|
19
|
+
Eigen::Matrix<Float, -1, 1> regressionCoef; // Dim : (K)
|
20
|
+
|
21
|
+
GLMFunctor(size_t K = 0, Float mu = 0) : regressionCoef(Eigen::Matrix<Float, -1, 1>::Constant(K, mu))
|
22
|
+
{
|
23
|
+
}
|
24
|
+
|
25
|
+
virtual ISLDAModel::GLM getType() const = 0;
|
26
|
+
|
27
|
+
virtual void updateZLL(
|
28
|
+
Eigen::Matrix<Float, -1, 1>& zLikelihood,
|
29
|
+
Float y, const Eigen::Matrix<_WeightType, -1, 1>& numByTopic, size_t docId, Float docSize) const = 0;
|
30
|
+
|
31
|
+
virtual void optimizeCoef(
|
32
|
+
const Eigen::Matrix<Float, -1, -1>& normZ,
|
33
|
+
Float mu, Float nuSq,
|
34
|
+
Eigen::Block<Eigen::Matrix<Float, -1, -1>, -1, 1, true> ys
|
35
|
+
) = 0;
|
36
|
+
|
37
|
+
virtual double getLL(Float y, const Eigen::Matrix<_WeightType, -1, 1>& numByTopic,
|
38
|
+
Float docSize) const = 0;
|
39
|
+
|
40
|
+
virtual Float estimate(const Eigen::Matrix<_WeightType, -1, 1>& numByTopic,
|
41
|
+
Float docSize) const = 0;
|
42
|
+
|
43
|
+
virtual ~GLMFunctor() {};
|
44
|
+
|
45
|
+
DEFINE_SERIALIZER_VIRTUAL(regressionCoef);
|
46
|
+
|
47
|
+
static void serializerWrite(const std::unique_ptr<GLMFunctor>& p, std::ostream& ostr)
|
48
|
+
{
|
49
|
+
if (!p) serializer::writeToStream<uint32_t>(ostr, 0);
|
50
|
+
else
|
51
|
+
{
|
52
|
+
serializer::writeToStream<uint32_t>(ostr, (uint32_t)p->getType() + 1);
|
53
|
+
p->serializerWrite(ostr);
|
54
|
+
}
|
55
|
+
}
|
56
|
+
|
57
|
+
static void serializerRead(std::unique_ptr<GLMFunctor>& p, std::istream& istr);
|
58
|
+
};
|
59
|
+
|
60
|
+
template<typename _WeightType>
|
61
|
+
struct LinearFunctor : public GLMFunctor<_WeightType>
|
62
|
+
{
|
63
|
+
Float sigmaSq = 1;
|
64
|
+
|
65
|
+
LinearFunctor(size_t K = 0, Float mu = 0, Float _sigmaSq = 1)
|
66
|
+
: GLMFunctor<_WeightType>(K, mu), sigmaSq(_sigmaSq)
|
67
|
+
{
|
68
|
+
}
|
69
|
+
|
70
|
+
ISLDAModel::GLM getType() const override { return ISLDAModel::GLM::linear; }
|
71
|
+
|
72
|
+
void updateZLL(
|
73
|
+
Eigen::Matrix<Float, -1, 1>& zLikelihood,
|
74
|
+
Float y, const Eigen::Matrix<_WeightType, -1, 1>& numByTopic, size_t docId, Float docSize) const override
|
75
|
+
{
|
76
|
+
Float yErr = y -
|
77
|
+
(this->regressionCoef.array() * numByTopic.array().template cast<Float>()).sum()
|
78
|
+
/ docSize;
|
79
|
+
zLikelihood.array() *= (this->regressionCoef.array() / docSize / 2 / sigmaSq *
|
80
|
+
(2 * yErr - this->regressionCoef.array() / docSize)).exp();
|
81
|
+
}
|
82
|
+
|
83
|
+
void optimizeCoef(
|
84
|
+
const Eigen::Matrix<Float, -1, -1>& normZ,
|
85
|
+
Float mu, Float nuSq,
|
86
|
+
Eigen::Block<Eigen::Matrix<Float, -1, -1>, -1, 1, true> ys
|
87
|
+
) override
|
88
|
+
{
|
89
|
+
Eigen::Matrix<Float, -1, -1> selectedNormZ = normZ.array().rowwise() * (!ys.array().transpose().isNaN()).template cast<Float>();
|
90
|
+
Eigen::Matrix<Float, -1, -1> normZZT = selectedNormZ * selectedNormZ.transpose();
|
91
|
+
normZZT += Eigen::Matrix<Float, -1, -1>::Identity(normZZT.cols(), normZZT.cols()) / nuSq;
|
92
|
+
this->regressionCoef = normZZT.colPivHouseholderQr().solve(selectedNormZ * ys.array().isNaN().select(0, ys).matrix());
|
93
|
+
}
|
94
|
+
|
95
|
+
double getLL(Float y, const Eigen::Matrix<_WeightType, -1, 1>& numByTopic,
|
96
|
+
Float docSize) const override
|
97
|
+
{
|
98
|
+
Float estimatedY = estimate(numByTopic, docSize);
|
99
|
+
return -pow(estimatedY - y, 2) / 2 / sigmaSq;
|
100
|
+
}
|
101
|
+
|
102
|
+
Float estimate(const Eigen::Matrix<_WeightType, -1, 1>& numByTopic,
|
103
|
+
Float docSize) const override
|
104
|
+
{
|
105
|
+
return (this->regressionCoef.array() * numByTopic.array().template cast<Float>()).sum()
|
106
|
+
/ std::max(docSize, 0.01f);
|
107
|
+
}
|
108
|
+
|
109
|
+
DEFINE_SERIALIZER_AFTER_BASE(GLMFunctor<_WeightType>, sigmaSq);
|
110
|
+
};
|
111
|
+
|
112
|
+
template<typename _WeightType>
|
113
|
+
struct BinaryLogisticFunctor : public GLMFunctor<_WeightType>
|
114
|
+
{
|
115
|
+
Float b = 1;
|
116
|
+
Eigen::Matrix<Float, -1, 1> omega;
|
117
|
+
|
118
|
+
BinaryLogisticFunctor(size_t K = 0, Float mu = 0, Float _b = 1, size_t numDocs = 0)
|
119
|
+
: GLMFunctor<_WeightType>(K, mu), b(_b), omega{ Eigen::Matrix<Float, -1, 1>::Ones(numDocs) }
|
120
|
+
{
|
121
|
+
}
|
122
|
+
|
123
|
+
ISLDAModel::GLM getType() const override { return ISLDAModel::GLM::binary_logistic; }
|
124
|
+
|
125
|
+
void updateZLL(
|
126
|
+
Eigen::Matrix<Float, -1, 1>& zLikelihood,
|
127
|
+
Float y, const Eigen::Matrix<_WeightType, -1, 1>& numByTopic, size_t docId, Float docSize) const override
|
128
|
+
{
|
129
|
+
Float yErr = b * (y - 0.5f) -
|
130
|
+
(this->regressionCoef.array() * numByTopic.array().template cast<Float>()).sum()
|
131
|
+
/ docSize * omega[docId];
|
132
|
+
zLikelihood.array() *= (this->regressionCoef.array() / docSize *
|
133
|
+
(yErr - omega[docId] / 2 * this->regressionCoef.array() / docSize)).exp();
|
134
|
+
}
|
135
|
+
|
136
|
+
void optimizeCoef(
|
137
|
+
const Eigen::Matrix<Float, -1, -1>& normZ,
|
138
|
+
Float mu, Float nuSq,
|
139
|
+
Eigen::Block<Eigen::Matrix<Float, -1, -1>, -1, 1, true> ys
|
140
|
+
) override
|
141
|
+
{
|
142
|
+
Eigen::Matrix<Float, -1, -1> selectedNormZ = normZ.array().rowwise() * (!ys.array().transpose().isNaN()).template cast<Float>();
|
143
|
+
Eigen::Matrix<Float, -1, -1> normZZT = selectedNormZ * Eigen::DiagonalMatrix<Float, -1>{ omega } * selectedNormZ.transpose();
|
144
|
+
normZZT += Eigen::Matrix<Float, -1, -1>::Identity(normZZT.cols(), normZZT.cols()) / nuSq;
|
145
|
+
|
146
|
+
this->regressionCoef = normZZT
|
147
|
+
.colPivHouseholderQr().solve(selectedNormZ * ys.array().isNaN().select(0, b * (ys.array() - 0.5f)).matrix()
|
148
|
+
+ Eigen::Matrix<Float, -1, 1>::Constant(selectedNormZ.rows(), mu / nuSq));
|
149
|
+
|
150
|
+
RandGen rng;
|
151
|
+
for (size_t i = 0; i < omega.size(); ++i)
|
152
|
+
{
|
153
|
+
if (std::isnan(ys[i])) continue;
|
154
|
+
omega[i] = math::drawPolyaGamma(b, (this->regressionCoef.array() * normZ.col(i).array()).sum(), rng);
|
155
|
+
}
|
156
|
+
}
|
157
|
+
|
158
|
+
double getLL(Float y, const Eigen::Matrix<_WeightType, -1, 1>& numByTopic,
|
159
|
+
Float docSize) const override
|
160
|
+
{
|
161
|
+
Float z = (this->regressionCoef.array() * numByTopic.array().template cast<Float>()).sum()
|
162
|
+
/ std::max(docSize, 0.01f);
|
163
|
+
return b * (y * z - log(1 + exp(z)));
|
164
|
+
}
|
165
|
+
|
166
|
+
Float estimate(const Eigen::Matrix<_WeightType, -1, 1>& numByTopic,
|
167
|
+
Float docSize) const override
|
168
|
+
{
|
169
|
+
Float z = (this->regressionCoef.array() * numByTopic.array().template cast<Float>()).sum()
|
170
|
+
/ std::max(docSize, 0.01f);
|
171
|
+
return 1 / (1 + exp(-z));
|
172
|
+
}
|
173
|
+
|
174
|
+
DEFINE_SERIALIZER_AFTER_BASE(GLMFunctor<_WeightType>, b, omega);
|
175
|
+
};
|
176
|
+
}
|
177
|
+
|
178
|
+
template<TermWeight _tw, typename _RandGen,
|
179
|
+
size_t _Flags = flags::partitioned_multisampling,
|
180
|
+
typename _Interface = ISLDAModel,
|
181
|
+
typename _Derived = void,
|
182
|
+
typename _DocType = DocumentSLDA<_tw>,
|
183
|
+
typename _ModelState = ModelStateLDA<_tw>>
|
184
|
+
class SLDAModel : public LDAModel<_tw, _RandGen, _Flags, _Interface,
|
185
|
+
typename std::conditional<std::is_same<_Derived, void>::value, SLDAModel<_tw, _RandGen, _Flags>, _Derived>::type,
|
186
|
+
_DocType, _ModelState>
|
187
|
+
{
|
188
|
+
protected:
|
189
|
+
using DerivedClass = typename std::conditional<std::is_same<_Derived, void>::value, SLDAModel<_tw, _RandGen>, _Derived>::type;
|
190
|
+
using BaseClass = LDAModel<_tw, _RandGen, _Flags, _Interface, DerivedClass, _DocType, _ModelState>;
|
191
|
+
friend BaseClass;
|
192
|
+
friend typename BaseClass::BaseClass;
|
193
|
+
using WeightType = typename BaseClass::WeightType;
|
194
|
+
|
195
|
+
static constexpr char TMID[] = "SLDA";
|
196
|
+
|
197
|
+
uint64_t F; // number of response variables
|
198
|
+
std::vector<ISLDAModel::GLM> varTypes;
|
199
|
+
std::vector<Float> glmParam;
|
200
|
+
|
201
|
+
Eigen::Matrix<Float, -1, 1> mu; // Mean of regression coefficients, Dim : (F)
|
202
|
+
Eigen::Matrix<Float, -1, 1> nuSq; // Variance of regression coefficients, Dim : (F)
|
203
|
+
|
204
|
+
std::vector<std::unique_ptr<detail::GLMFunctor<WeightType>>> responseVars;
|
205
|
+
Eigen::Matrix<Float, -1, -1> normZ; // topic proportions for all docs, Dim : (K, D)
|
206
|
+
Eigen::Matrix<Float, -1, -1> Ys; // response variables, Dim : (D, F)
|
207
|
+
|
208
|
+
template<bool _asymEta>
|
209
|
+
Float* getZLikelihoods(_ModelState& ld, const _DocType& doc, size_t docId, size_t vid) const
|
210
|
+
{
|
211
|
+
const size_t V = this->realV;
|
212
|
+
assert(vid < V);
|
213
|
+
auto etaHelper = this->template getEtaHelper<_asymEta>();
|
214
|
+
auto& zLikelihood = ld.zLikelihood;
|
215
|
+
zLikelihood = (doc.numByTopic.array().template cast<Float>() + this->alphas.array())
|
216
|
+
* (ld.numByTopicWord.col(vid).array().template cast<Float>() + etaHelper.getEta(vid))
|
217
|
+
/ (ld.numByTopic.array().template cast<Float>() + etaHelper.getEtaSum());
|
218
|
+
|
219
|
+
for (size_t f = 0; f < F; ++f)
|
220
|
+
{
|
221
|
+
if (std::isnan(doc.y[f])) continue;
|
222
|
+
responseVars[f]->updateZLL(zLikelihood, doc.y[f], doc.numByTopic,
|
223
|
+
docId, doc.getSumWordWeight());
|
224
|
+
}
|
225
|
+
sample::prefixSum(zLikelihood.data(), this->K);
|
226
|
+
return &zLikelihood[0];
|
227
|
+
}
|
228
|
+
|
229
|
+
void optimizeRegressionCoef()
|
230
|
+
{
|
231
|
+
for (size_t i = 0; i < this->docs.size(); ++i)
|
232
|
+
{
|
233
|
+
normZ.col(i) = this->docs[i].numByTopic.array().template cast<Float>() /
|
234
|
+
std::max((Float)this->docs[i].getSumWordWeight(), 0.01f);
|
235
|
+
}
|
236
|
+
|
237
|
+
for (size_t f = 0; f < F; ++f)
|
238
|
+
{
|
239
|
+
responseVars[f]->optimizeCoef(normZ, mu[f], nuSq[f], Ys.col(f));
|
240
|
+
}
|
241
|
+
}
|
242
|
+
|
243
|
+
void optimizeParameters(ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
|
244
|
+
{
|
245
|
+
BaseClass::optimizeParameters(pool, localData, rgs);
|
246
|
+
}
|
247
|
+
|
248
|
+
void updateGlobalInfo(ThreadPool& pool, _ModelState* localData)
|
249
|
+
{
|
250
|
+
optimizeRegressionCoef();
|
251
|
+
}
|
252
|
+
|
253
|
+
template<typename _DocIter>
|
254
|
+
double getLLDocs(_DocIter _first, _DocIter _last) const
|
255
|
+
{
|
256
|
+
const auto K = this->K;
|
257
|
+
|
258
|
+
double ll = 0;
|
259
|
+
for (; _first != _last; ++_first)
|
260
|
+
{
|
261
|
+
auto& doc = *_first;
|
262
|
+
ll -= math::lgammaT(doc.getSumWordWeight() + this->alphas.sum()) - math::lgammaT(this->alphas.sum());
|
263
|
+
for (size_t f = 0; f < F; ++f)
|
264
|
+
{
|
265
|
+
if (std::isnan(doc.y[f])) continue;
|
266
|
+
ll += responseVars[f]->getLL(doc.y[f], doc.numByTopic, doc.getSumWordWeight());
|
267
|
+
}
|
268
|
+
for (Tid k = 0; k < K; ++k)
|
269
|
+
{
|
270
|
+
ll += math::lgammaT(doc.numByTopic[k] + this->alphas[k]) - math::lgammaT(this->alphas[k]);
|
271
|
+
}
|
272
|
+
}
|
273
|
+
return ll;
|
274
|
+
}
|
275
|
+
|
276
|
+
double getLLRest(const _ModelState& ld) const
|
277
|
+
{
|
278
|
+
double ll = BaseClass::getLLRest(ld);
|
279
|
+
for (size_t f = 0; f < F; ++f)
|
280
|
+
{
|
281
|
+
ll -= (responseVars[f]->regressionCoef.array() - mu[f]).pow(2).sum() / 2 / nuSq[f];
|
282
|
+
}
|
283
|
+
return ll;
|
284
|
+
}
|
285
|
+
|
286
|
+
void prepareDoc(_DocType& doc, size_t docId, size_t wordSize) const
|
287
|
+
{
|
288
|
+
BaseClass::prepareDoc(doc, docId, wordSize);
|
289
|
+
}
|
290
|
+
|
291
|
+
void initGlobalState(bool initDocs)
|
292
|
+
{
|
293
|
+
BaseClass::initGlobalState(initDocs);
|
294
|
+
if (initDocs)
|
295
|
+
{
|
296
|
+
for (size_t f = 0; f < F; ++f)
|
297
|
+
{
|
298
|
+
std::unique_ptr<detail::GLMFunctor<WeightType>> v;
|
299
|
+
switch (varTypes[f])
|
300
|
+
{
|
301
|
+
case ISLDAModel::GLM::linear:
|
302
|
+
v = make_unique<detail::LinearFunctor<WeightType>>(this->K, mu[f],
|
303
|
+
f < glmParam.size() ? glmParam[f] : 1.f);
|
304
|
+
break;
|
305
|
+
case ISLDAModel::GLM::binary_logistic:
|
306
|
+
v = make_unique<detail::BinaryLogisticFunctor<WeightType>>(this->K, mu[f],
|
307
|
+
f < glmParam.size() ? glmParam[f] : 1.f, this->docs.size());
|
308
|
+
break;
|
309
|
+
}
|
310
|
+
responseVars.emplace_back(std::move(v));
|
311
|
+
}
|
312
|
+
}
|
313
|
+
Ys.resize(this->docs.size(), F);
|
314
|
+
normZ.resize(this->K, this->docs.size());
|
315
|
+
for (size_t i = 0; i < this->docs.size(); ++i)
|
316
|
+
{
|
317
|
+
Ys.row(i) = Eigen::Map<Eigen::Matrix<Float, 1, -1>>(this->docs[i].y.data(), F);
|
318
|
+
}
|
319
|
+
}
|
320
|
+
|
321
|
+
public:
|
322
|
+
DEFINE_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 0, F, responseVars, mu, nuSq);
|
323
|
+
DEFINE_TAGGED_SERIALIZER_AFTER_BASE_WITH_VERSION(BaseClass, 1, 0x00010001, F, responseVars, mu, nuSq);
|
324
|
+
|
325
|
+
SLDAModel(size_t _K = 1, const std::vector<ISLDAModel::GLM>& vars = {},
|
326
|
+
Float _alpha = 0.1, Float _eta = 0.01,
|
327
|
+
const std::vector<Float>& _mu = {}, const std::vector<Float>& _nuSq = {},
|
328
|
+
const std::vector<Float>& _glmParam = {},
|
329
|
+
size_t _rg = std::random_device{}())
|
330
|
+
: BaseClass(_K, _alpha, _eta, _rg), F(vars.size()), varTypes(vars),
|
331
|
+
glmParam(_glmParam)
|
332
|
+
{
|
333
|
+
for (auto t : varTypes)
|
334
|
+
{
|
335
|
+
if (t != ISLDAModel::GLM::linear && t != ISLDAModel::GLM::binary_logistic) THROW_ERROR_WITH_INFO(std::runtime_error, "unknown var GLM type in 'vars'");
|
336
|
+
}
|
337
|
+
mu = decltype(mu)::Zero(F);
|
338
|
+
std::copy(_mu.begin(), _mu.end(), mu.data());
|
339
|
+
nuSq = decltype(nuSq)::Ones(F);
|
340
|
+
std::copy(_nuSq.begin(), _nuSq.end(), nuSq.data());
|
341
|
+
}
|
342
|
+
|
343
|
+
std::vector<Float> getRegressionCoef(size_t f) const override
|
344
|
+
{
|
345
|
+
return { responseVars[f]->regressionCoef.data(), responseVars[f]->regressionCoef.data() + this->K };
|
346
|
+
}
|
347
|
+
|
348
|
+
GETTER(F, size_t, F);
|
349
|
+
|
350
|
+
ISLDAModel::GLM getTypeOfVar(size_t f) const override
|
351
|
+
{
|
352
|
+
return responseVars[f]->getType();
|
353
|
+
}
|
354
|
+
|
355
|
+
template<bool _const = false>
|
356
|
+
_DocType& _updateDoc(_DocType& doc, const std::vector<Float>& y)
|
357
|
+
{
|
358
|
+
if (_const)
|
359
|
+
{
|
360
|
+
if (y.size() > F) throw std::runtime_error{ text::format(
|
361
|
+
"size of 'y' is greater than the number of vars.\n"
|
362
|
+
"size of 'y' : %zd, number of vars: %zd", y.size(), F) };
|
363
|
+
doc.y = y;
|
364
|
+
while (doc.y.size() < F)
|
365
|
+
{
|
366
|
+
doc.y.emplace_back(NAN);
|
367
|
+
}
|
368
|
+
}
|
369
|
+
else
|
370
|
+
{
|
371
|
+
if (y.size() != F) throw std::runtime_error{ text::format(
|
372
|
+
"size of 'y' must be equal to the number of vars.\n"
|
373
|
+
"size of 'y' : %zd, number of vars: %zd", y.size(), F) };
|
374
|
+
doc.y = y;
|
375
|
+
}
|
376
|
+
return doc;
|
377
|
+
}
|
378
|
+
|
379
|
+
size_t addDoc(const std::vector<std::string>& words, const std::vector<Float>& y) override
|
380
|
+
{
|
381
|
+
auto doc = this->_makeDoc(words);
|
382
|
+
return this->_addDoc(_updateDoc(doc, y));
|
383
|
+
}
|
384
|
+
|
385
|
+
std::unique_ptr<DocumentBase> makeDoc(const std::vector<std::string>& words, const std::vector<Float>& y) const override
|
386
|
+
{
|
387
|
+
auto doc = as_mutable(this)->template _makeDoc<true>(words);
|
388
|
+
return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, y));
|
389
|
+
}
|
390
|
+
|
391
|
+
size_t addDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
|
392
|
+
const std::vector<Float>& y) override
|
393
|
+
{
|
394
|
+
auto doc = this->template _makeRawDoc<false>(rawStr, tokenizer);
|
395
|
+
return this->_addDoc(_updateDoc(doc, y));
|
396
|
+
}
|
397
|
+
|
398
|
+
std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer,
|
399
|
+
const std::vector<Float>& y) const override
|
400
|
+
{
|
401
|
+
auto doc = as_mutable(this)->template _makeRawDoc<true>(rawStr, tokenizer);
|
402
|
+
return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, y));
|
403
|
+
}
|
404
|
+
|
405
|
+
size_t addDoc(const std::string& rawStr, const std::vector<Vid>& words,
|
406
|
+
const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
|
407
|
+
const std::vector<Float>& y) override
|
408
|
+
{
|
409
|
+
auto doc = this->_makeRawDoc(rawStr, words, pos, len);
|
410
|
+
return this->_addDoc(_updateDoc(doc, y));
|
411
|
+
}
|
412
|
+
|
413
|
+
std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const std::vector<Vid>& words,
|
414
|
+
const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len,
|
415
|
+
const std::vector<Float>& y) const override
|
416
|
+
{
|
417
|
+
auto doc = this->_makeRawDoc(rawStr, words, pos, len);
|
418
|
+
return make_unique<_DocType>(as_mutable(this)->template _updateDoc<true>(doc, y));
|
419
|
+
}
|
420
|
+
|
421
|
+
std::vector<Float> estimateVars(const DocumentBase* doc) const override
|
422
|
+
{
|
423
|
+
std::vector<Float> ret;
|
424
|
+
auto pdoc = dynamic_cast<const _DocType*>(doc);
|
425
|
+
if (!pdoc) return ret;
|
426
|
+
for (auto& f : responseVars)
|
427
|
+
{
|
428
|
+
ret.emplace_back(f->estimate(pdoc->numByTopic, pdoc->getSumWordWeight()));
|
429
|
+
}
|
430
|
+
return ret;
|
431
|
+
}
|
432
|
+
};
|
433
|
+
|
434
|
+
template<typename _WeightType>
|
435
|
+
void detail::GLMFunctor<_WeightType>::serializerRead(
|
436
|
+
std::unique_ptr<detail::GLMFunctor<_WeightType>>& p, std::istream& istr)
|
437
|
+
{
|
438
|
+
uint32_t t = serializer::readFromStream<uint32_t>(istr);
|
439
|
+
if (!t) p.reset();
|
440
|
+
else
|
441
|
+
{
|
442
|
+
switch ((ISLDAModel::GLM)(t - 1))
|
443
|
+
{
|
444
|
+
case ISLDAModel::GLM::linear:
|
445
|
+
p = make_unique<LinearFunctor<_WeightType>>();
|
446
|
+
break;
|
447
|
+
case ISLDAModel::GLM::binary_logistic:
|
448
|
+
p = make_unique<BinaryLogisticFunctor<_WeightType>>();
|
449
|
+
break;
|
450
|
+
default:
|
451
|
+
throw std::ios_base::failure(text::format("wrong GLMFunctor type id %d", (t - 1)));
|
452
|
+
}
|
453
|
+
p->serializerRead(istr);
|
454
|
+
}
|
455
|
+
}
|
456
|
+
}
|