tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,13 @@
1
+ #include "LDAModel.hpp"
2
+
3
+ namespace tomoto
4
+ {
5
+ /*template class LDAModel<TermWeight::one>;
6
+ template class LDAModel<TermWeight::idf>;
7
+ template class LDAModel<TermWeight::pmi>;*/
8
+
9
+ ILDAModel* ILDAModel::create(TermWeight _weight, size_t _K, Float _alpha, Float _eta, size_t seed, bool scalarRng)
10
+ {
11
+ TMT_SWITCH_TW(_weight, scalarRng, LDAModel, _K, _alpha, _eta, seed);
12
+ }
13
+ }
@@ -0,0 +1,1058 @@
1
+ #pragma once
2
+ #include <unordered_set>
3
+ #include <numeric>
4
+ #include "TopicModel.hpp"
5
+ #include "../Utils/EigenAddonOps.hpp"
6
+ #include "../Utils/Utils.hpp"
7
+ #include "../Utils/math.h"
8
+ #include "../Utils/sample.hpp"
9
+ #include "LDA.h"
10
+
11
+ /*
12
+ Implementation of LDA using Gibbs sampling by bab2min
13
+
14
+ * Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
15
+ * Newman, D., Asuncion, A., Smyth, P., & Welling, M. (2009). Distributed algorithms for topic models. Journal of Machine Learning Research, 10(Aug), 1801-1828.
16
+
17
+ Term Weighting Scheme is based on following paper:
18
+ * Wilson, A. T., & Chew, P. A. (2010, June). Term weighting schemes for latent dirichlet allocation. In human language technologies: The 2010 annual conference of the North American Chapter of the Association for Computational Linguistics (pp. 465-473). Association for Computational Linguistics.
19
+
20
+ */
21
+
22
+ #ifdef TMT_SCALAR_RNG
23
+ #define TMT_SWITCH_TW(TW, SRNG, MDL, ...) do{\
24
+ {\
25
+ switch (TW){\
26
+ case TermWeight::one:\
27
+ return new MDL<TermWeight::one, ScalarRandGen>(__VA_ARGS__);\
28
+ case TermWeight::idf:\
29
+ return new MDL<TermWeight::idf, ScalarRandGen>(__VA_ARGS__);\
30
+ case TermWeight::pmi:\
31
+ return new MDL<TermWeight::pmi, ScalarRandGen>(__VA_ARGS__);\
32
+ }\
33
+ }\
34
+ return nullptr; } while(0)
35
+ #else
36
+ #define TMT_SWITCH_TW(TW, SRNG, MDL, ...) do{\
37
+ {\
38
+ switch (TW){\
39
+ case TermWeight::one:\
40
+ return new MDL<TermWeight::one, RandGen>(__VA_ARGS__);\
41
+ case TermWeight::idf:\
42
+ return new MDL<TermWeight::idf, RandGen>(__VA_ARGS__);\
43
+ case TermWeight::pmi:\
44
+ return new MDL<TermWeight::pmi, RandGen>(__VA_ARGS__);\
45
+ }\
46
+ }\
47
+ return nullptr; } while(0)
48
+ #endif
49
+
50
+ #define GETTER(name, type, field) type get##name() const override { return field; }
51
+
52
+ namespace tomoto
53
+ {
54
+ template<TermWeight _tw>
55
+ struct ModelStateLDA
56
+ {
57
+ using WeightType = typename std::conditional<_tw == TermWeight::one, int32_t, float>::type;
58
+
59
+ Eigen::Matrix<Float, -1, 1> zLikelihood;
60
+ Eigen::Matrix<WeightType, -1, 1> numByTopic; // Dim: (Topic, 1)
61
+ Eigen::Matrix<WeightType, -1, -1> numByTopicWord; // Dim: (Topic, Vocabs)
62
+ DEFINE_SERIALIZER(numByTopic, numByTopicWord);
63
+ };
64
+
65
+ namespace flags
66
+ {
67
+ enum
68
+ {
69
+ generator_by_doc = end_flag_of_TopicModel,
70
+ end_flag_of_LDAModel = generator_by_doc << 1,
71
+ };
72
+ }
73
+
74
+
75
+ template<typename _Model, bool _asymEta>
76
+ class EtaHelper
77
+ {
78
+ const _Model& _this;
79
+ public:
80
+ EtaHelper(const _Model& p) : _this(p) {}
81
+
82
+ Float getEta(size_t vid) const
83
+ {
84
+ return _this.eta;
85
+ }
86
+
87
+ Float getEtaSum() const
88
+ {
89
+ return _this.eta * _this.realV;
90
+ }
91
+ };
92
+
93
+ template<typename _Model>
94
+ class EtaHelper<_Model, true>
95
+ {
96
+ const _Model& _this;
97
+ public:
98
+ EtaHelper(const _Model& p) : _this(p) {}
99
+
100
+ auto getEta(size_t vid) const
101
+ -> decltype(_this.etaByTopicWord.col(vid).array())
102
+ {
103
+ return _this.etaByTopicWord.col(vid).array();
104
+ }
105
+
106
+ auto getEtaSum() const
107
+ -> decltype(_this.etaSumByTopic.array())
108
+ {
109
+ return _this.etaSumByTopic.array();
110
+ }
111
+ };
112
+
113
+ template<TermWeight _tw>
114
+ struct TwId;
115
+
116
+ template<>
117
+ struct TwId<TermWeight::one>
118
+ {
119
+ static constexpr char TWID[] = "one\0";
120
+ };
121
+
122
+ template<>
123
+ struct TwId<TermWeight::idf>
124
+ {
125
+ static constexpr char TWID[] = "idf\0";
126
+ };
127
+
128
+ template<>
129
+ struct TwId<TermWeight::pmi>
130
+ {
131
+ static constexpr char TWID[] = "pmi\0";
132
+ };
133
+
134
+ // to make HDP friend of LDA for HDPModel::converToLDA
135
+ template<TermWeight _tw,
136
+ typename _RandGen,
137
+ typename _Interface,
138
+ typename _Derived,
139
+ typename _DocType,
140
+ typename _ModelState>
141
+ class HDPModel;
142
+
143
+ template<TermWeight _tw, typename _RandGen,
144
+ size_t _Flags = flags::partitioned_multisampling,
145
+ typename _Interface = ILDAModel,
146
+ typename _Derived = void,
147
+ typename _DocType = DocumentLDA<_tw>,
148
+ typename _ModelState = ModelStateLDA<_tw>>
149
+ class LDAModel : public TopicModel<_RandGen, _Flags, _Interface,
150
+ typename std::conditional<std::is_same<_Derived, void>::value, LDAModel<_tw, _RandGen, _Flags>, _Derived>::type,
151
+ _DocType, _ModelState>,
152
+ protected TwId<_tw>
153
+ {
154
+ protected:
155
+ using DerivedClass = typename std::conditional<std::is_same<_Derived, void>::value, LDAModel, _Derived>::type;
156
+ using BaseClass = TopicModel<_RandGen, _Flags, _Interface, DerivedClass, _DocType, _ModelState>;
157
+ friend BaseClass;
158
+ friend EtaHelper<DerivedClass, true>;
159
+ friend EtaHelper<DerivedClass, false>;
160
+
161
+ template<TermWeight,
162
+ typename,
163
+ typename,
164
+ typename,
165
+ typename,
166
+ typename>
167
+ friend class HDPModel;
168
+
169
+ static constexpr char TMID[] = "LDA\0";
170
+ using WeightType = typename std::conditional<_tw == TermWeight::one, int32_t, float>::type;
171
+
172
+ enum { m_flags = _Flags };
173
+
174
+ std::vector<Float> vocabWeights;
175
+ std::vector<Tid> sharedZs;
176
+ std::vector<Float> sharedWordWeights;
177
+ Tid K;
178
+ Float alpha, eta;
179
+ Eigen::Matrix<Float, -1, 1> alphas;
180
+ std::unordered_map<std::string, std::vector<Float>> etaByWord;
181
+ Eigen::Matrix<Float, -1, -1> etaByTopicWord; // (K, V)
182
+ Eigen::Matrix<Float, -1, 1> etaSumByTopic; // (K, )
183
+ uint32_t optimInterval = 10, burnIn = 0;
184
+ Eigen::Matrix<WeightType, -1, -1> numByTopicDoc;
185
+
186
+ struct ExtraDocData
187
+ {
188
+ std::vector<Vid> vChunkOffset;
189
+ Eigen::Matrix<uint32_t, -1, -1> chunkOffsetByDoc;
190
+ };
191
+
192
+ ExtraDocData eddTrain;
193
+
194
+ template<typename _List>
195
+ static Float calcDigammaSum(ThreadPool* pool, _List list, size_t len, Float alpha)
196
+ {
197
+ auto listExpr = Eigen::Matrix<Float, -1, 1>::NullaryExpr(len, list);
198
+ auto dAlpha = math::digammaT(alpha);
199
+
200
+ size_t suggested = (len + 127) / 128;
201
+ if (pool && suggested > pool->getNumWorkers()) suggested = pool->getNumWorkers();
202
+ if (suggested <= 1 || !pool)
203
+ {
204
+ return (math::digammaApprox(listExpr.array() + alpha) - dAlpha).sum();
205
+ }
206
+
207
+
208
+ std::vector<std::future<Float>> futures;
209
+ for (size_t i = 0; i < suggested; ++i)
210
+ {
211
+ size_t start = (len * i / suggested + 15) & ~0xF,
212
+ end = std::min((len * (i + 1) / suggested + 15) & ~0xF, len);
213
+ futures.emplace_back(pool->enqueue([&, start, end, dAlpha](size_t)
214
+ {
215
+ return (math::digammaApprox(listExpr.array().segment(start, end - start) + alpha) - dAlpha).sum();
216
+ }));
217
+ }
218
+ Float ret = 0;
219
+ for (auto& f : futures) ret += f.get();
220
+ return ret;
221
+ }
222
+
223
+ /*
224
+ function for optimizing hyperparameters
225
+ */
226
+ void optimizeParameters(ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
227
+ {
228
+ const auto K = this->K;
229
+ for (size_t i = 0; i < 10; ++i)
230
+ {
231
+ Float denom = calcDigammaSum(&pool, [&](size_t i) { return this->docs[i].getSumWordWeight(); }, this->docs.size(), alphas.sum());
232
+ for (size_t k = 0; k < K; ++k)
233
+ {
234
+ Float nom = calcDigammaSum(&pool, [&](size_t i) { return this->docs[i].numByTopic[k]; }, this->docs.size(), alphas(k));
235
+ alphas(k) = std::max(nom / denom * alphas(k), 1e-5f);
236
+ }
237
+ }
238
+ }
239
+
240
+ template<bool _asymEta>
241
+ EtaHelper<DerivedClass, _asymEta> getEtaHelper() const
242
+ {
243
+ return EtaHelper<DerivedClass, _asymEta>{ *static_cast<const DerivedClass*>(this) };
244
+ }
245
+
246
+ template<bool _asymEta>
247
+ Float* getZLikelihoods(_ModelState& ld, const _DocType& doc, size_t docId, size_t vid) const
248
+ {
249
+ const size_t V = this->realV;
250
+ assert(vid < V);
251
+ auto etaHelper = this->template getEtaHelper<_asymEta>();
252
+ auto& zLikelihood = ld.zLikelihood;
253
+ zLikelihood = (doc.numByTopic.array().template cast<Float>() + alphas.array())
254
+ * (ld.numByTopicWord.col(vid).array().template cast<Float>() + etaHelper.getEta(vid))
255
+ / (ld.numByTopic.array().template cast<Float>() + etaHelper.getEtaSum());
256
+ sample::prefixSum(zLikelihood.data(), K);
257
+ return &zLikelihood[0];
258
+ }
259
+
260
+ template<int _inc>
261
+ inline void addWordTo(_ModelState& ld, _DocType& doc, uint32_t pid, Vid vid, Tid tid) const
262
+ {
263
+ assert(tid < K);
264
+ assert(vid < this->realV);
265
+ constexpr bool _dec = _inc < 0 && _tw != TermWeight::one;
266
+ typename std::conditional<_tw != TermWeight::one, float, int32_t>::type weight
267
+ = _tw != TermWeight::one ? doc.wordWeights[pid] : 1;
268
+
269
+ updateCnt<_dec>(doc.numByTopic[tid], _inc * weight);
270
+ updateCnt<_dec>(ld.numByTopic[tid], _inc * weight);
271
+ updateCnt<_dec>(ld.numByTopicWord(tid, vid), _inc * weight);
272
+ }
273
+
274
+ void resetStatistics()
275
+ {
276
+ this->globalState.numByTopic.setZero();
277
+ this->globalState.numByTopicWord.setZero();
278
+ for (auto& doc : this->docs)
279
+ {
280
+ doc.numByTopic.setZero();
281
+ for (size_t w = 0; w < doc.words.size(); ++w)
282
+ {
283
+ if (doc.words[w] >= this->realV) continue;
284
+ addWordTo<1>(this->globalState, doc, w, doc.words[w], doc.Zs[w]);
285
+ }
286
+ }
287
+ }
288
+
289
+ /*
290
+ called once before sampleDocument
291
+ */
292
+ void presampleDocument(_DocType& doc, size_t docId, _ModelState& ld, _RandGen& rgs, size_t iterationCnt) const
293
+ {
294
+ }
295
+
296
+ /*
297
+ main sampling procedure (can be called one or more by ParallelScheme)
298
+ */
299
+ template<ParallelScheme _ps, bool _infer, typename _ExtraDocData>
300
+ void sampleDocument(_DocType& doc, const _ExtraDocData& edd, size_t docId, _ModelState& ld, _RandGen& rgs, size_t iterationCnt, size_t partitionId = 0) const
301
+ {
302
+ size_t b = 0, e = doc.words.size();
303
+ if (_ps == ParallelScheme::partition)
304
+ {
305
+ b = edd.chunkOffsetByDoc(partitionId, docId);
306
+ e = edd.chunkOffsetByDoc(partitionId + 1, docId);
307
+ }
308
+
309
+ size_t vOffset = (_ps == ParallelScheme::partition && partitionId) ? edd.vChunkOffset[partitionId - 1] : 0;
310
+
311
+ for (size_t w = b; w < e; ++w)
312
+ {
313
+ if (doc.words[w] >= this->realV) continue;
314
+ addWordTo<-1>(ld, doc, w, doc.words[w] - vOffset, doc.Zs[w]);
315
+ Float* dist;
316
+ if (etaByTopicWord.size())
317
+ {
318
+ dist = static_cast<const DerivedClass*>(this)->template
319
+ getZLikelihoods<true>(ld, doc, docId, doc.words[w] - vOffset);
320
+ }
321
+ else
322
+ {
323
+ dist = static_cast<const DerivedClass*>(this)->template
324
+ getZLikelihoods<false>(ld, doc, docId, doc.words[w] - vOffset);
325
+ }
326
+ doc.Zs[w] = sample::sampleFromDiscreteAcc(dist, dist + K, rgs);
327
+ addWordTo<1>(ld, doc, w, doc.words[w] - vOffset, doc.Zs[w]);
328
+ }
329
+ }
330
+
331
+ template<ParallelScheme _ps, bool _infer, typename _DocIter, typename _ExtraDocData>
332
+ void performSampling(ThreadPool& pool, _ModelState* localData, _RandGen* rgs, std::vector<std::future<void>>& res,
333
+ _DocIter docFirst, _DocIter docLast, const _ExtraDocData& edd) const
334
+ {
335
+ // single-threaded sampling
336
+ if (_ps == ParallelScheme::none)
337
+ {
338
+ forRandom((size_t)std::distance(docFirst, docLast), rgs[0](), [&](size_t id)
339
+ {
340
+ static_cast<const DerivedClass*>(this)->presampleDocument(docFirst[id], id, *localData, *rgs, this->globalStep);
341
+ static_cast<const DerivedClass*>(this)->template sampleDocument<_ps, _infer>(
342
+ docFirst[id], edd, id,
343
+ *localData, *rgs, this->globalStep, 0);
344
+
345
+ });
346
+ }
347
+ // multi-threaded sampling on partition ad update into global
348
+ else if (_ps == ParallelScheme::partition)
349
+ {
350
+ const size_t chStride = pool.getNumWorkers();
351
+ for (size_t i = 0; i < chStride; ++i)
352
+ {
353
+ res = pool.enqueueToAll([&, i, chStride](size_t partitionId)
354
+ {
355
+ size_t didx = (i + partitionId) % chStride;
356
+ forRandom(((size_t)std::distance(docFirst, docLast) + (chStride - 1) - didx) / chStride, rgs[partitionId](), [&](size_t id)
357
+ {
358
+ if (i == 0)
359
+ {
360
+ static_cast<const DerivedClass*>(this)->presampleDocument(
361
+ docFirst[id * chStride + didx], id * chStride + didx,
362
+ localData[partitionId], rgs[partitionId], this->globalStep
363
+ );
364
+ }
365
+ static_cast<const DerivedClass*>(this)->template sampleDocument<_ps, _infer>(
366
+ docFirst[id * chStride + didx], edd, id * chStride + didx,
367
+ localData[partitionId], rgs[partitionId], this->globalStep, partitionId
368
+ );
369
+ });
370
+ });
371
+ for (auto& r : res) r.get();
372
+ res.clear();
373
+ }
374
+ }
375
+ // multi-threaded sampling on copy and merge into global
376
+ else if(_ps == ParallelScheme::copy_merge)
377
+ {
378
+ const size_t chStride = std::min(pool.getNumWorkers() * 8, (size_t)std::distance(docFirst, docLast));
379
+ for (size_t ch = 0; ch < chStride; ++ch)
380
+ {
381
+ res.emplace_back(pool.enqueue([&, ch, chStride](size_t threadId)
382
+ {
383
+ forRandom(((size_t)std::distance(docFirst, docLast) + (chStride - 1) - ch) / chStride, rgs[threadId](), [&](size_t id)
384
+ {
385
+ static_cast<const DerivedClass*>(this)->presampleDocument(
386
+ docFirst[id * chStride + ch], id * chStride + ch,
387
+ localData[threadId], rgs[threadId], this->globalStep
388
+ );
389
+ static_cast<const DerivedClass*>(this)->template sampleDocument<_ps, _infer>(
390
+ docFirst[id * chStride + ch], edd, id * chStride + ch,
391
+ localData[threadId], rgs[threadId], this->globalStep, 0
392
+ );
393
+ });
394
+ }));
395
+ }
396
+ for (auto& r : res) r.get();
397
+ res.clear();
398
+ }
399
+ }
400
+
401
+ template<typename _DocIter, typename _ExtraDocData>
402
+ void updatePartition(ThreadPool& pool, const _ModelState& globalState, _ModelState* localData, _DocIter first, _DocIter last, _ExtraDocData& edd) const
403
+ {
404
+ size_t numPools = pool.getNumWorkers();
405
+ if (edd.vChunkOffset.size() != numPools)
406
+ {
407
+ edd.vChunkOffset.clear();
408
+ size_t totCnt = std::accumulate(this->vocabCf.begin(), this->vocabCf.begin() + this->realV, 0);
409
+ size_t cumCnt = 0;
410
+ for (size_t i = 0; i < this->realV; ++i)
411
+ {
412
+ cumCnt += this->vocabCf[i];
413
+ if (cumCnt * numPools >= totCnt * (edd.vChunkOffset.size() + 1)) edd.vChunkOffset.emplace_back(i + 1);
414
+ }
415
+
416
+ edd.chunkOffsetByDoc.resize(numPools + 1, std::distance(first, last));
417
+ size_t i = 0;
418
+ for (; first != last; ++first, ++i)
419
+ {
420
+ auto& doc = *first;
421
+ edd.chunkOffsetByDoc(0, i) = 0;
422
+ size_t g = 0;
423
+ for (size_t j = 0; j < doc.words.size(); ++j)
424
+ {
425
+ for (; g < numPools && doc.words[j] >= edd.vChunkOffset[g]; ++g)
426
+ {
427
+ edd.chunkOffsetByDoc(g + 1, i) = j;
428
+ }
429
+ }
430
+ for (; g < numPools; ++g)
431
+ {
432
+ edd.chunkOffsetByDoc(g + 1, i) = doc.words.size();
433
+ }
434
+ }
435
+ }
436
+ static_cast<const DerivedClass*>(this)->distributePartition(pool, globalState, localData, edd);
437
+ }
438
+
439
+ template<typename _ExtraDocData>
440
+ void distributePartition(ThreadPool& pool, const _ModelState& globalState, _ModelState* localData, const _ExtraDocData& edd) const
441
+ {
442
+ std::vector<std::future<void>> res = pool.enqueueToAll([&](size_t partitionId)
443
+ {
444
+ size_t b = partitionId ? edd.vChunkOffset[partitionId - 1] : 0,
445
+ e = edd.vChunkOffset[partitionId];
446
+
447
+ localData[partitionId].numByTopicWord = globalState.numByTopicWord.block(0, b, globalState.numByTopicWord.rows(), e - b);
448
+ localData[partitionId].numByTopic = globalState.numByTopic;
449
+ if (!localData[partitionId].zLikelihood.size()) localData[partitionId].zLikelihood = globalState.zLikelihood;
450
+ });
451
+
452
+ for (auto& r : res) r.get();
453
+ }
454
+
455
+ template<ParallelScheme _ps>
456
+ size_t estimateMaxThreads() const
457
+ {
458
+ if (_ps == ParallelScheme::partition)
459
+ {
460
+ return (this->realV + 3) / 4;
461
+ }
462
+ if (_ps == ParallelScheme::copy_merge)
463
+ {
464
+ return (this->docs.size() + 1) / 2;
465
+ }
466
+ return (size_t)-1;
467
+ }
468
+
469
+ template<ParallelScheme _ps>
470
+ void trainOne(ThreadPool& pool, _ModelState* localData, _RandGen* rgs)
471
+ {
472
+ std::vector<std::future<void>> res;
473
+ try
474
+ {
475
+ performSampling<_ps, false>(pool, localData, rgs, res,
476
+ this->docs.begin(), this->docs.end(), eddTrain);
477
+ static_cast<DerivedClass*>(this)->updateGlobalInfo(pool, localData);
478
+ static_cast<DerivedClass*>(this)->template mergeState<_ps>(pool, this->globalState, this->tState, localData, rgs, eddTrain);
479
+ static_cast<DerivedClass*>(this)->template sampleGlobalLevel<>(&pool, localData, rgs, this->docs.begin(), this->docs.end());
480
+ if (this->globalStep >= this->burnIn && optimInterval && (this->globalStep + 1) % optimInterval == 0)
481
+ {
482
+ static_cast<DerivedClass*>(this)->optimizeParameters(pool, localData, rgs);
483
+ }
484
+ }
485
+ catch (const exception::TrainingError&)
486
+ {
487
+ for (auto& r : res) if(r.valid()) r.get();
488
+ throw;
489
+ }
490
+ }
491
+
492
+ /*
493
+ updates global informations after sampling documents
494
+ ex) update new global K at HDP model
495
+ */
496
+ void updateGlobalInfo(ThreadPool& pool, _ModelState* localData)
497
+ {
498
+ }
499
+
500
+ /*
501
+ merges multithreaded document sampling result
502
+ */
503
+ template<ParallelScheme _ps, typename _ExtraDocData>
504
+ void mergeState(ThreadPool& pool, _ModelState& globalState, _ModelState& tState, _ModelState* localData, _RandGen*, const _ExtraDocData& edd) const
505
+ {
506
+ std::vector<std::future<void>> res;
507
+
508
+ if (_ps == ParallelScheme::copy_merge)
509
+ {
510
+ tState = globalState;
511
+ globalState = localData[0];
512
+ for (size_t i = 1; i < pool.getNumWorkers(); ++i)
513
+ {
514
+ globalState.numByTopicWord += localData[i].numByTopicWord - tState.numByTopicWord;
515
+ }
516
+
517
+ // make all count being positive
518
+ if (_tw != TermWeight::one)
519
+ {
520
+ globalState.numByTopicWord = globalState.numByTopicWord.cwiseMax(0);
521
+ }
522
+ globalState.numByTopic = globalState.numByTopicWord.rowwise().sum();
523
+
524
+ for (size_t i = 0; i < pool.getNumWorkers(); ++i)
525
+ {
526
+ res.emplace_back(pool.enqueue([&, i](size_t)
527
+ {
528
+ localData[i] = globalState;
529
+ }));
530
+ }
531
+ }
532
+ else if (_ps == ParallelScheme::partition)
533
+ {
534
+ res = pool.enqueueToAll([&](size_t partitionId)
535
+ {
536
+ size_t b = partitionId ? edd.vChunkOffset[partitionId - 1] : 0,
537
+ e = edd.vChunkOffset[partitionId];
538
+ globalState.numByTopicWord.block(0, b, globalState.numByTopicWord.rows(), e - b) = localData[partitionId].numByTopicWord;
539
+ });
540
+ for (auto& r : res) r.get();
541
+ res.clear();
542
+
543
+ // make all count being positive
544
+ if (_tw != TermWeight::one)
545
+ {
546
+ globalState.numByTopicWord = globalState.numByTopicWord.cwiseMax(0);
547
+ }
548
+ globalState.numByTopic = globalState.numByTopicWord.rowwise().sum();
549
+
550
+ res = pool.enqueueToAll([&](size_t threadId)
551
+ {
552
+ localData[threadId].numByTopic = globalState.numByTopic;
553
+ });
554
+ }
555
+ for (auto& r : res) r.get();
556
+ }
557
+
558
+ /*
559
+ performs sampling which needs global state modification
560
+ ex) document pathing at hLDA model
561
+ * if pool is nullptr, workers has been already pooled and cannot branch works more.
562
+ */
563
+ template<typename _DocIter>
564
+ void sampleGlobalLevel(ThreadPool* pool, _ModelState* localData, _RandGen* rgs, _DocIter first, _DocIter last) const
565
+ {
566
+ }
567
+
568
+ template<typename _DocIter>
569
+ void sampleGlobalLevel(ThreadPool* pool, _ModelState* localData, _RandGen* rgs, _DocIter first, _DocIter last)
570
+ {
571
+ }
572
+
573
+ template<typename _DocIter>
574
+ double getLLDocs(_DocIter _first, _DocIter _last) const
575
+ {
576
+ double ll = 0;
577
+ // doc-topic distribution
578
+ for (; _first != _last; ++_first)
579
+ {
580
+ auto& doc = *_first;
581
+ ll -= math::lgammaT(doc.getSumWordWeight() + alphas.sum()) - math::lgammaT(alphas.sum());
582
+ for (Tid k = 0; k < K; ++k)
583
+ {
584
+ ll += math::lgammaT(doc.numByTopic[k] + alphas[k]) - math::lgammaT(alphas[k]);
585
+ }
586
+ }
587
+ return ll;
588
+ }
589
+
590
+ double getLLRest(const _ModelState& ld) const
591
+ {
592
+ double ll = 0;
593
+ const size_t V = this->realV;
594
+ // topic-word distribution
595
+ auto lgammaEta = math::lgammaT(eta);
596
+ ll += math::lgammaT(V*eta) * K;
597
+ for (Tid k = 0; k < K; ++k)
598
+ {
599
+ ll -= math::lgammaT(ld.numByTopic[k] + V * eta);
600
+ for (Vid v = 0; v < V; ++v)
601
+ {
602
+ if (!ld.numByTopicWord(k, v)) continue;
603
+ ll += math::lgammaT(ld.numByTopicWord(k, v) + eta) - lgammaEta;
604
+ assert(std::isfinite(ll));
605
+ }
606
+ }
607
+ return ll;
608
+ }
609
+
610
+ double getLL() const
611
+ {
612
+ return static_cast<const DerivedClass*>(this)->template getLLDocs<>(this->docs.begin(), this->docs.end())
613
+ + static_cast<const DerivedClass*>(this)->getLLRest(this->globalState);
614
+ }
615
+
616
+ void prepareShared()
617
+ {
618
+ auto txZs = [](_DocType& doc) { return &doc.Zs; };
619
+ tvector<Tid>::trade(sharedZs,
620
+ makeTransformIter(this->docs.begin(), txZs),
621
+ makeTransformIter(this->docs.end(), txZs));
622
+ if (_tw != TermWeight::one)
623
+ {
624
+ auto txWeights = [](_DocType& doc) { return &doc.wordWeights; };
625
+ tvector<Float>::trade(sharedWordWeights,
626
+ makeTransformIter(this->docs.begin(), txWeights),
627
+ makeTransformIter(this->docs.end(), txWeights));
628
+ }
629
+ }
630
+
631
+ WeightType* getTopicDocPtr(size_t docId) const
632
+ {
633
+ if (!(m_flags & flags::continuous_doc_data) || docId == (size_t)-1) return nullptr;
634
+ return (WeightType*)numByTopicDoc.col(docId).data();
635
+ }
636
+
637
+ void prepareDoc(_DocType& doc, size_t docId, size_t wordSize) const
638
+ {
639
+ sortAndWriteOrder(doc.words, doc.wOrder);
640
+ doc.numByTopic.init(getTopicDocPtr(docId), K);
641
+ doc.Zs = tvector<Tid>(wordSize);
642
+ if(_tw != TermWeight::one) doc.wordWeights.resize(wordSize, 1);
643
+ }
644
+
645
+ void prepareWordPriors()
646
+ {
647
+ if (etaByWord.empty()) return;
648
+ etaByTopicWord.resize(K, this->realV);
649
+ etaSumByTopic.resize(K);
650
+ etaByTopicWord.array() = eta;
651
+ for (auto& it : etaByWord)
652
+ {
653
+ auto id = this->dict.toWid(it.first);
654
+ if (id == (Vid)-1 || id >= this->realV) continue;
655
+ etaByTopicWord.col(id) = Eigen::Map<Eigen::Matrix<Float, -1, 1>>{ it.second.data(), (Eigen::Index)it.second.size() };
656
+ }
657
+ etaSumByTopic = etaByTopicWord.rowwise().sum();
658
+ }
659
+
660
+ void initGlobalState(bool initDocs)
661
+ {
662
+ const size_t V = this->realV;
663
+ this->globalState.zLikelihood = Eigen::Matrix<Float, -1, 1>::Zero(K);
664
+ if (initDocs)
665
+ {
666
+ this->globalState.numByTopic = Eigen::Matrix<WeightType, -1, 1>::Zero(K);
667
+ this->globalState.numByTopicWord = Eigen::Matrix<WeightType, -1, -1>::Zero(K, V);
668
+ }
669
+ if(m_flags & flags::continuous_doc_data) numByTopicDoc = Eigen::Matrix<WeightType, -1, -1>::Zero(K, this->docs.size());
670
+ }
671
+
672
+ struct Generator
673
+ {
674
+ std::uniform_int_distribution<Tid> theta;
675
+ };
676
+
677
+ Generator makeGeneratorForInit(const _DocType*) const
678
+ {
679
+ return Generator{ std::uniform_int_distribution<Tid>{0, (Tid)(K - 1)} };
680
+ }
681
+
682
+ template<bool _Infer>
683
+ void updateStateWithDoc(Generator& g, _ModelState& ld, _RandGen& rgs, _DocType& doc, size_t i) const
684
+ {
685
+ auto& z = doc.Zs[i];
686
+ auto w = doc.words[i];
687
+ if (etaByTopicWord.size())
688
+ {
689
+ auto col = etaByTopicWord.col(w);
690
+ z = sample::sampleFromDiscrete(col.data(), col.data() + col.size(), rgs);
691
+ }
692
+ else
693
+ {
694
+ z = g.theta(rgs);
695
+ }
696
+ addWordTo<1>(ld, doc, i, w, z);
697
+ }
698
+
699
+ template<bool _Infer, typename _Generator>
700
+ void initializeDocState(_DocType& doc, size_t docId, _Generator& g, _ModelState& ld, _RandGen& rgs) const
701
+ {
702
+ std::vector<uint32_t> tf(this->realV);
703
+ static_cast<const DerivedClass*>(this)->prepareDoc(doc, docId, doc.words.size());
704
+ _Generator g2;
705
+ _Generator* selectedG = &g;
706
+ if (m_flags & flags::generator_by_doc)
707
+ {
708
+ g2 = static_cast<const DerivedClass*>(this)->makeGeneratorForInit(&doc);
709
+ selectedG = &g2;
710
+ }
711
+ if (_tw == TermWeight::pmi)
712
+ {
713
+ std::fill(tf.begin(), tf.end(), 0);
714
+ for (auto& w : doc.words) if(w < this->realV) ++tf[w];
715
+ }
716
+
717
+ for (size_t i = 0; i < doc.words.size(); ++i)
718
+ {
719
+ if (doc.words[i] >= this->realV) continue;
720
+ if (_tw == TermWeight::idf)
721
+ {
722
+ doc.wordWeights[i] = vocabWeights[doc.words[i]];
723
+ }
724
+ else if (_tw == TermWeight::pmi)
725
+ {
726
+ doc.wordWeights[i] = std::max((Float)log(tf[doc.words[i]] / vocabWeights[doc.words[i]] / doc.words.size()), (Float)0);
727
+ }
728
+ static_cast<const DerivedClass*>(this)->template updateStateWithDoc<_Infer>(*selectedG, ld, rgs, doc, i);
729
+ }
730
+ doc.updateSumWordWeight(this->realV);
731
+ }
732
+
733
+ std::vector<uint64_t> _getTopicsCount() const
734
+ {
735
+ std::vector<uint64_t> cnt(K);
736
+ for (auto& doc : this->docs)
737
+ {
738
+ for (size_t i = 0; i < doc.Zs.size(); ++i)
739
+ {
740
+ if (doc.words[i] < this->realV) ++cnt[doc.Zs[i]];
741
+ }
742
+ }
743
+ return cnt;
744
+ }
745
+
746
+ std::vector<Float> _getWidsByTopic(size_t tid) const
747
+ {
748
+ assert(tid < this->globalState.numByTopic.rows());
749
+ const size_t V = this->realV;
750
+ std::vector<Float> ret(V);
751
+ Float sum = this->globalState.numByTopic[tid] + V * eta;
752
+ auto r = this->globalState.numByTopicWord.row(tid);
753
+ for (size_t v = 0; v < V; ++v)
754
+ {
755
+ ret[v] = (r[v] + eta) / sum;
756
+ }
757
+ return ret;
758
+ }
759
+
760
+ template<bool _Together, ParallelScheme _ps, typename _Iter>
761
+ std::vector<double> _infer(_Iter docFirst, _Iter docLast, size_t maxIter, Float tolerance, size_t numWorkers) const
762
+ {
763
+ decltype(static_cast<const DerivedClass*>(this)->makeGeneratorForInit(nullptr)) generator;
764
+ if (!(m_flags & flags::generator_by_doc))
765
+ {
766
+ generator = static_cast<const DerivedClass*>(this)->makeGeneratorForInit(nullptr);
767
+ }
768
+
769
+ if (_Together)
770
+ {
771
+ numWorkers = std::min(numWorkers, this->maxThreads[(size_t)_ps]);
772
+ ThreadPool pool{ numWorkers };
773
+ // temporary state variable
774
+ _RandGen rgc{};
775
+ auto tmpState = this->globalState, tState = this->globalState;
776
+ for (auto d = docFirst; d != docLast; ++d)
777
+ {
778
+ initializeDocState<true>(*d, -1, generator, tmpState, rgc);
779
+ }
780
+
781
+ std::vector<decltype(tmpState)> localData((m_flags & flags::shared_state) ? 0 : pool.getNumWorkers(), tmpState);
782
+ std::vector<_RandGen> rgs;
783
+ for (size_t i = 0; i < pool.getNumWorkers(); ++i) rgs.emplace_back(rgc());
784
+
785
+ ExtraDocData edd;
786
+ if (_ps == ParallelScheme::partition)
787
+ {
788
+ updatePartition(pool, tmpState, localData.data(), docFirst, docLast, edd);
789
+ }
790
+
791
+ for (size_t i = 0; i < maxIter; ++i)
792
+ {
793
+ std::vector<std::future<void>> res;
794
+ performSampling<_ps, true>(pool,
795
+ (m_flags & flags::shared_state) ? &tmpState : localData.data(), rgs.data(), res,
796
+ docFirst, docLast, edd);
797
+ static_cast<const DerivedClass*>(this)->template mergeState<_ps>(pool, tmpState, tState, localData.data(), rgs.data(), edd);
798
+ static_cast<const DerivedClass*>(this)->template sampleGlobalLevel<>(
799
+ &pool, (m_flags & flags::shared_state) ? &tmpState : localData.data(), rgs.data(), docFirst, docLast);
800
+ }
801
+ double ll = static_cast<const DerivedClass*>(this)->getLLRest(tmpState) - static_cast<const DerivedClass*>(this)->getLLRest(this->globalState);
802
+ ll += static_cast<const DerivedClass*>(this)->template getLLDocs<>(docFirst, docLast);
803
+ return { ll };
804
+ }
805
+ else if (m_flags & flags::shared_state)
806
+ {
807
+ ThreadPool pool{ numWorkers };
808
+ ExtraDocData edd;
809
+ std::vector<double> ret;
810
+ const double gllRest = static_cast<const DerivedClass*>(this)->getLLRest(this->globalState);
811
+ for (auto d = docFirst; d != docLast; ++d)
812
+ {
813
+ _RandGen rgc{};
814
+ auto tmpState = this->globalState;
815
+ initializeDocState<true>(*d, -1, generator, tmpState, rgc);
816
+ for (size_t i = 0; i < maxIter; ++i)
817
+ {
818
+ static_cast<const DerivedClass*>(this)->presampleDocument(*d, -1, tmpState, rgc, i);
819
+ static_cast<const DerivedClass*>(this)->template sampleDocument<ParallelScheme::none, true>(*d, edd, -1, tmpState, rgc, i);
820
+ static_cast<const DerivedClass*>(this)->template sampleGlobalLevel<>(
821
+ &pool, &tmpState, &rgc, &*d, &*d + 1);
822
+ }
823
+ double ll = static_cast<const DerivedClass*>(this)->getLLRest(tmpState) - gllRest;
824
+ ll += static_cast<const DerivedClass*>(this)->template getLLDocs<>(&*d, &*d + 1);
825
+ ret.emplace_back(ll);
826
+ }
827
+ return ret;
828
+ }
829
+ else
830
+ {
831
+ ThreadPool pool{ numWorkers, numWorkers * 8 };
832
+ ExtraDocData edd;
833
+ std::vector<std::future<double>> res;
834
+ const double gllRest = static_cast<const DerivedClass*>(this)->getLLRest(this->globalState);
835
+ for (auto d = docFirst; d != docLast; ++d)
836
+ {
837
+ res.emplace_back(pool.enqueue([&, d](size_t threadId)
838
+ {
839
+ _RandGen rgc{};
840
+ auto tmpState = this->globalState;
841
+ initializeDocState<true>(*d, -1, generator, tmpState, rgc);
842
+ for (size_t i = 0; i < maxIter; ++i)
843
+ {
844
+ static_cast<const DerivedClass*>(this)->presampleDocument(*d, -1, tmpState, rgc, i);
845
+ static_cast<const DerivedClass*>(this)->template sampleDocument<ParallelScheme::none, true>(
846
+ *d, edd, -1, tmpState, rgc, i
847
+ );
848
+ static_cast<const DerivedClass*>(this)->template sampleGlobalLevel<>(
849
+ nullptr, &tmpState, &rgc, &*d, &*d + 1
850
+ );
851
+ }
852
+ double ll = static_cast<const DerivedClass*>(this)->getLLRest(tmpState) - gllRest;
853
+ ll += static_cast<const DerivedClass*>(this)->template getLLDocs<>(&*d, &*d + 1);
854
+ return ll;
855
+ }));
856
+ }
857
+ std::vector<double> ret;
858
+ for (auto& r : res) ret.emplace_back(r.get());
859
+ return ret;
860
+ }
861
+ }
862
+
863
+ public:
864
+ DEFINE_SERIALIZER_WITH_VERSION(0, vocabWeights, alpha, alphas, eta, K);
865
+
866
+ DEFINE_TAGGED_SERIALIZER_WITH_VERSION(1, 0x00010001, vocabWeights, alpha, alphas, eta, K, etaByWord,
867
+ burnIn, optimInterval);
868
+
869
+ LDAModel(size_t _K = 1, Float _alpha = 0.1, Float _eta = 0.01, size_t _rg = std::random_device{}())
870
+ : BaseClass(_rg), K(_K), alpha(_alpha), eta(_eta)
871
+ {
872
+ if (_K == 0 || _K >= 0x80000000) THROW_ERROR_WITH_INFO(std::runtime_error, text::format("wrong K value (K = %zd)", _K));
873
+ if (_alpha <= 0) THROW_ERROR_WITH_INFO(std::runtime_error, text::format("wrong alpha value (alpha = %f)", _alpha));
874
+ if (_eta <= 0) THROW_ERROR_WITH_INFO(std::runtime_error, text::format("wrong eta value (eta = %f)", _eta));
875
+ alphas = Eigen::Matrix<Float, -1, 1>::Constant(K, alpha);
876
+ }
877
+
878
+ GETTER(K, size_t, K);
879
+ GETTER(Alpha, Float, alpha);
880
+ GETTER(Eta, Float, eta);
881
+ GETTER(OptimInterval, size_t, optimInterval);
882
+ GETTER(BurnInIteration, size_t, burnIn);
883
+
884
+ Float getAlpha(size_t k1) const override { return alphas[k1]; }
885
+
886
+ TermWeight getTermWeight() const override
887
+ {
888
+ return _tw;
889
+ }
890
+
891
+ void setOptimInterval(size_t _optimInterval) override
892
+ {
893
+ optimInterval = _optimInterval;
894
+ }
895
+
896
+ void setBurnInIteration(size_t iteration) override
897
+ {
898
+ burnIn = iteration;
899
+ }
900
+
901
+ size_t addDoc(const std::vector<std::string>& words) override
902
+ {
903
+ return this->_addDoc(this->_makeDoc(words));
904
+ }
905
+
906
+ std::unique_ptr<DocumentBase> makeDoc(const std::vector<std::string>& words) const override
907
+ {
908
+ return make_unique<_DocType>(as_mutable(this)->template _makeDoc<true>(words));
909
+ }
910
+
911
+ size_t addDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer) override
912
+ {
913
+ return this->_addDoc(this->template _makeRawDoc<false>(rawStr, tokenizer));
914
+ }
915
+
916
+ std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const RawDocTokenizer::Factory& tokenizer) const override
917
+ {
918
+ return make_unique<_DocType>(as_mutable(this)->template _makeRawDoc<true>(rawStr, tokenizer));
919
+ }
920
+
921
+ size_t addDoc(const std::string& rawStr, const std::vector<Vid>& words,
922
+ const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len) override
923
+ {
924
+ return this->_addDoc(this->_makeRawDoc(rawStr, words, pos, len));
925
+ }
926
+
927
+ std::unique_ptr<DocumentBase> makeDoc(const std::string& rawStr, const std::vector<Vid>& words,
928
+ const std::vector<uint32_t>& pos, const std::vector<uint16_t>& len) const override
929
+ {
930
+ return make_unique<_DocType>(this->_makeRawDoc(rawStr, words, pos, len));
931
+ }
932
+
933
+ void setWordPrior(const std::string& word, const std::vector<Float>& priors) override
934
+ {
935
+ if (priors.size() != K) THROW_ERROR_WITH_INFO(exception::InvalidArgument, "priors.size() must be equal to K.");
936
+ for (auto p : priors)
937
+ {
938
+ if (p < 0) THROW_ERROR_WITH_INFO(exception::InvalidArgument, "priors must not be less than 0.");
939
+ }
940
+ this->dict.add(word);
941
+ etaByWord.emplace(word, priors);
942
+ }
943
+
944
+ std::vector<Float> getWordPrior(const std::string& word) const override
945
+ {
946
+ if (etaByTopicWord.size())
947
+ {
948
+ auto id = this->dict.toWid(word);
949
+ if (id == (Vid)-1) return {};
950
+ auto col = etaByTopicWord.col(id);
951
+ return std::vector<Float>{ col.data(), col.data() + col.size() };
952
+ }
953
+ else
954
+ {
955
+ auto it = etaByWord.find(word);
956
+ if (it == etaByWord.end()) return {};
957
+ return it->second;
958
+ }
959
+ }
960
+
961
+ void updateDocs()
962
+ {
963
+ size_t docId = 0;
964
+ for (auto& doc : this->docs)
965
+ {
966
+ doc.template update<>(getTopicDocPtr(docId++), *static_cast<DerivedClass*>(this));
967
+ }
968
+ }
969
+
970
+ void prepare(bool initDocs = true, size_t minWordCnt = 0, size_t minWordDf = 0, size_t removeTopN = 0) override
971
+ {
972
+ if (initDocs) this->removeStopwords(minWordCnt, minWordDf, removeTopN);
973
+ static_cast<DerivedClass*>(this)->updateWeakArray();
974
+ static_cast<DerivedClass*>(this)->initGlobalState(initDocs);
975
+ static_cast<DerivedClass*>(this)->prepareWordPriors();
976
+
977
+ const size_t V = this->realV;
978
+
979
+ if (initDocs)
980
+ {
981
+ std::vector<uint32_t> df, cf, tf;
982
+ uint32_t totCf;
983
+
984
+ // calculate weighting
985
+ if (_tw != TermWeight::one)
986
+ {
987
+ df.resize(V);
988
+ tf.resize(V);
989
+ for (auto& doc : this->docs)
990
+ {
991
+ for (auto w : std::unordered_set<Vid>{ doc.words.begin(), doc.words.end() })
992
+ {
993
+ if (w >= this->realV) continue;
994
+ ++df[w];
995
+ }
996
+ }
997
+ totCf = accumulate(this->vocabCf.begin(), this->vocabCf.end(), 0);
998
+ }
999
+ if (_tw == TermWeight::idf)
1000
+ {
1001
+ vocabWeights.resize(V);
1002
+ for (size_t i = 0; i < V; ++i)
1003
+ {
1004
+ vocabWeights[i] = log(this->docs.size() / (Float)df[i]);
1005
+ }
1006
+ }
1007
+ else if (_tw == TermWeight::pmi)
1008
+ {
1009
+ vocabWeights.resize(V);
1010
+ for (size_t i = 0; i < V; ++i)
1011
+ {
1012
+ vocabWeights[i] = this->vocabCf[i] / (float)totCf;
1013
+ }
1014
+ }
1015
+
1016
+ decltype(static_cast<DerivedClass*>(this)->makeGeneratorForInit(nullptr)) generator;
1017
+ if(!(m_flags & flags::generator_by_doc)) generator = static_cast<DerivedClass*>(this)->makeGeneratorForInit(nullptr);
1018
+ for (auto& doc : this->docs)
1019
+ {
1020
+ initializeDocState<false>(doc, &doc - &this->docs[0], generator, this->globalState, this->rg);
1021
+ }
1022
+ }
1023
+ else
1024
+ {
1025
+ static_cast<DerivedClass*>(this)->updateDocs();
1026
+ for (auto& doc : this->docs) doc.updateSumWordWeight(this->realV);
1027
+ }
1028
+ static_cast<DerivedClass*>(this)->prepareShared();
1029
+ BaseClass::prepare(initDocs, minWordCnt, minWordDf, removeTopN);
1030
+ }
1031
+
1032
+ std::vector<uint64_t> getCountByTopic() const override
1033
+ {
1034
+ return static_cast<const DerivedClass*>(this)->_getTopicsCount();
1035
+ }
1036
+
1037
+ std::vector<Float> getTopicsByDoc(const _DocType& doc) const
1038
+ {
1039
+ std::vector<Float> ret(K);
1040
+ Eigen::Map<Eigen::Matrix<Float, -1, 1>> { ret.data(), K }.array() =
1041
+ (doc.numByTopic.array().template cast<Float>() + alphas.array()) / (doc.getSumWordWeight() + alphas.sum());
1042
+ return ret;
1043
+ }
1044
+
1045
+ };
1046
+
1047
+ template<TermWeight _tw>
1048
+ template<typename _TopicModel>
1049
+ void DocumentLDA<_tw>::update(WeightType* ptr, const _TopicModel& mdl)
1050
+ {
1051
+ numByTopic.init(ptr, mdl.getK());
1052
+ for (size_t i = 0; i < Zs.size(); ++i)
1053
+ {
1054
+ if (this->words[i] >= mdl.getV()) continue;
1055
+ numByTopic[Zs[i]] += _tw != TermWeight::one ? wordWeights[i] : 1;
1056
+ }
1057
+ }
1058
+ }