tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,77 @@
|
|
1
|
+
/*
|
2
|
+
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
this list of conditions and the following disclaimer in the documentation
|
11
|
+
and/or other materials provided with the distribution.
|
12
|
+
* Neither the name of Intel Corporation nor the names of its contributors may
|
13
|
+
be used to endorse or promote products derived from this software without
|
14
|
+
specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
20
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
21
|
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
22
|
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
23
|
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
24
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
25
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
|
27
|
+
********************************************************************************
|
28
|
+
* Content : Eigen bindings to LAPACKe
|
29
|
+
* Real Schur needed to real unsymmetrical eigenvalues/eigenvectors.
|
30
|
+
********************************************************************************
|
31
|
+
*/
|
32
|
+
|
33
|
+
#ifndef EIGEN_REAL_SCHUR_LAPACKE_H
|
34
|
+
#define EIGEN_REAL_SCHUR_LAPACKE_H
|
35
|
+
|
36
|
+
namespace Eigen {
|
37
|
+
|
38
|
+
/** \internal Specialization for the data types supported by LAPACKe */
|
39
|
+
|
40
|
+
#define EIGEN_LAPACKE_SCHUR_REAL(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
|
41
|
+
template<> template<typename InputType> inline \
|
42
|
+
RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
|
43
|
+
RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
|
44
|
+
{ \
|
45
|
+
eigen_assert(matrix.cols() == matrix.rows()); \
|
46
|
+
\
|
47
|
+
lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
|
48
|
+
lapack_int matrix_order = LAPACKE_COLROW; \
|
49
|
+
char jobvs, sort='N'; \
|
50
|
+
LAPACK_##LAPACKE_PREFIX_U##_SELECT2 select = 0; \
|
51
|
+
jobvs = (computeU) ? 'V' : 'N'; \
|
52
|
+
m_matU.resize(n, n); \
|
53
|
+
lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
|
54
|
+
m_matT = matrix; \
|
55
|
+
lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
|
56
|
+
Matrix<EIGTYPE, Dynamic, Dynamic> wr, wi; \
|
57
|
+
wr.resize(n, 1); wi.resize(n, 1); \
|
58
|
+
info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)wr.data(), (LAPACKE_TYPE*)wi.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
|
59
|
+
if(info == 0) \
|
60
|
+
m_info = Success; \
|
61
|
+
else \
|
62
|
+
m_info = NoConvergence; \
|
63
|
+
\
|
64
|
+
m_isInitialized = true; \
|
65
|
+
m_matUisUptodate = computeU; \
|
66
|
+
return *this; \
|
67
|
+
\
|
68
|
+
}
|
69
|
+
|
70
|
+
EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR)
|
71
|
+
EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR)
|
72
|
+
EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR)
|
73
|
+
EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR)
|
74
|
+
|
75
|
+
} // end namespace Eigen
|
76
|
+
|
77
|
+
#endif // EIGEN_REAL_SCHUR_LAPACKE_H
|
@@ -0,0 +1,870 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
|
12
|
+
#define EIGEN_SELFADJOINTEIGENSOLVER_H
|
13
|
+
|
14
|
+
#include "./Tridiagonalization.h"
|
15
|
+
|
16
|
+
namespace Eigen {
|
17
|
+
|
18
|
+
template<typename _MatrixType>
|
19
|
+
class GeneralizedSelfAdjointEigenSolver;
|
20
|
+
|
21
|
+
namespace internal {
|
22
|
+
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
|
23
|
+
template<typename MatrixType, typename DiagType, typename SubDiagType>
|
24
|
+
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
|
25
|
+
}
|
26
|
+
|
27
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
28
|
+
*
|
29
|
+
*
|
30
|
+
* \class SelfAdjointEigenSolver
|
31
|
+
*
|
32
|
+
* \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
|
33
|
+
*
|
34
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the
|
35
|
+
* eigendecomposition; this is expected to be an instantiation of the Matrix
|
36
|
+
* class template.
|
37
|
+
*
|
38
|
+
* A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
|
39
|
+
* matrices, this means that the matrix is symmetric: it equals its
|
40
|
+
* transpose. This class computes the eigenvalues and eigenvectors of a
|
41
|
+
* selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
|
42
|
+
* \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
|
43
|
+
* selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
|
44
|
+
* the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
|
45
|
+
* eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
|
46
|
+
* matrices, the matrix \f$ V \f$ is always invertible). This is called the
|
47
|
+
* eigendecomposition.
|
48
|
+
*
|
49
|
+
* The algorithm exploits the fact that the matrix is selfadjoint, making it
|
50
|
+
* faster and more accurate than the general purpose eigenvalue algorithms
|
51
|
+
* implemented in EigenSolver and ComplexEigenSolver.
|
52
|
+
*
|
53
|
+
* Only the \b lower \b triangular \b part of the input matrix is referenced.
|
54
|
+
*
|
55
|
+
* Call the function compute() to compute the eigenvalues and eigenvectors of
|
56
|
+
* a given matrix. Alternatively, you can use the
|
57
|
+
* SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
|
58
|
+
* the eigenvalues and eigenvectors at construction time. Once the eigenvalue
|
59
|
+
* and eigenvectors are computed, they can be retrieved with the eigenvalues()
|
60
|
+
* and eigenvectors() functions.
|
61
|
+
*
|
62
|
+
* The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
|
63
|
+
* contains an example of the typical use of this class.
|
64
|
+
*
|
65
|
+
* To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
|
66
|
+
* the likes, see the class GeneralizedSelfAdjointEigenSolver.
|
67
|
+
*
|
68
|
+
* \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
|
69
|
+
*/
|
70
|
+
template<typename _MatrixType> class SelfAdjointEigenSolver
|
71
|
+
{
|
72
|
+
public:
|
73
|
+
|
74
|
+
typedef _MatrixType MatrixType;
|
75
|
+
enum {
|
76
|
+
Size = MatrixType::RowsAtCompileTime,
|
77
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
78
|
+
Options = MatrixType::Options,
|
79
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
80
|
+
};
|
81
|
+
|
82
|
+
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
83
|
+
typedef typename MatrixType::Scalar Scalar;
|
84
|
+
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
85
|
+
|
86
|
+
typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
|
87
|
+
|
88
|
+
/** \brief Real scalar type for \p _MatrixType.
|
89
|
+
*
|
90
|
+
* This is just \c Scalar if #Scalar is real (e.g., \c float or
|
91
|
+
* \c double), and the type of the real part of \c Scalar if #Scalar is
|
92
|
+
* complex.
|
93
|
+
*/
|
94
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
95
|
+
|
96
|
+
friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
|
97
|
+
|
98
|
+
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
99
|
+
*
|
100
|
+
* This is a column vector with entries of type #RealScalar.
|
101
|
+
* The length of the vector is the size of \p _MatrixType.
|
102
|
+
*/
|
103
|
+
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
|
104
|
+
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
|
105
|
+
typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
|
106
|
+
|
107
|
+
/** \brief Default constructor for fixed-size matrices.
|
108
|
+
*
|
109
|
+
* The default constructor is useful in cases in which the user intends to
|
110
|
+
* perform decompositions via compute(). This constructor
|
111
|
+
* can only be used if \p _MatrixType is a fixed-size matrix; use
|
112
|
+
* SelfAdjointEigenSolver(Index) for dynamic-size matrices.
|
113
|
+
*
|
114
|
+
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
|
115
|
+
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
|
116
|
+
*/
|
117
|
+
EIGEN_DEVICE_FUNC
|
118
|
+
SelfAdjointEigenSolver()
|
119
|
+
: m_eivec(),
|
120
|
+
m_eivalues(),
|
121
|
+
m_subdiag(),
|
122
|
+
m_isInitialized(false)
|
123
|
+
{ }
|
124
|
+
|
125
|
+
/** \brief Constructor, pre-allocates memory for dynamic-size matrices.
|
126
|
+
*
|
127
|
+
* \param [in] size Positive integer, size of the matrix whose
|
128
|
+
* eigenvalues and eigenvectors will be computed.
|
129
|
+
*
|
130
|
+
* This constructor is useful for dynamic-size matrices, when the user
|
131
|
+
* intends to perform decompositions via compute(). The \p size
|
132
|
+
* parameter is only used as a hint. It is not an error to give a wrong
|
133
|
+
* \p size, but it may impair performance.
|
134
|
+
*
|
135
|
+
* \sa compute() for an example
|
136
|
+
*/
|
137
|
+
EIGEN_DEVICE_FUNC
|
138
|
+
explicit SelfAdjointEigenSolver(Index size)
|
139
|
+
: m_eivec(size, size),
|
140
|
+
m_eivalues(size),
|
141
|
+
m_subdiag(size > 1 ? size - 1 : 1),
|
142
|
+
m_isInitialized(false)
|
143
|
+
{}
|
144
|
+
|
145
|
+
/** \brief Constructor; computes eigendecomposition of given matrix.
|
146
|
+
*
|
147
|
+
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
|
148
|
+
* be computed. Only the lower triangular part of the matrix is referenced.
|
149
|
+
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
|
150
|
+
*
|
151
|
+
* This constructor calls compute(const MatrixType&, int) to compute the
|
152
|
+
* eigenvalues of the matrix \p matrix. The eigenvectors are computed if
|
153
|
+
* \p options equals #ComputeEigenvectors.
|
154
|
+
*
|
155
|
+
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
|
156
|
+
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
|
157
|
+
*
|
158
|
+
* \sa compute(const MatrixType&, int)
|
159
|
+
*/
|
160
|
+
template<typename InputType>
|
161
|
+
EIGEN_DEVICE_FUNC
|
162
|
+
explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
|
163
|
+
: m_eivec(matrix.rows(), matrix.cols()),
|
164
|
+
m_eivalues(matrix.cols()),
|
165
|
+
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
|
166
|
+
m_isInitialized(false)
|
167
|
+
{
|
168
|
+
compute(matrix.derived(), options);
|
169
|
+
}
|
170
|
+
|
171
|
+
/** \brief Computes eigendecomposition of given matrix.
|
172
|
+
*
|
173
|
+
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
|
174
|
+
* be computed. Only the lower triangular part of the matrix is referenced.
|
175
|
+
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
|
176
|
+
* \returns Reference to \c *this
|
177
|
+
*
|
178
|
+
* This function computes the eigenvalues of \p matrix. The eigenvalues()
|
179
|
+
* function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
|
180
|
+
* then the eigenvectors are also computed and can be retrieved by
|
181
|
+
* calling eigenvectors().
|
182
|
+
*
|
183
|
+
* This implementation uses a symmetric QR algorithm. The matrix is first
|
184
|
+
* reduced to tridiagonal form using the Tridiagonalization class. The
|
185
|
+
* tridiagonal matrix is then brought to diagonal form with implicit
|
186
|
+
* symmetric QR steps with Wilkinson shift. Details can be found in
|
187
|
+
* Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
|
188
|
+
*
|
189
|
+
* The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
|
190
|
+
* are required and \f$ 4n^3/3 \f$ if they are not required.
|
191
|
+
*
|
192
|
+
* This method reuses the memory in the SelfAdjointEigenSolver object that
|
193
|
+
* was allocated when the object was constructed, if the size of the
|
194
|
+
* matrix does not change.
|
195
|
+
*
|
196
|
+
* Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
|
197
|
+
* Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
|
198
|
+
*
|
199
|
+
* \sa SelfAdjointEigenSolver(const MatrixType&, int)
|
200
|
+
*/
|
201
|
+
template<typename InputType>
|
202
|
+
EIGEN_DEVICE_FUNC
|
203
|
+
SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
|
204
|
+
|
205
|
+
/** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
|
206
|
+
*
|
207
|
+
* This is a variant of compute(const MatrixType&, int options) which
|
208
|
+
* directly solves the underlying polynomial equation.
|
209
|
+
*
|
210
|
+
* Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
|
211
|
+
*
|
212
|
+
* This method is usually significantly faster than the QR iterative algorithm
|
213
|
+
* but it might also be less accurate. It is also worth noting that
|
214
|
+
* for 3x3 matrices it involves trigonometric operations which are
|
215
|
+
* not necessarily available for all scalar types.
|
216
|
+
*
|
217
|
+
* For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
|
218
|
+
* - double: 1e-8
|
219
|
+
* - float: 1e-3
|
220
|
+
*
|
221
|
+
* \sa compute(const MatrixType&, int options)
|
222
|
+
*/
|
223
|
+
EIGEN_DEVICE_FUNC
|
224
|
+
SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
|
225
|
+
|
226
|
+
/**
|
227
|
+
*\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
|
228
|
+
*
|
229
|
+
* \param[in] diag The vector containing the diagonal of the matrix.
|
230
|
+
* \param[in] subdiag The subdiagonal of the matrix.
|
231
|
+
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
|
232
|
+
* \returns Reference to \c *this
|
233
|
+
*
|
234
|
+
* This function assumes that the matrix has been reduced to tridiagonal form.
|
235
|
+
*
|
236
|
+
* \sa compute(const MatrixType&, int) for more information
|
237
|
+
*/
|
238
|
+
SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
|
239
|
+
|
240
|
+
/** \brief Returns the eigenvectors of given matrix.
|
241
|
+
*
|
242
|
+
* \returns A const reference to the matrix whose columns are the eigenvectors.
|
243
|
+
*
|
244
|
+
* \pre The eigenvectors have been computed before.
|
245
|
+
*
|
246
|
+
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
|
247
|
+
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
|
248
|
+
* eigenvectors are normalized to have (Euclidean) norm equal to one. If
|
249
|
+
* this object was used to solve the eigenproblem for the selfadjoint
|
250
|
+
* matrix \f$ A \f$, then the matrix returned by this function is the
|
251
|
+
* matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
|
252
|
+
*
|
253
|
+
* Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
|
254
|
+
* Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
|
255
|
+
*
|
256
|
+
* \sa eigenvalues()
|
257
|
+
*/
|
258
|
+
EIGEN_DEVICE_FUNC
|
259
|
+
const EigenvectorsType& eigenvectors() const
|
260
|
+
{
|
261
|
+
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
262
|
+
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
263
|
+
return m_eivec;
|
264
|
+
}
|
265
|
+
|
266
|
+
/** \brief Returns the eigenvalues of given matrix.
|
267
|
+
*
|
268
|
+
* \returns A const reference to the column vector containing the eigenvalues.
|
269
|
+
*
|
270
|
+
* \pre The eigenvalues have been computed before.
|
271
|
+
*
|
272
|
+
* The eigenvalues are repeated according to their algebraic multiplicity,
|
273
|
+
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
274
|
+
* are sorted in increasing order.
|
275
|
+
*
|
276
|
+
* Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
|
277
|
+
* Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
|
278
|
+
*
|
279
|
+
* \sa eigenvectors(), MatrixBase::eigenvalues()
|
280
|
+
*/
|
281
|
+
EIGEN_DEVICE_FUNC
|
282
|
+
const RealVectorType& eigenvalues() const
|
283
|
+
{
|
284
|
+
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
285
|
+
return m_eivalues;
|
286
|
+
}
|
287
|
+
|
288
|
+
/** \brief Computes the positive-definite square root of the matrix.
|
289
|
+
*
|
290
|
+
* \returns the positive-definite square root of the matrix
|
291
|
+
*
|
292
|
+
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
|
293
|
+
* have been computed before.
|
294
|
+
*
|
295
|
+
* The square root of a positive-definite matrix \f$ A \f$ is the
|
296
|
+
* positive-definite matrix whose square equals \f$ A \f$. This function
|
297
|
+
* uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
|
298
|
+
* square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
|
299
|
+
*
|
300
|
+
* Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
|
301
|
+
* Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
|
302
|
+
*
|
303
|
+
* \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
|
304
|
+
*/
|
305
|
+
EIGEN_DEVICE_FUNC
|
306
|
+
MatrixType operatorSqrt() const
|
307
|
+
{
|
308
|
+
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
309
|
+
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
310
|
+
return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
311
|
+
}
|
312
|
+
|
313
|
+
/** \brief Computes the inverse square root of the matrix.
|
314
|
+
*
|
315
|
+
* \returns the inverse positive-definite square root of the matrix
|
316
|
+
*
|
317
|
+
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
|
318
|
+
* have been computed before.
|
319
|
+
*
|
320
|
+
* This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
|
321
|
+
* compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
|
322
|
+
* cheaper than first computing the square root with operatorSqrt() and
|
323
|
+
* then its inverse with MatrixBase::inverse().
|
324
|
+
*
|
325
|
+
* Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
|
326
|
+
* Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
|
327
|
+
*
|
328
|
+
* \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
|
329
|
+
*/
|
330
|
+
EIGEN_DEVICE_FUNC
|
331
|
+
MatrixType operatorInverseSqrt() const
|
332
|
+
{
|
333
|
+
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
334
|
+
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
335
|
+
return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
|
336
|
+
}
|
337
|
+
|
338
|
+
/** \brief Reports whether previous computation was successful.
|
339
|
+
*
|
340
|
+
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
|
341
|
+
*/
|
342
|
+
EIGEN_DEVICE_FUNC
|
343
|
+
ComputationInfo info() const
|
344
|
+
{
|
345
|
+
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
346
|
+
return m_info;
|
347
|
+
}
|
348
|
+
|
349
|
+
/** \brief Maximum number of iterations.
|
350
|
+
*
|
351
|
+
* The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
|
352
|
+
* denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
|
353
|
+
*/
|
354
|
+
static const int m_maxIterations = 30;
|
355
|
+
|
356
|
+
protected:
|
357
|
+
static void check_template_parameters()
|
358
|
+
{
|
359
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
360
|
+
}
|
361
|
+
|
362
|
+
EigenvectorsType m_eivec;
|
363
|
+
RealVectorType m_eivalues;
|
364
|
+
typename TridiagonalizationType::SubDiagonalType m_subdiag;
|
365
|
+
ComputationInfo m_info;
|
366
|
+
bool m_isInitialized;
|
367
|
+
bool m_eigenvectorsOk;
|
368
|
+
};
|
369
|
+
|
370
|
+
namespace internal {
|
371
|
+
/** \internal
|
372
|
+
*
|
373
|
+
* \eigenvalues_module \ingroup Eigenvalues_Module
|
374
|
+
*
|
375
|
+
* Performs a QR step on a tridiagonal symmetric matrix represented as a
|
376
|
+
* pair of two vectors \a diag and \a subdiag.
|
377
|
+
*
|
378
|
+
* \param diag the diagonal part of the input selfadjoint tridiagonal matrix
|
379
|
+
* \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
|
380
|
+
* \param start starting index of the submatrix to work on
|
381
|
+
* \param end last+1 index of the submatrix to work on
|
382
|
+
* \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
|
383
|
+
* \param n size of the input matrix
|
384
|
+
*
|
385
|
+
* For compilation efficiency reasons, this procedure does not use eigen expression
|
386
|
+
* for its arguments.
|
387
|
+
*
|
388
|
+
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
|
389
|
+
* "implicit symmetric QR step with Wilkinson shift"
|
390
|
+
*/
|
391
|
+
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
|
392
|
+
EIGEN_DEVICE_FUNC
|
393
|
+
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
|
394
|
+
}
|
395
|
+
|
396
|
+
template<typename MatrixType>
|
397
|
+
template<typename InputType>
|
398
|
+
EIGEN_DEVICE_FUNC
|
399
|
+
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
400
|
+
::compute(const EigenBase<InputType>& a_matrix, int options)
|
401
|
+
{
|
402
|
+
check_template_parameters();
|
403
|
+
|
404
|
+
const InputType &matrix(a_matrix.derived());
|
405
|
+
|
406
|
+
using std::abs;
|
407
|
+
eigen_assert(matrix.cols() == matrix.rows());
|
408
|
+
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
409
|
+
&& (options&EigVecMask)!=EigVecMask
|
410
|
+
&& "invalid option parameter");
|
411
|
+
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
412
|
+
Index n = matrix.cols();
|
413
|
+
m_eivalues.resize(n,1);
|
414
|
+
|
415
|
+
if(n==1)
|
416
|
+
{
|
417
|
+
m_eivec = matrix;
|
418
|
+
m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
|
419
|
+
if(computeEigenvectors)
|
420
|
+
m_eivec.setOnes(n,n);
|
421
|
+
m_info = Success;
|
422
|
+
m_isInitialized = true;
|
423
|
+
m_eigenvectorsOk = computeEigenvectors;
|
424
|
+
return *this;
|
425
|
+
}
|
426
|
+
|
427
|
+
// declare some aliases
|
428
|
+
RealVectorType& diag = m_eivalues;
|
429
|
+
EigenvectorsType& mat = m_eivec;
|
430
|
+
|
431
|
+
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
432
|
+
mat = matrix.template triangularView<Lower>();
|
433
|
+
RealScalar scale = mat.cwiseAbs().maxCoeff();
|
434
|
+
if(scale==RealScalar(0)) scale = RealScalar(1);
|
435
|
+
mat.template triangularView<Lower>() /= scale;
|
436
|
+
m_subdiag.resize(n-1);
|
437
|
+
internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
|
438
|
+
|
439
|
+
m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
|
440
|
+
|
441
|
+
// scale back the eigen values
|
442
|
+
m_eivalues *= scale;
|
443
|
+
|
444
|
+
m_isInitialized = true;
|
445
|
+
m_eigenvectorsOk = computeEigenvectors;
|
446
|
+
return *this;
|
447
|
+
}
|
448
|
+
|
449
|
+
template<typename MatrixType>
|
450
|
+
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
451
|
+
::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
|
452
|
+
{
|
453
|
+
//TODO : Add an option to scale the values beforehand
|
454
|
+
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
455
|
+
|
456
|
+
m_eivalues = diag;
|
457
|
+
m_subdiag = subdiag;
|
458
|
+
if (computeEigenvectors)
|
459
|
+
{
|
460
|
+
m_eivec.setIdentity(diag.size(), diag.size());
|
461
|
+
}
|
462
|
+
m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
|
463
|
+
|
464
|
+
m_isInitialized = true;
|
465
|
+
m_eigenvectorsOk = computeEigenvectors;
|
466
|
+
return *this;
|
467
|
+
}
|
468
|
+
|
469
|
+
namespace internal {
|
470
|
+
/**
|
471
|
+
* \internal
|
472
|
+
* \brief Compute the eigendecomposition from a tridiagonal matrix
|
473
|
+
*
|
474
|
+
* \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
|
475
|
+
* \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
|
476
|
+
* \param[in] maxIterations : the maximum number of iterations
|
477
|
+
* \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
|
478
|
+
* \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
|
479
|
+
* \returns \c Success or \c NoConvergence
|
480
|
+
*/
|
481
|
+
template<typename MatrixType, typename DiagType, typename SubDiagType>
|
482
|
+
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
|
483
|
+
{
|
484
|
+
using std::abs;
|
485
|
+
|
486
|
+
ComputationInfo info;
|
487
|
+
typedef typename MatrixType::Scalar Scalar;
|
488
|
+
|
489
|
+
Index n = diag.size();
|
490
|
+
Index end = n-1;
|
491
|
+
Index start = 0;
|
492
|
+
Index iter = 0; // total number of iterations
|
493
|
+
|
494
|
+
typedef typename DiagType::RealScalar RealScalar;
|
495
|
+
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
496
|
+
const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
|
497
|
+
|
498
|
+
while (end>0)
|
499
|
+
{
|
500
|
+
for (Index i = start; i<end; ++i)
|
501
|
+
if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1])),precision) || abs(subdiag[i]) <= considerAsZero)
|
502
|
+
subdiag[i] = 0;
|
503
|
+
|
504
|
+
// find the largest unreduced block
|
505
|
+
while (end>0 && subdiag[end-1]==RealScalar(0))
|
506
|
+
{
|
507
|
+
end--;
|
508
|
+
}
|
509
|
+
if (end<=0)
|
510
|
+
break;
|
511
|
+
|
512
|
+
// if we spent too many iterations, we give up
|
513
|
+
iter++;
|
514
|
+
if(iter > maxIterations * n) break;
|
515
|
+
|
516
|
+
start = end - 1;
|
517
|
+
while (start>0 && subdiag[start-1]!=0)
|
518
|
+
start--;
|
519
|
+
|
520
|
+
internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
|
521
|
+
}
|
522
|
+
if (iter <= maxIterations * n)
|
523
|
+
info = Success;
|
524
|
+
else
|
525
|
+
info = NoConvergence;
|
526
|
+
|
527
|
+
// Sort eigenvalues and corresponding vectors.
|
528
|
+
// TODO make the sort optional ?
|
529
|
+
// TODO use a better sort algorithm !!
|
530
|
+
if (info == Success)
|
531
|
+
{
|
532
|
+
for (Index i = 0; i < n-1; ++i)
|
533
|
+
{
|
534
|
+
Index k;
|
535
|
+
diag.segment(i,n-i).minCoeff(&k);
|
536
|
+
if (k > 0)
|
537
|
+
{
|
538
|
+
std::swap(diag[i], diag[k+i]);
|
539
|
+
if(computeEigenvectors)
|
540
|
+
eivec.col(i).swap(eivec.col(k+i));
|
541
|
+
}
|
542
|
+
}
|
543
|
+
}
|
544
|
+
return info;
|
545
|
+
}
|
546
|
+
|
547
|
+
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
|
548
|
+
{
|
549
|
+
EIGEN_DEVICE_FUNC
|
550
|
+
static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
|
551
|
+
{ eig.compute(A,options); }
|
552
|
+
};
|
553
|
+
|
554
|
+
template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
|
555
|
+
{
|
556
|
+
typedef typename SolverType::MatrixType MatrixType;
|
557
|
+
typedef typename SolverType::RealVectorType VectorType;
|
558
|
+
typedef typename SolverType::Scalar Scalar;
|
559
|
+
typedef typename SolverType::EigenvectorsType EigenvectorsType;
|
560
|
+
|
561
|
+
|
562
|
+
/** \internal
|
563
|
+
* Computes the roots of the characteristic polynomial of \a m.
|
564
|
+
* For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
|
565
|
+
*/
|
566
|
+
EIGEN_DEVICE_FUNC
|
567
|
+
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
568
|
+
{
|
569
|
+
EIGEN_USING_STD_MATH(sqrt)
|
570
|
+
EIGEN_USING_STD_MATH(atan2)
|
571
|
+
EIGEN_USING_STD_MATH(cos)
|
572
|
+
EIGEN_USING_STD_MATH(sin)
|
573
|
+
const Scalar s_inv3 = Scalar(1)/Scalar(3);
|
574
|
+
const Scalar s_sqrt3 = sqrt(Scalar(3));
|
575
|
+
|
576
|
+
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
577
|
+
// eigenvalues are the roots to this equation, all guaranteed to be
|
578
|
+
// real-valued, because the matrix is symmetric.
|
579
|
+
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
|
580
|
+
Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
|
581
|
+
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
|
582
|
+
|
583
|
+
// Construct the parameters used in classifying the roots of the equation
|
584
|
+
// and in solving the equation for the roots in closed form.
|
585
|
+
Scalar c2_over_3 = c2*s_inv3;
|
586
|
+
Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
|
587
|
+
a_over_3 = numext::maxi(a_over_3, Scalar(0));
|
588
|
+
|
589
|
+
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
590
|
+
|
591
|
+
Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
|
592
|
+
q = numext::maxi(q, Scalar(0));
|
593
|
+
|
594
|
+
// Compute the eigenvalues by solving for the roots of the polynomial.
|
595
|
+
Scalar rho = sqrt(a_over_3);
|
596
|
+
Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
|
597
|
+
Scalar cos_theta = cos(theta);
|
598
|
+
Scalar sin_theta = sin(theta);
|
599
|
+
// roots are already sorted, since cos is monotonically decreasing on [0, pi]
|
600
|
+
roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
|
601
|
+
roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
|
602
|
+
roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
603
|
+
}
|
604
|
+
|
605
|
+
EIGEN_DEVICE_FUNC
|
606
|
+
static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
|
607
|
+
{
|
608
|
+
using std::abs;
|
609
|
+
Index i0;
|
610
|
+
// Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
|
611
|
+
mat.diagonal().cwiseAbs().maxCoeff(&i0);
|
612
|
+
// mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
|
613
|
+
// so let's save it:
|
614
|
+
representative = mat.col(i0);
|
615
|
+
Scalar n0, n1;
|
616
|
+
VectorType c0, c1;
|
617
|
+
n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
|
618
|
+
n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
|
619
|
+
if(n0>n1) res = c0/std::sqrt(n0);
|
620
|
+
else res = c1/std::sqrt(n1);
|
621
|
+
|
622
|
+
return true;
|
623
|
+
}
|
624
|
+
|
625
|
+
EIGEN_DEVICE_FUNC
|
626
|
+
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
627
|
+
{
|
628
|
+
eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
|
629
|
+
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
630
|
+
&& (options&EigVecMask)!=EigVecMask
|
631
|
+
&& "invalid option parameter");
|
632
|
+
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
633
|
+
|
634
|
+
EigenvectorsType& eivecs = solver.m_eivec;
|
635
|
+
VectorType& eivals = solver.m_eivalues;
|
636
|
+
|
637
|
+
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
638
|
+
Scalar shift = mat.trace() / Scalar(3);
|
639
|
+
// TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
|
640
|
+
MatrixType scaledMat = mat.template selfadjointView<Lower>();
|
641
|
+
scaledMat.diagonal().array() -= shift;
|
642
|
+
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
|
643
|
+
if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
|
644
|
+
|
645
|
+
// compute the eigenvalues
|
646
|
+
computeRoots(scaledMat,eivals);
|
647
|
+
|
648
|
+
// compute the eigenvectors
|
649
|
+
if(computeEigenvectors)
|
650
|
+
{
|
651
|
+
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
|
652
|
+
{
|
653
|
+
// All three eigenvalues are numerically the same
|
654
|
+
eivecs.setIdentity();
|
655
|
+
}
|
656
|
+
else
|
657
|
+
{
|
658
|
+
MatrixType tmp;
|
659
|
+
tmp = scaledMat;
|
660
|
+
|
661
|
+
// Compute the eigenvector of the most distinct eigenvalue
|
662
|
+
Scalar d0 = eivals(2) - eivals(1);
|
663
|
+
Scalar d1 = eivals(1) - eivals(0);
|
664
|
+
Index k(0), l(2);
|
665
|
+
if(d0 > d1)
|
666
|
+
{
|
667
|
+
numext::swap(k,l);
|
668
|
+
d0 = d1;
|
669
|
+
}
|
670
|
+
|
671
|
+
// Compute the eigenvector of index k
|
672
|
+
{
|
673
|
+
tmp.diagonal().array () -= eivals(k);
|
674
|
+
// By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
|
675
|
+
extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
|
676
|
+
}
|
677
|
+
|
678
|
+
// Compute eigenvector of index l
|
679
|
+
if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
|
680
|
+
{
|
681
|
+
// If d0 is too small, then the two other eigenvalues are numerically the same,
|
682
|
+
// and thus we only have to ortho-normalize the near orthogonal vector we saved above.
|
683
|
+
eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
|
684
|
+
eivecs.col(l).normalize();
|
685
|
+
}
|
686
|
+
else
|
687
|
+
{
|
688
|
+
tmp = scaledMat;
|
689
|
+
tmp.diagonal().array () -= eivals(l);
|
690
|
+
|
691
|
+
VectorType dummy;
|
692
|
+
extract_kernel(tmp, eivecs.col(l), dummy);
|
693
|
+
}
|
694
|
+
|
695
|
+
// Compute last eigenvector from the other two
|
696
|
+
eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
|
697
|
+
}
|
698
|
+
}
|
699
|
+
|
700
|
+
// Rescale back to the original size.
|
701
|
+
eivals *= scale;
|
702
|
+
eivals.array() += shift;
|
703
|
+
|
704
|
+
solver.m_info = Success;
|
705
|
+
solver.m_isInitialized = true;
|
706
|
+
solver.m_eigenvectorsOk = computeEigenvectors;
|
707
|
+
}
|
708
|
+
};
|
709
|
+
|
710
|
+
// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
|
711
|
+
template<typename SolverType>
|
712
|
+
struct direct_selfadjoint_eigenvalues<SolverType,2,false>
|
713
|
+
{
|
714
|
+
typedef typename SolverType::MatrixType MatrixType;
|
715
|
+
typedef typename SolverType::RealVectorType VectorType;
|
716
|
+
typedef typename SolverType::Scalar Scalar;
|
717
|
+
typedef typename SolverType::EigenvectorsType EigenvectorsType;
|
718
|
+
|
719
|
+
EIGEN_DEVICE_FUNC
|
720
|
+
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
721
|
+
{
|
722
|
+
using std::sqrt;
|
723
|
+
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
|
724
|
+
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
|
725
|
+
roots(0) = t1 - t0;
|
726
|
+
roots(1) = t1 + t0;
|
727
|
+
}
|
728
|
+
|
729
|
+
EIGEN_DEVICE_FUNC
|
730
|
+
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
731
|
+
{
|
732
|
+
EIGEN_USING_STD_MATH(sqrt);
|
733
|
+
EIGEN_USING_STD_MATH(abs);
|
734
|
+
|
735
|
+
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
|
736
|
+
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
737
|
+
&& (options&EigVecMask)!=EigVecMask
|
738
|
+
&& "invalid option parameter");
|
739
|
+
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
740
|
+
|
741
|
+
EigenvectorsType& eivecs = solver.m_eivec;
|
742
|
+
VectorType& eivals = solver.m_eivalues;
|
743
|
+
|
744
|
+
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
745
|
+
Scalar shift = mat.trace() / Scalar(2);
|
746
|
+
MatrixType scaledMat = mat;
|
747
|
+
scaledMat.coeffRef(0,1) = mat.coeff(1,0);
|
748
|
+
scaledMat.diagonal().array() -= shift;
|
749
|
+
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
|
750
|
+
if(scale > Scalar(0))
|
751
|
+
scaledMat /= scale;
|
752
|
+
|
753
|
+
// Compute the eigenvalues
|
754
|
+
computeRoots(scaledMat,eivals);
|
755
|
+
|
756
|
+
// compute the eigen vectors
|
757
|
+
if(computeEigenvectors)
|
758
|
+
{
|
759
|
+
if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
|
760
|
+
{
|
761
|
+
eivecs.setIdentity();
|
762
|
+
}
|
763
|
+
else
|
764
|
+
{
|
765
|
+
scaledMat.diagonal().array () -= eivals(1);
|
766
|
+
Scalar a2 = numext::abs2(scaledMat(0,0));
|
767
|
+
Scalar c2 = numext::abs2(scaledMat(1,1));
|
768
|
+
Scalar b2 = numext::abs2(scaledMat(1,0));
|
769
|
+
if(a2>c2)
|
770
|
+
{
|
771
|
+
eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
|
772
|
+
eivecs.col(1) /= sqrt(a2+b2);
|
773
|
+
}
|
774
|
+
else
|
775
|
+
{
|
776
|
+
eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
|
777
|
+
eivecs.col(1) /= sqrt(c2+b2);
|
778
|
+
}
|
779
|
+
|
780
|
+
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
|
781
|
+
}
|
782
|
+
}
|
783
|
+
|
784
|
+
// Rescale back to the original size.
|
785
|
+
eivals *= scale;
|
786
|
+
eivals.array() += shift;
|
787
|
+
|
788
|
+
solver.m_info = Success;
|
789
|
+
solver.m_isInitialized = true;
|
790
|
+
solver.m_eigenvectorsOk = computeEigenvectors;
|
791
|
+
}
|
792
|
+
};
|
793
|
+
|
794
|
+
}
|
795
|
+
|
796
|
+
template<typename MatrixType>
|
797
|
+
EIGEN_DEVICE_FUNC
|
798
|
+
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
799
|
+
::computeDirect(const MatrixType& matrix, int options)
|
800
|
+
{
|
801
|
+
internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
|
802
|
+
return *this;
|
803
|
+
}
|
804
|
+
|
805
|
+
namespace internal {
|
806
|
+
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
|
807
|
+
EIGEN_DEVICE_FUNC
|
808
|
+
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
|
809
|
+
{
|
810
|
+
using std::abs;
|
811
|
+
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
|
812
|
+
RealScalar e = subdiag[end-1];
|
813
|
+
// Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
|
814
|
+
// underflow thus leading to inf/NaN values when using the following commented code:
|
815
|
+
// RealScalar e2 = numext::abs2(subdiag[end-1]);
|
816
|
+
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
|
817
|
+
// This explain the following, somewhat more complicated, version:
|
818
|
+
RealScalar mu = diag[end];
|
819
|
+
if(td==RealScalar(0))
|
820
|
+
mu -= abs(e);
|
821
|
+
else
|
822
|
+
{
|
823
|
+
RealScalar e2 = numext::abs2(subdiag[end-1]);
|
824
|
+
RealScalar h = numext::hypot(td,e);
|
825
|
+
if(e2==RealScalar(0)) mu -= (e / (td + (td>RealScalar(0) ? RealScalar(1) : RealScalar(-1)))) * (e / h);
|
826
|
+
else mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
|
827
|
+
}
|
828
|
+
|
829
|
+
RealScalar x = diag[start] - mu;
|
830
|
+
RealScalar z = subdiag[start];
|
831
|
+
for (Index k = start; k < end; ++k)
|
832
|
+
{
|
833
|
+
JacobiRotation<RealScalar> rot;
|
834
|
+
rot.makeGivens(x, z);
|
835
|
+
|
836
|
+
// do T = G' T G
|
837
|
+
RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
|
838
|
+
RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
|
839
|
+
|
840
|
+
diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
|
841
|
+
diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
|
842
|
+
subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
|
843
|
+
|
844
|
+
|
845
|
+
if (k > start)
|
846
|
+
subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
|
847
|
+
|
848
|
+
x = subdiag[k];
|
849
|
+
|
850
|
+
if (k < end - 1)
|
851
|
+
{
|
852
|
+
z = -rot.s() * subdiag[k+1];
|
853
|
+
subdiag[k + 1] = rot.c() * subdiag[k+1];
|
854
|
+
}
|
855
|
+
|
856
|
+
// apply the givens rotation to the unit matrix Q = Q * G
|
857
|
+
if (matrixQ)
|
858
|
+
{
|
859
|
+
// FIXME if StorageOrder == RowMajor this operation is not very efficient
|
860
|
+
Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
|
861
|
+
q.applyOnTheRight(k,k+1,rot);
|
862
|
+
}
|
863
|
+
}
|
864
|
+
}
|
865
|
+
|
866
|
+
} // end namespace internal
|
867
|
+
|
868
|
+
} // end namespace Eigen
|
869
|
+
|
870
|
+
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
|