tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,146 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_FORCEALIGNEDACCESS_H
11
+ #define EIGEN_FORCEALIGNEDACCESS_H
12
+
13
+ namespace Eigen {
14
+
15
+ /** \class ForceAlignedAccess
16
+ * \ingroup Core_Module
17
+ *
18
+ * \brief Enforce aligned packet loads and stores regardless of what is requested
19
+ *
20
+ * \param ExpressionType the type of the object of which we are forcing aligned packet access
21
+ *
22
+ * This class is the return type of MatrixBase::forceAlignedAccess()
23
+ * and most of the time this is the only way it is used.
24
+ *
25
+ * \sa MatrixBase::forceAlignedAccess()
26
+ */
27
+
28
+ namespace internal {
29
+ template<typename ExpressionType>
30
+ struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
31
+ {};
32
+ }
33
+
34
+ template<typename ExpressionType> class ForceAlignedAccess
35
+ : public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
36
+ {
37
+ public:
38
+
39
+ typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
40
+ EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
41
+
42
+ EIGEN_DEVICE_FUNC explicit inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
43
+
44
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); }
45
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); }
46
+ EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); }
47
+ EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); }
48
+
49
+ EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const
50
+ {
51
+ return m_expression.coeff(row, col);
52
+ }
53
+
54
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
55
+ {
56
+ return m_expression.const_cast_derived().coeffRef(row, col);
57
+ }
58
+
59
+ EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const
60
+ {
61
+ return m_expression.coeff(index);
62
+ }
63
+
64
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
65
+ {
66
+ return m_expression.const_cast_derived().coeffRef(index);
67
+ }
68
+
69
+ template<int LoadMode>
70
+ inline const PacketScalar packet(Index row, Index col) const
71
+ {
72
+ return m_expression.template packet<Aligned>(row, col);
73
+ }
74
+
75
+ template<int LoadMode>
76
+ inline void writePacket(Index row, Index col, const PacketScalar& x)
77
+ {
78
+ m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
79
+ }
80
+
81
+ template<int LoadMode>
82
+ inline const PacketScalar packet(Index index) const
83
+ {
84
+ return m_expression.template packet<Aligned>(index);
85
+ }
86
+
87
+ template<int LoadMode>
88
+ inline void writePacket(Index index, const PacketScalar& x)
89
+ {
90
+ m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
91
+ }
92
+
93
+ EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; }
94
+
95
+ protected:
96
+ const ExpressionType& m_expression;
97
+
98
+ private:
99
+ ForceAlignedAccess& operator=(const ForceAlignedAccess&);
100
+ };
101
+
102
+ /** \returns an expression of *this with forced aligned access
103
+ * \sa forceAlignedAccessIf(),class ForceAlignedAccess
104
+ */
105
+ template<typename Derived>
106
+ inline const ForceAlignedAccess<Derived>
107
+ MatrixBase<Derived>::forceAlignedAccess() const
108
+ {
109
+ return ForceAlignedAccess<Derived>(derived());
110
+ }
111
+
112
+ /** \returns an expression of *this with forced aligned access
113
+ * \sa forceAlignedAccessIf(), class ForceAlignedAccess
114
+ */
115
+ template<typename Derived>
116
+ inline ForceAlignedAccess<Derived>
117
+ MatrixBase<Derived>::forceAlignedAccess()
118
+ {
119
+ return ForceAlignedAccess<Derived>(derived());
120
+ }
121
+
122
+ /** \returns an expression of *this with forced aligned access if \a Enable is true.
123
+ * \sa forceAlignedAccess(), class ForceAlignedAccess
124
+ */
125
+ template<typename Derived>
126
+ template<bool Enable>
127
+ inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
128
+ MatrixBase<Derived>::forceAlignedAccessIf() const
129
+ {
130
+ return derived(); // FIXME This should not work but apparently is never used
131
+ }
132
+
133
+ /** \returns an expression of *this with forced aligned access if \a Enable is true.
134
+ * \sa forceAlignedAccess(), class ForceAlignedAccess
135
+ */
136
+ template<typename Derived>
137
+ template<bool Enable>
138
+ inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
139
+ MatrixBase<Derived>::forceAlignedAccessIf()
140
+ {
141
+ return derived(); // FIXME This should not work but apparently is never used
142
+ }
143
+
144
+ } // end namespace Eigen
145
+
146
+ #endif // EIGEN_FORCEALIGNEDACCESS_H
@@ -0,0 +1,155 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5
+ // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_FUZZY_H
12
+ #define EIGEN_FUZZY_H
13
+
14
+ namespace Eigen {
15
+
16
+ namespace internal
17
+ {
18
+
19
+ template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
20
+ struct isApprox_selector
21
+ {
22
+ EIGEN_DEVICE_FUNC
23
+ static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
24
+ {
25
+ typename internal::nested_eval<Derived,2>::type nested(x);
26
+ typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
27
+ return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
28
+ }
29
+ };
30
+
31
+ template<typename Derived, typename OtherDerived>
32
+ struct isApprox_selector<Derived, OtherDerived, true>
33
+ {
34
+ EIGEN_DEVICE_FUNC
35
+ static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
36
+ {
37
+ return x.matrix() == y.matrix();
38
+ }
39
+ };
40
+
41
+ template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
42
+ struct isMuchSmallerThan_object_selector
43
+ {
44
+ EIGEN_DEVICE_FUNC
45
+ static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
46
+ {
47
+ return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
48
+ }
49
+ };
50
+
51
+ template<typename Derived, typename OtherDerived>
52
+ struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
53
+ {
54
+ EIGEN_DEVICE_FUNC
55
+ static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
56
+ {
57
+ return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
58
+ }
59
+ };
60
+
61
+ template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
62
+ struct isMuchSmallerThan_scalar_selector
63
+ {
64
+ EIGEN_DEVICE_FUNC
65
+ static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
66
+ {
67
+ return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
68
+ }
69
+ };
70
+
71
+ template<typename Derived>
72
+ struct isMuchSmallerThan_scalar_selector<Derived, true>
73
+ {
74
+ EIGEN_DEVICE_FUNC
75
+ static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
76
+ {
77
+ return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
78
+ }
79
+ };
80
+
81
+ } // end namespace internal
82
+
83
+
84
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
85
+ * determined by \a prec.
86
+ *
87
+ * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
88
+ * are considered to be approximately equal within precision \f$ p \f$ if
89
+ * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
90
+ * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
91
+ * L2 norm).
92
+ *
93
+ * \note Because of the multiplicativeness of this comparison, one can't use this function
94
+ * to check whether \c *this is approximately equal to the zero matrix or vector.
95
+ * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
96
+ * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
97
+ * RealScalar&, RealScalar) instead.
98
+ *
99
+ * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
100
+ */
101
+ template<typename Derived>
102
+ template<typename OtherDerived>
103
+ bool DenseBase<Derived>::isApprox(
104
+ const DenseBase<OtherDerived>& other,
105
+ const RealScalar& prec
106
+ ) const
107
+ {
108
+ return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
109
+ }
110
+
111
+ /** \returns \c true if the norm of \c *this is much smaller than \a other,
112
+ * within the precision determined by \a prec.
113
+ *
114
+ * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
115
+ * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
116
+ * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
117
+ *
118
+ * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
119
+ * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
120
+ * of a reference matrix of same dimensions.
121
+ *
122
+ * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
123
+ */
124
+ template<typename Derived>
125
+ bool DenseBase<Derived>::isMuchSmallerThan(
126
+ const typename NumTraits<Scalar>::Real& other,
127
+ const RealScalar& prec
128
+ ) const
129
+ {
130
+ return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
131
+ }
132
+
133
+ /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
134
+ * within the precision determined by \a prec.
135
+ *
136
+ * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
137
+ * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
138
+ * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
139
+ * For matrices, the comparison is done using the Hilbert-Schmidt norm.
140
+ *
141
+ * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
142
+ */
143
+ template<typename Derived>
144
+ template<typename OtherDerived>
145
+ bool DenseBase<Derived>::isMuchSmallerThan(
146
+ const DenseBase<OtherDerived>& other,
147
+ const RealScalar& prec
148
+ ) const
149
+ {
150
+ return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
151
+ }
152
+
153
+ } // end namespace Eigen
154
+
155
+ #endif // EIGEN_FUZZY_H
@@ -0,0 +1,455 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5
+ // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_GENERAL_PRODUCT_H
12
+ #define EIGEN_GENERAL_PRODUCT_H
13
+
14
+ namespace Eigen {
15
+
16
+ enum {
17
+ Large = 2,
18
+ Small = 3
19
+ };
20
+
21
+ namespace internal {
22
+
23
+ template<int Rows, int Cols, int Depth> struct product_type_selector;
24
+
25
+ template<int Size, int MaxSize> struct product_size_category
26
+ {
27
+ enum {
28
+ #ifndef EIGEN_CUDA_ARCH
29
+ is_large = MaxSize == Dynamic ||
30
+ Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
31
+ (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
32
+ #else
33
+ is_large = 0,
34
+ #endif
35
+ value = is_large ? Large
36
+ : Size == 1 ? 1
37
+ : Small
38
+ };
39
+ };
40
+
41
+ template<typename Lhs, typename Rhs> struct product_type
42
+ {
43
+ typedef typename remove_all<Lhs>::type _Lhs;
44
+ typedef typename remove_all<Rhs>::type _Rhs;
45
+ enum {
46
+ MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
47
+ Rows = traits<_Lhs>::RowsAtCompileTime,
48
+ MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
49
+ Cols = traits<_Rhs>::ColsAtCompileTime,
50
+ MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
51
+ traits<_Rhs>::MaxRowsAtCompileTime),
52
+ Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
53
+ traits<_Rhs>::RowsAtCompileTime)
54
+ };
55
+
56
+ // the splitting into different lines of code here, introducing the _select enums and the typedef below,
57
+ // is to work around an internal compiler error with gcc 4.1 and 4.2.
58
+ private:
59
+ enum {
60
+ rows_select = product_size_category<Rows,MaxRows>::value,
61
+ cols_select = product_size_category<Cols,MaxCols>::value,
62
+ depth_select = product_size_category<Depth,MaxDepth>::value
63
+ };
64
+ typedef product_type_selector<rows_select, cols_select, depth_select> selector;
65
+
66
+ public:
67
+ enum {
68
+ value = selector::ret,
69
+ ret = selector::ret
70
+ };
71
+ #ifdef EIGEN_DEBUG_PRODUCT
72
+ static void debug()
73
+ {
74
+ EIGEN_DEBUG_VAR(Rows);
75
+ EIGEN_DEBUG_VAR(Cols);
76
+ EIGEN_DEBUG_VAR(Depth);
77
+ EIGEN_DEBUG_VAR(rows_select);
78
+ EIGEN_DEBUG_VAR(cols_select);
79
+ EIGEN_DEBUG_VAR(depth_select);
80
+ EIGEN_DEBUG_VAR(value);
81
+ }
82
+ #endif
83
+ };
84
+
85
+ /* The following allows to select the kind of product at compile time
86
+ * based on the three dimensions of the product.
87
+ * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
88
+ // FIXME I'm not sure the current mapping is the ideal one.
89
+ template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
90
+ template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; };
91
+ template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; };
92
+ template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
93
+ template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
94
+ template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
95
+ template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
96
+ template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
97
+ template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
98
+ template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
99
+ template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
100
+ template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
101
+ template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
102
+ template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
103
+ template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
104
+ template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
105
+ template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
106
+ template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
107
+ template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
108
+ template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
109
+ template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
110
+ template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; };
111
+ template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; };
112
+ template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
113
+
114
+ } // end namespace internal
115
+
116
+ /***********************************************************************
117
+ * Implementation of Inner Vector Vector Product
118
+ ***********************************************************************/
119
+
120
+ // FIXME : maybe the "inner product" could return a Scalar
121
+ // instead of a 1x1 matrix ??
122
+ // Pro: more natural for the user
123
+ // Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
124
+ // product ends up to a row-vector times col-vector product... To tackle this use
125
+ // case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
126
+
127
+ /***********************************************************************
128
+ * Implementation of Outer Vector Vector Product
129
+ ***********************************************************************/
130
+
131
+ /***********************************************************************
132
+ * Implementation of General Matrix Vector Product
133
+ ***********************************************************************/
134
+
135
+ /* According to the shape/flags of the matrix we have to distinghish 3 different cases:
136
+ * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
137
+ * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
138
+ * 3 - all other cases are handled using a simple loop along the outer-storage direction.
139
+ * Therefore we need a lower level meta selector.
140
+ * Furthermore, if the matrix is the rhs, then the product has to be transposed.
141
+ */
142
+ namespace internal {
143
+
144
+ template<int Side, int StorageOrder, bool BlasCompatible>
145
+ struct gemv_dense_selector;
146
+
147
+ } // end namespace internal
148
+
149
+ namespace internal {
150
+
151
+ template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
152
+
153
+ template<typename Scalar,int Size,int MaxSize>
154
+ struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
155
+ {
156
+ EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
157
+ };
158
+
159
+ template<typename Scalar,int Size>
160
+ struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
161
+ {
162
+ EIGEN_STRONG_INLINE Scalar* data() { return 0; }
163
+ };
164
+
165
+ template<typename Scalar,int Size,int MaxSize>
166
+ struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
167
+ {
168
+ enum {
169
+ ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
170
+ PacketSize = internal::packet_traits<Scalar>::size
171
+ };
172
+ #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
173
+ internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data;
174
+ EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
175
+ #else
176
+ // Some architectures cannot align on the stack,
177
+ // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
178
+ internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
179
+ EIGEN_STRONG_INLINE Scalar* data() {
180
+ return ForceAlignment
181
+ ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
182
+ : m_data.array;
183
+ }
184
+ #endif
185
+ };
186
+
187
+ // The vector is on the left => transposition
188
+ template<int StorageOrder, bool BlasCompatible>
189
+ struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible>
190
+ {
191
+ template<typename Lhs, typename Rhs, typename Dest>
192
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
193
+ {
194
+ Transpose<Dest> destT(dest);
195
+ enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
196
+ gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
197
+ ::run(rhs.transpose(), lhs.transpose(), destT, alpha);
198
+ }
199
+ };
200
+
201
+ template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
202
+ {
203
+ template<typename Lhs, typename Rhs, typename Dest>
204
+ static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
205
+ {
206
+ typedef typename Lhs::Scalar LhsScalar;
207
+ typedef typename Rhs::Scalar RhsScalar;
208
+ typedef typename Dest::Scalar ResScalar;
209
+ typedef typename Dest::RealScalar RealScalar;
210
+
211
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
212
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
213
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
214
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
215
+
216
+ typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
217
+
218
+ ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
219
+ ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
220
+
221
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
222
+ * RhsBlasTraits::extractScalarFactor(rhs);
223
+
224
+ // make sure Dest is a compile-time vector type (bug 1166)
225
+ typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
226
+
227
+ enum {
228
+ // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
229
+ // on, the other hand it is good for the cache to pack the vector anyways...
230
+ EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
231
+ ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
232
+ MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal
233
+ };
234
+
235
+ typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
236
+ typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
237
+ RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
238
+
239
+ if(!MightCannotUseDest)
240
+ {
241
+ // shortcut if we are sure to be able to use dest directly,
242
+ // this ease the compiler to generate cleaner and more optimzized code for most common cases
243
+ general_matrix_vector_product
244
+ <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
245
+ actualLhs.rows(), actualLhs.cols(),
246
+ LhsMapper(actualLhs.data(), actualLhs.outerStride()),
247
+ RhsMapper(actualRhs.data(), actualRhs.innerStride()),
248
+ dest.data(), 1,
249
+ compatibleAlpha);
250
+ }
251
+ else
252
+ {
253
+ gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
254
+
255
+ const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
256
+ const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
257
+
258
+ ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
259
+ evalToDest ? dest.data() : static_dest.data());
260
+
261
+ if(!evalToDest)
262
+ {
263
+ #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
264
+ Index size = dest.size();
265
+ EIGEN_DENSE_STORAGE_CTOR_PLUGIN
266
+ #endif
267
+ if(!alphaIsCompatible)
268
+ {
269
+ MappedDest(actualDestPtr, dest.size()).setZero();
270
+ compatibleAlpha = RhsScalar(1);
271
+ }
272
+ else
273
+ MappedDest(actualDestPtr, dest.size()) = dest;
274
+ }
275
+
276
+ general_matrix_vector_product
277
+ <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
278
+ actualLhs.rows(), actualLhs.cols(),
279
+ LhsMapper(actualLhs.data(), actualLhs.outerStride()),
280
+ RhsMapper(actualRhs.data(), actualRhs.innerStride()),
281
+ actualDestPtr, 1,
282
+ compatibleAlpha);
283
+
284
+ if (!evalToDest)
285
+ {
286
+ if(!alphaIsCompatible)
287
+ dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size());
288
+ else
289
+ dest = MappedDest(actualDestPtr, dest.size());
290
+ }
291
+ }
292
+ }
293
+ };
294
+
295
+ template<> struct gemv_dense_selector<OnTheRight,RowMajor,true>
296
+ {
297
+ template<typename Lhs, typename Rhs, typename Dest>
298
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
299
+ {
300
+ typedef typename Lhs::Scalar LhsScalar;
301
+ typedef typename Rhs::Scalar RhsScalar;
302
+ typedef typename Dest::Scalar ResScalar;
303
+
304
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
305
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
306
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
307
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
308
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
309
+
310
+ typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
311
+ typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
312
+
313
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
314
+ * RhsBlasTraits::extractScalarFactor(rhs);
315
+
316
+ enum {
317
+ // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
318
+ // on, the other hand it is good for the cache to pack the vector anyways...
319
+ DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
320
+ };
321
+
322
+ gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
323
+
324
+ ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
325
+ DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
326
+
327
+ if(!DirectlyUseRhs)
328
+ {
329
+ #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
330
+ Index size = actualRhs.size();
331
+ EIGEN_DENSE_STORAGE_CTOR_PLUGIN
332
+ #endif
333
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
334
+ }
335
+
336
+ typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
337
+ typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper;
338
+ general_matrix_vector_product
339
+ <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
340
+ actualLhs.rows(), actualLhs.cols(),
341
+ LhsMapper(actualLhs.data(), actualLhs.outerStride()),
342
+ RhsMapper(actualRhsPtr, 1),
343
+ dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
344
+ actualAlpha);
345
+ }
346
+ };
347
+
348
+ template<> struct gemv_dense_selector<OnTheRight,ColMajor,false>
349
+ {
350
+ template<typename Lhs, typename Rhs, typename Dest>
351
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
352
+ {
353
+ EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
354
+ // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp
355
+ typename nested_eval<Rhs,1>::type actual_rhs(rhs);
356
+ const Index size = rhs.rows();
357
+ for(Index k=0; k<size; ++k)
358
+ dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k);
359
+ }
360
+ };
361
+
362
+ template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
363
+ {
364
+ template<typename Lhs, typename Rhs, typename Dest>
365
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
366
+ {
367
+ EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
368
+ typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs);
369
+ const Index rows = dest.rows();
370
+ for(Index i=0; i<rows; ++i)
371
+ dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum();
372
+ }
373
+ };
374
+
375
+ } // end namespace internal
376
+
377
+ /***************************************************************************
378
+ * Implementation of matrix base methods
379
+ ***************************************************************************/
380
+
381
+ /** \returns the matrix product of \c *this and \a other.
382
+ *
383
+ * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
384
+ *
385
+ * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
386
+ */
387
+ template<typename Derived>
388
+ template<typename OtherDerived>
389
+ inline const Product<Derived, OtherDerived>
390
+ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
391
+ {
392
+ // A note regarding the function declaration: In MSVC, this function will sometimes
393
+ // not be inlined since DenseStorage is an unwindable object for dynamic
394
+ // matrices and product types are holding a member to store the result.
395
+ // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
396
+ enum {
397
+ ProductIsValid = Derived::ColsAtCompileTime==Dynamic
398
+ || OtherDerived::RowsAtCompileTime==Dynamic
399
+ || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
400
+ AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
401
+ SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
402
+ };
403
+ // note to the lost user:
404
+ // * for a dot product use: v1.dot(v2)
405
+ // * for a coeff-wise product use: v1.cwiseProduct(v2)
406
+ EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
407
+ INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
408
+ EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
409
+ INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
410
+ EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
411
+ #ifdef EIGEN_DEBUG_PRODUCT
412
+ internal::product_type<Derived,OtherDerived>::debug();
413
+ #endif
414
+
415
+ return Product<Derived, OtherDerived>(derived(), other.derived());
416
+ }
417
+
418
+ /** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
419
+ *
420
+ * The returned product will behave like any other expressions: the coefficients of the product will be
421
+ * computed once at a time as requested. This might be useful in some extremely rare cases when only
422
+ * a small and no coherent fraction of the result's coefficients have to be computed.
423
+ *
424
+ * \warning This version of the matrix product can be much much slower. So use it only if you know
425
+ * what you are doing and that you measured a true speed improvement.
426
+ *
427
+ * \sa operator*(const MatrixBase&)
428
+ */
429
+ template<typename Derived>
430
+ template<typename OtherDerived>
431
+ const Product<Derived,OtherDerived,LazyProduct>
432
+ MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
433
+ {
434
+ enum {
435
+ ProductIsValid = Derived::ColsAtCompileTime==Dynamic
436
+ || OtherDerived::RowsAtCompileTime==Dynamic
437
+ || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
438
+ AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
439
+ SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
440
+ };
441
+ // note to the lost user:
442
+ // * for a dot product use: v1.dot(v2)
443
+ // * for a coeff-wise product use: v1.cwiseProduct(v2)
444
+ EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
445
+ INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
446
+ EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
447
+ INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
448
+ EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
449
+
450
+ return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
451
+ }
452
+
453
+ } // end namespace Eigen
454
+
455
+ #endif // EIGEN_PRODUCT_H