tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,1027 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_SUPERLUSUPPORT_H
11
+ #define EIGEN_SUPERLUSUPPORT_H
12
+
13
+ namespace Eigen {
14
+
15
+ #if defined(SUPERLU_MAJOR_VERSION) && (SUPERLU_MAJOR_VERSION >= 5)
16
+ #define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \
17
+ extern "C" { \
18
+ extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \
19
+ char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \
20
+ void *, int, SuperMatrix *, SuperMatrix *, \
21
+ FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \
22
+ GlobalLU_t *, mem_usage_t *, SuperLUStat_t *, int *); \
23
+ } \
24
+ inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \
25
+ int *perm_c, int *perm_r, int *etree, char *equed, \
26
+ FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
27
+ SuperMatrix *U, void *work, int lwork, \
28
+ SuperMatrix *B, SuperMatrix *X, \
29
+ FLOATTYPE *recip_pivot_growth, \
30
+ FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \
31
+ SuperLUStat_t *stats, int *info, KEYTYPE) { \
32
+ mem_usage_t mem_usage; \
33
+ GlobalLU_t gLU; \
34
+ PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \
35
+ U, work, lwork, B, X, recip_pivot_growth, rcond, \
36
+ ferr, berr, &gLU, &mem_usage, stats, info); \
37
+ return mem_usage.for_lu; /* bytes used by the factor storage */ \
38
+ }
39
+ #else // version < 5.0
40
+ #define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \
41
+ extern "C" { \
42
+ extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \
43
+ char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \
44
+ void *, int, SuperMatrix *, SuperMatrix *, \
45
+ FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \
46
+ mem_usage_t *, SuperLUStat_t *, int *); \
47
+ } \
48
+ inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \
49
+ int *perm_c, int *perm_r, int *etree, char *equed, \
50
+ FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
51
+ SuperMatrix *U, void *work, int lwork, \
52
+ SuperMatrix *B, SuperMatrix *X, \
53
+ FLOATTYPE *recip_pivot_growth, \
54
+ FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \
55
+ SuperLUStat_t *stats, int *info, KEYTYPE) { \
56
+ mem_usage_t mem_usage; \
57
+ PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \
58
+ U, work, lwork, B, X, recip_pivot_growth, rcond, \
59
+ ferr, berr, &mem_usage, stats, info); \
60
+ return mem_usage.for_lu; /* bytes used by the factor storage */ \
61
+ }
62
+ #endif
63
+
64
+ DECL_GSSVX(s,float,float)
65
+ DECL_GSSVX(c,float,std::complex<float>)
66
+ DECL_GSSVX(d,double,double)
67
+ DECL_GSSVX(z,double,std::complex<double>)
68
+
69
+ #ifdef MILU_ALPHA
70
+ #define EIGEN_SUPERLU_HAS_ILU
71
+ #endif
72
+
73
+ #ifdef EIGEN_SUPERLU_HAS_ILU
74
+
75
+ // similarly for the incomplete factorization using gsisx
76
+ #define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE) \
77
+ extern "C" { \
78
+ extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \
79
+ char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \
80
+ void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *, \
81
+ mem_usage_t *, SuperLUStat_t *, int *); \
82
+ } \
83
+ inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A, \
84
+ int *perm_c, int *perm_r, int *etree, char *equed, \
85
+ FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
86
+ SuperMatrix *U, void *work, int lwork, \
87
+ SuperMatrix *B, SuperMatrix *X, \
88
+ FLOATTYPE *recip_pivot_growth, \
89
+ FLOATTYPE *rcond, \
90
+ SuperLUStat_t *stats, int *info, KEYTYPE) { \
91
+ mem_usage_t mem_usage; \
92
+ PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L, \
93
+ U, work, lwork, B, X, recip_pivot_growth, rcond, \
94
+ &mem_usage, stats, info); \
95
+ return mem_usage.for_lu; /* bytes used by the factor storage */ \
96
+ }
97
+
98
+ DECL_GSISX(s,float,float)
99
+ DECL_GSISX(c,float,std::complex<float>)
100
+ DECL_GSISX(d,double,double)
101
+ DECL_GSISX(z,double,std::complex<double>)
102
+
103
+ #endif
104
+
105
+ template<typename MatrixType>
106
+ struct SluMatrixMapHelper;
107
+
108
+ /** \internal
109
+ *
110
+ * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
111
+ * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
112
+ *
113
+ * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
114
+ */
115
+ struct SluMatrix : SuperMatrix
116
+ {
117
+ SluMatrix()
118
+ {
119
+ Store = &storage;
120
+ }
121
+
122
+ SluMatrix(const SluMatrix& other)
123
+ : SuperMatrix(other)
124
+ {
125
+ Store = &storage;
126
+ storage = other.storage;
127
+ }
128
+
129
+ SluMatrix& operator=(const SluMatrix& other)
130
+ {
131
+ SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
132
+ Store = &storage;
133
+ storage = other.storage;
134
+ return *this;
135
+ }
136
+
137
+ struct
138
+ {
139
+ union {int nnz;int lda;};
140
+ void *values;
141
+ int *innerInd;
142
+ int *outerInd;
143
+ } storage;
144
+
145
+ void setStorageType(Stype_t t)
146
+ {
147
+ Stype = t;
148
+ if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
149
+ Store = &storage;
150
+ else
151
+ {
152
+ eigen_assert(false && "storage type not supported");
153
+ Store = 0;
154
+ }
155
+ }
156
+
157
+ template<typename Scalar>
158
+ void setScalarType()
159
+ {
160
+ if (internal::is_same<Scalar,float>::value)
161
+ Dtype = SLU_S;
162
+ else if (internal::is_same<Scalar,double>::value)
163
+ Dtype = SLU_D;
164
+ else if (internal::is_same<Scalar,std::complex<float> >::value)
165
+ Dtype = SLU_C;
166
+ else if (internal::is_same<Scalar,std::complex<double> >::value)
167
+ Dtype = SLU_Z;
168
+ else
169
+ {
170
+ eigen_assert(false && "Scalar type not supported by SuperLU");
171
+ }
172
+ }
173
+
174
+ template<typename MatrixType>
175
+ static SluMatrix Map(MatrixBase<MatrixType>& _mat)
176
+ {
177
+ MatrixType& mat(_mat.derived());
178
+ eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU");
179
+ SluMatrix res;
180
+ res.setStorageType(SLU_DN);
181
+ res.setScalarType<typename MatrixType::Scalar>();
182
+ res.Mtype = SLU_GE;
183
+
184
+ res.nrow = internal::convert_index<int>(mat.rows());
185
+ res.ncol = internal::convert_index<int>(mat.cols());
186
+
187
+ res.storage.lda = internal::convert_index<int>(MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride());
188
+ res.storage.values = (void*)(mat.data());
189
+ return res;
190
+ }
191
+
192
+ template<typename MatrixType>
193
+ static SluMatrix Map(SparseMatrixBase<MatrixType>& a_mat)
194
+ {
195
+ MatrixType &mat(a_mat.derived());
196
+ SluMatrix res;
197
+ if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
198
+ {
199
+ res.setStorageType(SLU_NR);
200
+ res.nrow = internal::convert_index<int>(mat.cols());
201
+ res.ncol = internal::convert_index<int>(mat.rows());
202
+ }
203
+ else
204
+ {
205
+ res.setStorageType(SLU_NC);
206
+ res.nrow = internal::convert_index<int>(mat.rows());
207
+ res.ncol = internal::convert_index<int>(mat.cols());
208
+ }
209
+
210
+ res.Mtype = SLU_GE;
211
+
212
+ res.storage.nnz = internal::convert_index<int>(mat.nonZeros());
213
+ res.storage.values = mat.valuePtr();
214
+ res.storage.innerInd = mat.innerIndexPtr();
215
+ res.storage.outerInd = mat.outerIndexPtr();
216
+
217
+ res.setScalarType<typename MatrixType::Scalar>();
218
+
219
+ // FIXME the following is not very accurate
220
+ if (MatrixType::Flags & Upper)
221
+ res.Mtype = SLU_TRU;
222
+ if (MatrixType::Flags & Lower)
223
+ res.Mtype = SLU_TRL;
224
+
225
+ eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
226
+
227
+ return res;
228
+ }
229
+ };
230
+
231
+ template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
232
+ struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
233
+ {
234
+ typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
235
+ static void run(MatrixType& mat, SluMatrix& res)
236
+ {
237
+ eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
238
+ res.setStorageType(SLU_DN);
239
+ res.setScalarType<Scalar>();
240
+ res.Mtype = SLU_GE;
241
+
242
+ res.nrow = mat.rows();
243
+ res.ncol = mat.cols();
244
+
245
+ res.storage.lda = mat.outerStride();
246
+ res.storage.values = mat.data();
247
+ }
248
+ };
249
+
250
+ template<typename Derived>
251
+ struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
252
+ {
253
+ typedef Derived MatrixType;
254
+ static void run(MatrixType& mat, SluMatrix& res)
255
+ {
256
+ if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
257
+ {
258
+ res.setStorageType(SLU_NR);
259
+ res.nrow = mat.cols();
260
+ res.ncol = mat.rows();
261
+ }
262
+ else
263
+ {
264
+ res.setStorageType(SLU_NC);
265
+ res.nrow = mat.rows();
266
+ res.ncol = mat.cols();
267
+ }
268
+
269
+ res.Mtype = SLU_GE;
270
+
271
+ res.storage.nnz = mat.nonZeros();
272
+ res.storage.values = mat.valuePtr();
273
+ res.storage.innerInd = mat.innerIndexPtr();
274
+ res.storage.outerInd = mat.outerIndexPtr();
275
+
276
+ res.setScalarType<typename MatrixType::Scalar>();
277
+
278
+ // FIXME the following is not very accurate
279
+ if (MatrixType::Flags & Upper)
280
+ res.Mtype = SLU_TRU;
281
+ if (MatrixType::Flags & Lower)
282
+ res.Mtype = SLU_TRL;
283
+
284
+ eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
285
+ }
286
+ };
287
+
288
+ namespace internal {
289
+
290
+ template<typename MatrixType>
291
+ SluMatrix asSluMatrix(MatrixType& mat)
292
+ {
293
+ return SluMatrix::Map(mat);
294
+ }
295
+
296
+ /** View a Super LU matrix as an Eigen expression */
297
+ template<typename Scalar, int Flags, typename Index>
298
+ MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
299
+ {
300
+ eigen_assert(((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR)
301
+ || ((Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC));
302
+
303
+ Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;
304
+
305
+ return MappedSparseMatrix<Scalar,Flags,Index>(
306
+ sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
307
+ sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
308
+ }
309
+
310
+ } // end namespace internal
311
+
312
+ /** \ingroup SuperLUSupport_Module
313
+ * \class SuperLUBase
314
+ * \brief The base class for the direct and incomplete LU factorization of SuperLU
315
+ */
316
+ template<typename _MatrixType, typename Derived>
317
+ class SuperLUBase : public SparseSolverBase<Derived>
318
+ {
319
+ protected:
320
+ typedef SparseSolverBase<Derived> Base;
321
+ using Base::derived;
322
+ using Base::m_isInitialized;
323
+ public:
324
+ typedef _MatrixType MatrixType;
325
+ typedef typename MatrixType::Scalar Scalar;
326
+ typedef typename MatrixType::RealScalar RealScalar;
327
+ typedef typename MatrixType::StorageIndex StorageIndex;
328
+ typedef Matrix<Scalar,Dynamic,1> Vector;
329
+ typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
330
+ typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
331
+ typedef Map<PermutationMatrix<Dynamic,Dynamic,int> > PermutationMap;
332
+ typedef SparseMatrix<Scalar> LUMatrixType;
333
+ enum {
334
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
335
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
336
+ };
337
+
338
+ public:
339
+
340
+ SuperLUBase() {}
341
+
342
+ ~SuperLUBase()
343
+ {
344
+ clearFactors();
345
+ }
346
+
347
+ inline Index rows() const { return m_matrix.rows(); }
348
+ inline Index cols() const { return m_matrix.cols(); }
349
+
350
+ /** \returns a reference to the Super LU option object to configure the Super LU algorithms. */
351
+ inline superlu_options_t& options() { return m_sluOptions; }
352
+
353
+ /** \brief Reports whether previous computation was successful.
354
+ *
355
+ * \returns \c Success if computation was succesful,
356
+ * \c NumericalIssue if the matrix.appears to be negative.
357
+ */
358
+ ComputationInfo info() const
359
+ {
360
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
361
+ return m_info;
362
+ }
363
+
364
+ /** Computes the sparse Cholesky decomposition of \a matrix */
365
+ void compute(const MatrixType& matrix)
366
+ {
367
+ derived().analyzePattern(matrix);
368
+ derived().factorize(matrix);
369
+ }
370
+
371
+ /** Performs a symbolic decomposition on the sparcity of \a matrix.
372
+ *
373
+ * This function is particularly useful when solving for several problems having the same structure.
374
+ *
375
+ * \sa factorize()
376
+ */
377
+ void analyzePattern(const MatrixType& /*matrix*/)
378
+ {
379
+ m_isInitialized = true;
380
+ m_info = Success;
381
+ m_analysisIsOk = true;
382
+ m_factorizationIsOk = false;
383
+ }
384
+
385
+ template<typename Stream>
386
+ void dumpMemory(Stream& /*s*/)
387
+ {}
388
+
389
+ protected:
390
+
391
+ void initFactorization(const MatrixType& a)
392
+ {
393
+ set_default_options(&this->m_sluOptions);
394
+
395
+ const Index size = a.rows();
396
+ m_matrix = a;
397
+
398
+ m_sluA = internal::asSluMatrix(m_matrix);
399
+ clearFactors();
400
+
401
+ m_p.resize(size);
402
+ m_q.resize(size);
403
+ m_sluRscale.resize(size);
404
+ m_sluCscale.resize(size);
405
+ m_sluEtree.resize(size);
406
+
407
+ // set empty B and X
408
+ m_sluB.setStorageType(SLU_DN);
409
+ m_sluB.setScalarType<Scalar>();
410
+ m_sluB.Mtype = SLU_GE;
411
+ m_sluB.storage.values = 0;
412
+ m_sluB.nrow = 0;
413
+ m_sluB.ncol = 0;
414
+ m_sluB.storage.lda = internal::convert_index<int>(size);
415
+ m_sluX = m_sluB;
416
+
417
+ m_extractedDataAreDirty = true;
418
+ }
419
+
420
+ void init()
421
+ {
422
+ m_info = InvalidInput;
423
+ m_isInitialized = false;
424
+ m_sluL.Store = 0;
425
+ m_sluU.Store = 0;
426
+ }
427
+
428
+ void extractData() const;
429
+
430
+ void clearFactors()
431
+ {
432
+ if(m_sluL.Store)
433
+ Destroy_SuperNode_Matrix(&m_sluL);
434
+ if(m_sluU.Store)
435
+ Destroy_CompCol_Matrix(&m_sluU);
436
+
437
+ m_sluL.Store = 0;
438
+ m_sluU.Store = 0;
439
+
440
+ memset(&m_sluL,0,sizeof m_sluL);
441
+ memset(&m_sluU,0,sizeof m_sluU);
442
+ }
443
+
444
+ // cached data to reduce reallocation, etc.
445
+ mutable LUMatrixType m_l;
446
+ mutable LUMatrixType m_u;
447
+ mutable IntColVectorType m_p;
448
+ mutable IntRowVectorType m_q;
449
+
450
+ mutable LUMatrixType m_matrix; // copy of the factorized matrix
451
+ mutable SluMatrix m_sluA;
452
+ mutable SuperMatrix m_sluL, m_sluU;
453
+ mutable SluMatrix m_sluB, m_sluX;
454
+ mutable SuperLUStat_t m_sluStat;
455
+ mutable superlu_options_t m_sluOptions;
456
+ mutable std::vector<int> m_sluEtree;
457
+ mutable Matrix<RealScalar,Dynamic,1> m_sluRscale, m_sluCscale;
458
+ mutable Matrix<RealScalar,Dynamic,1> m_sluFerr, m_sluBerr;
459
+ mutable char m_sluEqued;
460
+
461
+ mutable ComputationInfo m_info;
462
+ int m_factorizationIsOk;
463
+ int m_analysisIsOk;
464
+ mutable bool m_extractedDataAreDirty;
465
+
466
+ private:
467
+ SuperLUBase(SuperLUBase& ) { }
468
+ };
469
+
470
+
471
+ /** \ingroup SuperLUSupport_Module
472
+ * \class SuperLU
473
+ * \brief A sparse direct LU factorization and solver based on the SuperLU library
474
+ *
475
+ * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
476
+ * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
477
+ * X and B can be either dense or sparse.
478
+ *
479
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
480
+ *
481
+ * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported.
482
+ *
483
+ * \implsparsesolverconcept
484
+ *
485
+ * \sa \ref TutorialSparseSolverConcept, class SparseLU
486
+ */
487
+ template<typename _MatrixType>
488
+ class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
489
+ {
490
+ public:
491
+ typedef SuperLUBase<_MatrixType,SuperLU> Base;
492
+ typedef _MatrixType MatrixType;
493
+ typedef typename Base::Scalar Scalar;
494
+ typedef typename Base::RealScalar RealScalar;
495
+ typedef typename Base::StorageIndex StorageIndex;
496
+ typedef typename Base::IntRowVectorType IntRowVectorType;
497
+ typedef typename Base::IntColVectorType IntColVectorType;
498
+ typedef typename Base::PermutationMap PermutationMap;
499
+ typedef typename Base::LUMatrixType LUMatrixType;
500
+ typedef TriangularView<LUMatrixType, Lower|UnitDiag> LMatrixType;
501
+ typedef TriangularView<LUMatrixType, Upper> UMatrixType;
502
+
503
+ public:
504
+ using Base::_solve_impl;
505
+
506
+ SuperLU() : Base() { init(); }
507
+
508
+ explicit SuperLU(const MatrixType& matrix) : Base()
509
+ {
510
+ init();
511
+ Base::compute(matrix);
512
+ }
513
+
514
+ ~SuperLU()
515
+ {
516
+ }
517
+
518
+ /** Performs a symbolic decomposition on the sparcity of \a matrix.
519
+ *
520
+ * This function is particularly useful when solving for several problems having the same structure.
521
+ *
522
+ * \sa factorize()
523
+ */
524
+ void analyzePattern(const MatrixType& matrix)
525
+ {
526
+ m_info = InvalidInput;
527
+ m_isInitialized = false;
528
+ Base::analyzePattern(matrix);
529
+ }
530
+
531
+ /** Performs a numeric decomposition of \a matrix
532
+ *
533
+ * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
534
+ *
535
+ * \sa analyzePattern()
536
+ */
537
+ void factorize(const MatrixType& matrix);
538
+
539
+ /** \internal */
540
+ template<typename Rhs,typename Dest>
541
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
542
+
543
+ inline const LMatrixType& matrixL() const
544
+ {
545
+ if (m_extractedDataAreDirty) this->extractData();
546
+ return m_l;
547
+ }
548
+
549
+ inline const UMatrixType& matrixU() const
550
+ {
551
+ if (m_extractedDataAreDirty) this->extractData();
552
+ return m_u;
553
+ }
554
+
555
+ inline const IntColVectorType& permutationP() const
556
+ {
557
+ if (m_extractedDataAreDirty) this->extractData();
558
+ return m_p;
559
+ }
560
+
561
+ inline const IntRowVectorType& permutationQ() const
562
+ {
563
+ if (m_extractedDataAreDirty) this->extractData();
564
+ return m_q;
565
+ }
566
+
567
+ Scalar determinant() const;
568
+
569
+ protected:
570
+
571
+ using Base::m_matrix;
572
+ using Base::m_sluOptions;
573
+ using Base::m_sluA;
574
+ using Base::m_sluB;
575
+ using Base::m_sluX;
576
+ using Base::m_p;
577
+ using Base::m_q;
578
+ using Base::m_sluEtree;
579
+ using Base::m_sluEqued;
580
+ using Base::m_sluRscale;
581
+ using Base::m_sluCscale;
582
+ using Base::m_sluL;
583
+ using Base::m_sluU;
584
+ using Base::m_sluStat;
585
+ using Base::m_sluFerr;
586
+ using Base::m_sluBerr;
587
+ using Base::m_l;
588
+ using Base::m_u;
589
+
590
+ using Base::m_analysisIsOk;
591
+ using Base::m_factorizationIsOk;
592
+ using Base::m_extractedDataAreDirty;
593
+ using Base::m_isInitialized;
594
+ using Base::m_info;
595
+
596
+ void init()
597
+ {
598
+ Base::init();
599
+
600
+ set_default_options(&this->m_sluOptions);
601
+ m_sluOptions.PrintStat = NO;
602
+ m_sluOptions.ConditionNumber = NO;
603
+ m_sluOptions.Trans = NOTRANS;
604
+ m_sluOptions.ColPerm = COLAMD;
605
+ }
606
+
607
+
608
+ private:
609
+ SuperLU(SuperLU& ) { }
610
+ };
611
+
612
+ template<typename MatrixType>
613
+ void SuperLU<MatrixType>::factorize(const MatrixType& a)
614
+ {
615
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
616
+ if(!m_analysisIsOk)
617
+ {
618
+ m_info = InvalidInput;
619
+ return;
620
+ }
621
+
622
+ this->initFactorization(a);
623
+
624
+ m_sluOptions.ColPerm = COLAMD;
625
+ int info = 0;
626
+ RealScalar recip_pivot_growth, rcond;
627
+ RealScalar ferr, berr;
628
+
629
+ StatInit(&m_sluStat);
630
+ SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
631
+ &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
632
+ &m_sluL, &m_sluU,
633
+ NULL, 0,
634
+ &m_sluB, &m_sluX,
635
+ &recip_pivot_growth, &rcond,
636
+ &ferr, &berr,
637
+ &m_sluStat, &info, Scalar());
638
+ StatFree(&m_sluStat);
639
+
640
+ m_extractedDataAreDirty = true;
641
+
642
+ // FIXME how to better check for errors ???
643
+ m_info = info == 0 ? Success : NumericalIssue;
644
+ m_factorizationIsOk = true;
645
+ }
646
+
647
+ template<typename MatrixType>
648
+ template<typename Rhs,typename Dest>
649
+ void SuperLU<MatrixType>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
650
+ {
651
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
652
+
653
+ const Index size = m_matrix.rows();
654
+ const Index rhsCols = b.cols();
655
+ eigen_assert(size==b.rows());
656
+
657
+ m_sluOptions.Trans = NOTRANS;
658
+ m_sluOptions.Fact = FACTORED;
659
+ m_sluOptions.IterRefine = NOREFINE;
660
+
661
+
662
+ m_sluFerr.resize(rhsCols);
663
+ m_sluBerr.resize(rhsCols);
664
+
665
+ Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b);
666
+ Ref<const Matrix<typename Dest::Scalar,Dynamic,Dynamic,ColMajor> > x_ref(x);
667
+
668
+ m_sluB = SluMatrix::Map(b_ref.const_cast_derived());
669
+ m_sluX = SluMatrix::Map(x_ref.const_cast_derived());
670
+
671
+ typename Rhs::PlainObject b_cpy;
672
+ if(m_sluEqued!='N')
673
+ {
674
+ b_cpy = b;
675
+ m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());
676
+ }
677
+
678
+ StatInit(&m_sluStat);
679
+ int info = 0;
680
+ RealScalar recip_pivot_growth, rcond;
681
+ SuperLU_gssvx(&m_sluOptions, &m_sluA,
682
+ m_q.data(), m_p.data(),
683
+ &m_sluEtree[0], &m_sluEqued,
684
+ &m_sluRscale[0], &m_sluCscale[0],
685
+ &m_sluL, &m_sluU,
686
+ NULL, 0,
687
+ &m_sluB, &m_sluX,
688
+ &recip_pivot_growth, &rcond,
689
+ &m_sluFerr[0], &m_sluBerr[0],
690
+ &m_sluStat, &info, Scalar());
691
+ StatFree(&m_sluStat);
692
+
693
+ if(x.derived().data() != x_ref.data())
694
+ x = x_ref;
695
+
696
+ m_info = info==0 ? Success : NumericalIssue;
697
+ }
698
+
699
+ // the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
700
+ //
701
+ // Copyright (c) 1994 by Xerox Corporation. All rights reserved.
702
+ //
703
+ // THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
704
+ // EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
705
+ //
706
+ template<typename MatrixType, typename Derived>
707
+ void SuperLUBase<MatrixType,Derived>::extractData() const
708
+ {
709
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()");
710
+ if (m_extractedDataAreDirty)
711
+ {
712
+ int upper;
713
+ int fsupc, istart, nsupr;
714
+ int lastl = 0, lastu = 0;
715
+ SCformat *Lstore = static_cast<SCformat*>(m_sluL.Store);
716
+ NCformat *Ustore = static_cast<NCformat*>(m_sluU.Store);
717
+ Scalar *SNptr;
718
+
719
+ const Index size = m_matrix.rows();
720
+ m_l.resize(size,size);
721
+ m_l.resizeNonZeros(Lstore->nnz);
722
+ m_u.resize(size,size);
723
+ m_u.resizeNonZeros(Ustore->nnz);
724
+
725
+ int* Lcol = m_l.outerIndexPtr();
726
+ int* Lrow = m_l.innerIndexPtr();
727
+ Scalar* Lval = m_l.valuePtr();
728
+
729
+ int* Ucol = m_u.outerIndexPtr();
730
+ int* Urow = m_u.innerIndexPtr();
731
+ Scalar* Uval = m_u.valuePtr();
732
+
733
+ Ucol[0] = 0;
734
+ Ucol[0] = 0;
735
+
736
+ /* for each supernode */
737
+ for (int k = 0; k <= Lstore->nsuper; ++k)
738
+ {
739
+ fsupc = L_FST_SUPC(k);
740
+ istart = L_SUB_START(fsupc);
741
+ nsupr = L_SUB_START(fsupc+1) - istart;
742
+ upper = 1;
743
+
744
+ /* for each column in the supernode */
745
+ for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
746
+ {
747
+ SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];
748
+
749
+ /* Extract U */
750
+ for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
751
+ {
752
+ Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
753
+ /* Matlab doesn't like explicit zero. */
754
+ if (Uval[lastu] != 0.0)
755
+ Urow[lastu++] = U_SUB(i);
756
+ }
757
+ for (int i = 0; i < upper; ++i)
758
+ {
759
+ /* upper triangle in the supernode */
760
+ Uval[lastu] = SNptr[i];
761
+ /* Matlab doesn't like explicit zero. */
762
+ if (Uval[lastu] != 0.0)
763
+ Urow[lastu++] = L_SUB(istart+i);
764
+ }
765
+ Ucol[j+1] = lastu;
766
+
767
+ /* Extract L */
768
+ Lval[lastl] = 1.0; /* unit diagonal */
769
+ Lrow[lastl++] = L_SUB(istart + upper - 1);
770
+ for (int i = upper; i < nsupr; ++i)
771
+ {
772
+ Lval[lastl] = SNptr[i];
773
+ /* Matlab doesn't like explicit zero. */
774
+ if (Lval[lastl] != 0.0)
775
+ Lrow[lastl++] = L_SUB(istart+i);
776
+ }
777
+ Lcol[j+1] = lastl;
778
+
779
+ ++upper;
780
+ } /* for j ... */
781
+
782
+ } /* for k ... */
783
+
784
+ // squeeze the matrices :
785
+ m_l.resizeNonZeros(lastl);
786
+ m_u.resizeNonZeros(lastu);
787
+
788
+ m_extractedDataAreDirty = false;
789
+ }
790
+ }
791
+
792
+ template<typename MatrixType>
793
+ typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
794
+ {
795
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()");
796
+
797
+ if (m_extractedDataAreDirty)
798
+ this->extractData();
799
+
800
+ Scalar det = Scalar(1);
801
+ for (int j=0; j<m_u.cols(); ++j)
802
+ {
803
+ if (m_u.outerIndexPtr()[j+1]-m_u.outerIndexPtr()[j] > 0)
804
+ {
805
+ int lastId = m_u.outerIndexPtr()[j+1]-1;
806
+ eigen_assert(m_u.innerIndexPtr()[lastId]<=j);
807
+ if (m_u.innerIndexPtr()[lastId]==j)
808
+ det *= m_u.valuePtr()[lastId];
809
+ }
810
+ }
811
+ if(PermutationMap(m_p.data(),m_p.size()).determinant()*PermutationMap(m_q.data(),m_q.size()).determinant()<0)
812
+ det = -det;
813
+ if(m_sluEqued!='N')
814
+ return det/m_sluRscale.prod()/m_sluCscale.prod();
815
+ else
816
+ return det;
817
+ }
818
+
819
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
820
+ #define EIGEN_SUPERLU_HAS_ILU
821
+ #endif
822
+
823
+ #ifdef EIGEN_SUPERLU_HAS_ILU
824
+
825
+ /** \ingroup SuperLUSupport_Module
826
+ * \class SuperILU
827
+ * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library
828
+ *
829
+ * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization
830
+ * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers.
831
+ *
832
+ * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported.
833
+ *
834
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
835
+ *
836
+ * \implsparsesolverconcept
837
+ *
838
+ * \sa \ref TutorialSparseSolverConcept, class IncompleteLUT, class ConjugateGradient, class BiCGSTAB
839
+ */
840
+
841
+ template<typename _MatrixType>
842
+ class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
843
+ {
844
+ public:
845
+ typedef SuperLUBase<_MatrixType,SuperILU> Base;
846
+ typedef _MatrixType MatrixType;
847
+ typedef typename Base::Scalar Scalar;
848
+ typedef typename Base::RealScalar RealScalar;
849
+
850
+ public:
851
+ using Base::_solve_impl;
852
+
853
+ SuperILU() : Base() { init(); }
854
+
855
+ SuperILU(const MatrixType& matrix) : Base()
856
+ {
857
+ init();
858
+ Base::compute(matrix);
859
+ }
860
+
861
+ ~SuperILU()
862
+ {
863
+ }
864
+
865
+ /** Performs a symbolic decomposition on the sparcity of \a matrix.
866
+ *
867
+ * This function is particularly useful when solving for several problems having the same structure.
868
+ *
869
+ * \sa factorize()
870
+ */
871
+ void analyzePattern(const MatrixType& matrix)
872
+ {
873
+ Base::analyzePattern(matrix);
874
+ }
875
+
876
+ /** Performs a numeric decomposition of \a matrix
877
+ *
878
+ * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
879
+ *
880
+ * \sa analyzePattern()
881
+ */
882
+ void factorize(const MatrixType& matrix);
883
+
884
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
885
+ /** \internal */
886
+ template<typename Rhs,typename Dest>
887
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
888
+ #endif // EIGEN_PARSED_BY_DOXYGEN
889
+
890
+ protected:
891
+
892
+ using Base::m_matrix;
893
+ using Base::m_sluOptions;
894
+ using Base::m_sluA;
895
+ using Base::m_sluB;
896
+ using Base::m_sluX;
897
+ using Base::m_p;
898
+ using Base::m_q;
899
+ using Base::m_sluEtree;
900
+ using Base::m_sluEqued;
901
+ using Base::m_sluRscale;
902
+ using Base::m_sluCscale;
903
+ using Base::m_sluL;
904
+ using Base::m_sluU;
905
+ using Base::m_sluStat;
906
+ using Base::m_sluFerr;
907
+ using Base::m_sluBerr;
908
+ using Base::m_l;
909
+ using Base::m_u;
910
+
911
+ using Base::m_analysisIsOk;
912
+ using Base::m_factorizationIsOk;
913
+ using Base::m_extractedDataAreDirty;
914
+ using Base::m_isInitialized;
915
+ using Base::m_info;
916
+
917
+ void init()
918
+ {
919
+ Base::init();
920
+
921
+ ilu_set_default_options(&m_sluOptions);
922
+ m_sluOptions.PrintStat = NO;
923
+ m_sluOptions.ConditionNumber = NO;
924
+ m_sluOptions.Trans = NOTRANS;
925
+ m_sluOptions.ColPerm = MMD_AT_PLUS_A;
926
+
927
+ // no attempt to preserve column sum
928
+ m_sluOptions.ILU_MILU = SILU;
929
+ // only basic ILU(k) support -- no direct control over memory consumption
930
+ // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
931
+ // and set ILU_FillFactor to max memory growth
932
+ m_sluOptions.ILU_DropRule = DROP_BASIC;
933
+ m_sluOptions.ILU_DropTol = NumTraits<Scalar>::dummy_precision()*10;
934
+ }
935
+
936
+ private:
937
+ SuperILU(SuperILU& ) { }
938
+ };
939
+
940
+ template<typename MatrixType>
941
+ void SuperILU<MatrixType>::factorize(const MatrixType& a)
942
+ {
943
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
944
+ if(!m_analysisIsOk)
945
+ {
946
+ m_info = InvalidInput;
947
+ return;
948
+ }
949
+
950
+ this->initFactorization(a);
951
+
952
+ int info = 0;
953
+ RealScalar recip_pivot_growth, rcond;
954
+
955
+ StatInit(&m_sluStat);
956
+ SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
957
+ &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
958
+ &m_sluL, &m_sluU,
959
+ NULL, 0,
960
+ &m_sluB, &m_sluX,
961
+ &recip_pivot_growth, &rcond,
962
+ &m_sluStat, &info, Scalar());
963
+ StatFree(&m_sluStat);
964
+
965
+ // FIXME how to better check for errors ???
966
+ m_info = info == 0 ? Success : NumericalIssue;
967
+ m_factorizationIsOk = true;
968
+ }
969
+
970
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
971
+ template<typename MatrixType>
972
+ template<typename Rhs,typename Dest>
973
+ void SuperILU<MatrixType>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
974
+ {
975
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
976
+
977
+ const int size = m_matrix.rows();
978
+ const int rhsCols = b.cols();
979
+ eigen_assert(size==b.rows());
980
+
981
+ m_sluOptions.Trans = NOTRANS;
982
+ m_sluOptions.Fact = FACTORED;
983
+ m_sluOptions.IterRefine = NOREFINE;
984
+
985
+ m_sluFerr.resize(rhsCols);
986
+ m_sluBerr.resize(rhsCols);
987
+
988
+ Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b);
989
+ Ref<const Matrix<typename Dest::Scalar,Dynamic,Dynamic,ColMajor> > x_ref(x);
990
+
991
+ m_sluB = SluMatrix::Map(b_ref.const_cast_derived());
992
+ m_sluX = SluMatrix::Map(x_ref.const_cast_derived());
993
+
994
+ typename Rhs::PlainObject b_cpy;
995
+ if(m_sluEqued!='N')
996
+ {
997
+ b_cpy = b;
998
+ m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());
999
+ }
1000
+
1001
+ int info = 0;
1002
+ RealScalar recip_pivot_growth, rcond;
1003
+
1004
+ StatInit(&m_sluStat);
1005
+ SuperLU_gsisx(&m_sluOptions, &m_sluA,
1006
+ m_q.data(), m_p.data(),
1007
+ &m_sluEtree[0], &m_sluEqued,
1008
+ &m_sluRscale[0], &m_sluCscale[0],
1009
+ &m_sluL, &m_sluU,
1010
+ NULL, 0,
1011
+ &m_sluB, &m_sluX,
1012
+ &recip_pivot_growth, &rcond,
1013
+ &m_sluStat, &info, Scalar());
1014
+ StatFree(&m_sluStat);
1015
+
1016
+ if(x.derived().data() != x_ref.data())
1017
+ x = x_ref;
1018
+
1019
+ m_info = info==0 ? Success : NumericalIssue;
1020
+ }
1021
+ #endif
1022
+
1023
+ #endif
1024
+
1025
+ } // end namespace Eigen
1026
+
1027
+ #endif // EIGEN_SUPERLUSUPPORT_H