tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,445 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
|
6
|
+
/*
|
7
|
+
|
8
|
+
NOTE: this routine has been adapted from the CSparse library:
|
9
|
+
|
10
|
+
Copyright (c) 2006, Timothy A. Davis.
|
11
|
+
http://www.suitesparse.com
|
12
|
+
|
13
|
+
CSparse is free software; you can redistribute it and/or
|
14
|
+
modify it under the terms of the GNU Lesser General Public
|
15
|
+
License as published by the Free Software Foundation; either
|
16
|
+
version 2.1 of the License, or (at your option) any later version.
|
17
|
+
|
18
|
+
CSparse is distributed in the hope that it will be useful,
|
19
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
20
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
21
|
+
Lesser General Public License for more details.
|
22
|
+
|
23
|
+
You should have received a copy of the GNU Lesser General Public
|
24
|
+
License along with this Module; if not, write to the Free Software
|
25
|
+
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
26
|
+
|
27
|
+
*/
|
28
|
+
|
29
|
+
#include "../Core/util/NonMPL2.h"
|
30
|
+
|
31
|
+
#ifndef EIGEN_SPARSE_AMD_H
|
32
|
+
#define EIGEN_SPARSE_AMD_H
|
33
|
+
|
34
|
+
namespace Eigen {
|
35
|
+
|
36
|
+
namespace internal {
|
37
|
+
|
38
|
+
template<typename T> inline T amd_flip(const T& i) { return -i-2; }
|
39
|
+
template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
|
40
|
+
template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
|
41
|
+
template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }
|
42
|
+
|
43
|
+
/* clear w */
|
44
|
+
template<typename StorageIndex>
|
45
|
+
static StorageIndex cs_wclear (StorageIndex mark, StorageIndex lemax, StorageIndex *w, StorageIndex n)
|
46
|
+
{
|
47
|
+
StorageIndex k;
|
48
|
+
if(mark < 2 || (mark + lemax < 0))
|
49
|
+
{
|
50
|
+
for(k = 0; k < n; k++)
|
51
|
+
if(w[k] != 0)
|
52
|
+
w[k] = 1;
|
53
|
+
mark = 2;
|
54
|
+
}
|
55
|
+
return (mark); /* at this point, w[0..n-1] < mark holds */
|
56
|
+
}
|
57
|
+
|
58
|
+
/* depth-first search and postorder of a tree rooted at node j */
|
59
|
+
template<typename StorageIndex>
|
60
|
+
StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const StorageIndex *next, StorageIndex *post, StorageIndex *stack)
|
61
|
+
{
|
62
|
+
StorageIndex i, p, top = 0;
|
63
|
+
if(!head || !next || !post || !stack) return (-1); /* check inputs */
|
64
|
+
stack[0] = j; /* place j on the stack */
|
65
|
+
while (top >= 0) /* while (stack is not empty) */
|
66
|
+
{
|
67
|
+
p = stack[top]; /* p = top of stack */
|
68
|
+
i = head[p]; /* i = youngest child of p */
|
69
|
+
if(i == -1)
|
70
|
+
{
|
71
|
+
top--; /* p has no unordered children left */
|
72
|
+
post[k++] = p; /* node p is the kth postordered node */
|
73
|
+
}
|
74
|
+
else
|
75
|
+
{
|
76
|
+
head[p] = next[i]; /* remove i from children of p */
|
77
|
+
stack[++top] = i; /* start dfs on child node i */
|
78
|
+
}
|
79
|
+
}
|
80
|
+
return k;
|
81
|
+
}
|
82
|
+
|
83
|
+
|
84
|
+
/** \internal
|
85
|
+
* \ingroup OrderingMethods_Module
|
86
|
+
* Approximate minimum degree ordering algorithm.
|
87
|
+
*
|
88
|
+
* \param[in] C the input selfadjoint matrix stored in compressed column major format.
|
89
|
+
* \param[out] perm the permutation P reducing the fill-in of the input matrix \a C
|
90
|
+
*
|
91
|
+
* Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well as the diagonal entries.
|
92
|
+
* On exit the values of C are destroyed */
|
93
|
+
template<typename Scalar, typename StorageIndex>
|
94
|
+
void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,StorageIndex>& C, PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm)
|
95
|
+
{
|
96
|
+
using std::sqrt;
|
97
|
+
|
98
|
+
StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
|
99
|
+
k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
|
100
|
+
ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h;
|
101
|
+
|
102
|
+
StorageIndex n = StorageIndex(C.cols());
|
103
|
+
dense = std::max<StorageIndex> (16, StorageIndex(10 * sqrt(double(n)))); /* find dense threshold */
|
104
|
+
dense = (std::min)(n-2, dense);
|
105
|
+
|
106
|
+
StorageIndex cnz = StorageIndex(C.nonZeros());
|
107
|
+
perm.resize(n+1);
|
108
|
+
t = cnz + cnz/5 + 2*n; /* add elbow room to C */
|
109
|
+
C.resizeNonZeros(t);
|
110
|
+
|
111
|
+
// get workspace
|
112
|
+
ei_declare_aligned_stack_constructed_variable(StorageIndex,W,8*(n+1),0);
|
113
|
+
StorageIndex* len = W;
|
114
|
+
StorageIndex* nv = W + (n+1);
|
115
|
+
StorageIndex* next = W + 2*(n+1);
|
116
|
+
StorageIndex* head = W + 3*(n+1);
|
117
|
+
StorageIndex* elen = W + 4*(n+1);
|
118
|
+
StorageIndex* degree = W + 5*(n+1);
|
119
|
+
StorageIndex* w = W + 6*(n+1);
|
120
|
+
StorageIndex* hhead = W + 7*(n+1);
|
121
|
+
StorageIndex* last = perm.indices().data(); /* use P as workspace for last */
|
122
|
+
|
123
|
+
/* --- Initialize quotient graph ---------------------------------------- */
|
124
|
+
StorageIndex* Cp = C.outerIndexPtr();
|
125
|
+
StorageIndex* Ci = C.innerIndexPtr();
|
126
|
+
for(k = 0; k < n; k++)
|
127
|
+
len[k] = Cp[k+1] - Cp[k];
|
128
|
+
len[n] = 0;
|
129
|
+
nzmax = t;
|
130
|
+
|
131
|
+
for(i = 0; i <= n; i++)
|
132
|
+
{
|
133
|
+
head[i] = -1; // degree list i is empty
|
134
|
+
last[i] = -1;
|
135
|
+
next[i] = -1;
|
136
|
+
hhead[i] = -1; // hash list i is empty
|
137
|
+
nv[i] = 1; // node i is just one node
|
138
|
+
w[i] = 1; // node i is alive
|
139
|
+
elen[i] = 0; // Ek of node i is empty
|
140
|
+
degree[i] = len[i]; // degree of node i
|
141
|
+
}
|
142
|
+
mark = internal::cs_wclear<StorageIndex>(0, 0, w, n); /* clear w */
|
143
|
+
|
144
|
+
/* --- Initialize degree lists ------------------------------------------ */
|
145
|
+
for(i = 0; i < n; i++)
|
146
|
+
{
|
147
|
+
bool has_diag = false;
|
148
|
+
for(p = Cp[i]; p<Cp[i+1]; ++p)
|
149
|
+
if(Ci[p]==i)
|
150
|
+
{
|
151
|
+
has_diag = true;
|
152
|
+
break;
|
153
|
+
}
|
154
|
+
|
155
|
+
d = degree[i];
|
156
|
+
if(d == 1 && has_diag) /* node i is empty */
|
157
|
+
{
|
158
|
+
elen[i] = -2; /* element i is dead */
|
159
|
+
nel++;
|
160
|
+
Cp[i] = -1; /* i is a root of assembly tree */
|
161
|
+
w[i] = 0;
|
162
|
+
}
|
163
|
+
else if(d > dense || !has_diag) /* node i is dense or has no structural diagonal element */
|
164
|
+
{
|
165
|
+
nv[i] = 0; /* absorb i into element n */
|
166
|
+
elen[i] = -1; /* node i is dead */
|
167
|
+
nel++;
|
168
|
+
Cp[i] = amd_flip (n);
|
169
|
+
nv[n]++;
|
170
|
+
}
|
171
|
+
else
|
172
|
+
{
|
173
|
+
if(head[d] != -1) last[head[d]] = i;
|
174
|
+
next[i] = head[d]; /* put node i in degree list d */
|
175
|
+
head[d] = i;
|
176
|
+
}
|
177
|
+
}
|
178
|
+
|
179
|
+
elen[n] = -2; /* n is a dead element */
|
180
|
+
Cp[n] = -1; /* n is a root of assembly tree */
|
181
|
+
w[n] = 0; /* n is a dead element */
|
182
|
+
|
183
|
+
while (nel < n) /* while (selecting pivots) do */
|
184
|
+
{
|
185
|
+
/* --- Select node of minimum approximate degree -------------------- */
|
186
|
+
for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
|
187
|
+
if(next[k] != -1) last[next[k]] = -1;
|
188
|
+
head[mindeg] = next[k]; /* remove k from degree list */
|
189
|
+
elenk = elen[k]; /* elenk = |Ek| */
|
190
|
+
nvk = nv[k]; /* # of nodes k represents */
|
191
|
+
nel += nvk; /* nv[k] nodes of A eliminated */
|
192
|
+
|
193
|
+
/* --- Garbage collection ------------------------------------------- */
|
194
|
+
if(elenk > 0 && cnz + mindeg >= nzmax)
|
195
|
+
{
|
196
|
+
for(j = 0; j < n; j++)
|
197
|
+
{
|
198
|
+
if((p = Cp[j]) >= 0) /* j is a live node or element */
|
199
|
+
{
|
200
|
+
Cp[j] = Ci[p]; /* save first entry of object */
|
201
|
+
Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */
|
202
|
+
}
|
203
|
+
}
|
204
|
+
for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
|
205
|
+
{
|
206
|
+
if((j = amd_flip (Ci[p++])) >= 0) /* found object j */
|
207
|
+
{
|
208
|
+
Ci[q] = Cp[j]; /* restore first entry of object */
|
209
|
+
Cp[j] = q++; /* new pointer to object j */
|
210
|
+
for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
|
211
|
+
}
|
212
|
+
}
|
213
|
+
cnz = q; /* Ci[cnz...nzmax-1] now free */
|
214
|
+
}
|
215
|
+
|
216
|
+
/* --- Construct new element ---------------------------------------- */
|
217
|
+
dk = 0;
|
218
|
+
nv[k] = -nvk; /* flag k as in Lk */
|
219
|
+
p = Cp[k];
|
220
|
+
pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */
|
221
|
+
pk2 = pk1;
|
222
|
+
for(k1 = 1; k1 <= elenk + 1; k1++)
|
223
|
+
{
|
224
|
+
if(k1 > elenk)
|
225
|
+
{
|
226
|
+
e = k; /* search the nodes in k */
|
227
|
+
pj = p; /* list of nodes starts at Ci[pj]*/
|
228
|
+
ln = len[k] - elenk; /* length of list of nodes in k */
|
229
|
+
}
|
230
|
+
else
|
231
|
+
{
|
232
|
+
e = Ci[p++]; /* search the nodes in e */
|
233
|
+
pj = Cp[e];
|
234
|
+
ln = len[e]; /* length of list of nodes in e */
|
235
|
+
}
|
236
|
+
for(k2 = 1; k2 <= ln; k2++)
|
237
|
+
{
|
238
|
+
i = Ci[pj++];
|
239
|
+
if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
|
240
|
+
dk += nvi; /* degree[Lk] += size of node i */
|
241
|
+
nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/
|
242
|
+
Ci[pk2++] = i; /* place i in Lk */
|
243
|
+
if(next[i] != -1) last[next[i]] = last[i];
|
244
|
+
if(last[i] != -1) /* remove i from degree list */
|
245
|
+
{
|
246
|
+
next[last[i]] = next[i];
|
247
|
+
}
|
248
|
+
else
|
249
|
+
{
|
250
|
+
head[degree[i]] = next[i];
|
251
|
+
}
|
252
|
+
}
|
253
|
+
if(e != k)
|
254
|
+
{
|
255
|
+
Cp[e] = amd_flip (k); /* absorb e into k */
|
256
|
+
w[e] = 0; /* e is now a dead element */
|
257
|
+
}
|
258
|
+
}
|
259
|
+
if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */
|
260
|
+
degree[k] = dk; /* external degree of k - |Lk\i| */
|
261
|
+
Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */
|
262
|
+
len[k] = pk2 - pk1;
|
263
|
+
elen[k] = -2; /* k is now an element */
|
264
|
+
|
265
|
+
/* --- Find set differences ----------------------------------------- */
|
266
|
+
mark = internal::cs_wclear<StorageIndex>(mark, lemax, w, n); /* clear w if necessary */
|
267
|
+
for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */
|
268
|
+
{
|
269
|
+
i = Ci[pk];
|
270
|
+
if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
|
271
|
+
nvi = -nv[i]; /* nv[i] was negated */
|
272
|
+
wnvi = mark - nvi;
|
273
|
+
for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */
|
274
|
+
{
|
275
|
+
e = Ci[p];
|
276
|
+
if(w[e] >= mark)
|
277
|
+
{
|
278
|
+
w[e] -= nvi; /* decrement |Le\Lk| */
|
279
|
+
}
|
280
|
+
else if(w[e] != 0) /* ensure e is a live element */
|
281
|
+
{
|
282
|
+
w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
|
283
|
+
}
|
284
|
+
}
|
285
|
+
}
|
286
|
+
|
287
|
+
/* --- Degree update ------------------------------------------------ */
|
288
|
+
for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */
|
289
|
+
{
|
290
|
+
i = Ci[pk]; /* consider node i in Lk */
|
291
|
+
p1 = Cp[i];
|
292
|
+
p2 = p1 + elen[i] - 1;
|
293
|
+
pn = p1;
|
294
|
+
for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */
|
295
|
+
{
|
296
|
+
e = Ci[p];
|
297
|
+
if(w[e] != 0) /* e is an unabsorbed element */
|
298
|
+
{
|
299
|
+
dext = w[e] - mark; /* dext = |Le\Lk| */
|
300
|
+
if(dext > 0)
|
301
|
+
{
|
302
|
+
d += dext; /* sum up the set differences */
|
303
|
+
Ci[pn++] = e; /* keep e in Ei */
|
304
|
+
h += e; /* compute the hash of node i */
|
305
|
+
}
|
306
|
+
else
|
307
|
+
{
|
308
|
+
Cp[e] = amd_flip (k); /* aggressive absorb. e->k */
|
309
|
+
w[e] = 0; /* e is a dead element */
|
310
|
+
}
|
311
|
+
}
|
312
|
+
}
|
313
|
+
elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */
|
314
|
+
p3 = pn;
|
315
|
+
p4 = p1 + len[i];
|
316
|
+
for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
|
317
|
+
{
|
318
|
+
j = Ci[p];
|
319
|
+
if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
|
320
|
+
d += nvj; /* degree(i) += |j| */
|
321
|
+
Ci[pn++] = j; /* place j in node list of i */
|
322
|
+
h += j; /* compute hash for node i */
|
323
|
+
}
|
324
|
+
if(d == 0) /* check for mass elimination */
|
325
|
+
{
|
326
|
+
Cp[i] = amd_flip (k); /* absorb i into k */
|
327
|
+
nvi = -nv[i];
|
328
|
+
dk -= nvi; /* |Lk| -= |i| */
|
329
|
+
nvk += nvi; /* |k| += nv[i] */
|
330
|
+
nel += nvi;
|
331
|
+
nv[i] = 0;
|
332
|
+
elen[i] = -1; /* node i is dead */
|
333
|
+
}
|
334
|
+
else
|
335
|
+
{
|
336
|
+
degree[i] = std::min<StorageIndex> (degree[i], d); /* update degree(i) */
|
337
|
+
Ci[pn] = Ci[p3]; /* move first node to end */
|
338
|
+
Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */
|
339
|
+
Ci[p1] = k; /* add k as 1st element in of Ei */
|
340
|
+
len[i] = pn - p1 + 1; /* new len of adj. list of node i */
|
341
|
+
h %= n; /* finalize hash of i */
|
342
|
+
next[i] = hhead[h]; /* place i in hash bucket */
|
343
|
+
hhead[h] = i;
|
344
|
+
last[i] = h; /* save hash of i in last[i] */
|
345
|
+
}
|
346
|
+
} /* scan2 is done */
|
347
|
+
degree[k] = dk; /* finalize |Lk| */
|
348
|
+
lemax = std::max<StorageIndex>(lemax, dk);
|
349
|
+
mark = internal::cs_wclear<StorageIndex>(mark+lemax, lemax, w, n); /* clear w */
|
350
|
+
|
351
|
+
/* --- Supernode detection ------------------------------------------ */
|
352
|
+
for(pk = pk1; pk < pk2; pk++)
|
353
|
+
{
|
354
|
+
i = Ci[pk];
|
355
|
+
if(nv[i] >= 0) continue; /* skip if i is dead */
|
356
|
+
h = last[i]; /* scan hash bucket of node i */
|
357
|
+
i = hhead[h];
|
358
|
+
hhead[h] = -1; /* hash bucket will be empty */
|
359
|
+
for(; i != -1 && next[i] != -1; i = next[i], mark++)
|
360
|
+
{
|
361
|
+
ln = len[i];
|
362
|
+
eln = elen[i];
|
363
|
+
for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
|
364
|
+
jlast = i;
|
365
|
+
for(j = next[i]; j != -1; ) /* compare i with all j */
|
366
|
+
{
|
367
|
+
ok = (len[j] == ln) && (elen[j] == eln);
|
368
|
+
for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
|
369
|
+
{
|
370
|
+
if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/
|
371
|
+
}
|
372
|
+
if(ok) /* i and j are identical */
|
373
|
+
{
|
374
|
+
Cp[j] = amd_flip (i); /* absorb j into i */
|
375
|
+
nv[i] += nv[j];
|
376
|
+
nv[j] = 0;
|
377
|
+
elen[j] = -1; /* node j is dead */
|
378
|
+
j = next[j]; /* delete j from hash bucket */
|
379
|
+
next[jlast] = j;
|
380
|
+
}
|
381
|
+
else
|
382
|
+
{
|
383
|
+
jlast = j; /* j and i are different */
|
384
|
+
j = next[j];
|
385
|
+
}
|
386
|
+
}
|
387
|
+
}
|
388
|
+
}
|
389
|
+
|
390
|
+
/* --- Finalize new element------------------------------------------ */
|
391
|
+
for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */
|
392
|
+
{
|
393
|
+
i = Ci[pk];
|
394
|
+
if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
|
395
|
+
nv[i] = nvi; /* restore nv[i] */
|
396
|
+
d = degree[i] + dk - nvi; /* compute external degree(i) */
|
397
|
+
d = std::min<StorageIndex> (d, n - nel - nvi);
|
398
|
+
if(head[d] != -1) last[head[d]] = i;
|
399
|
+
next[i] = head[d]; /* put i back in degree list */
|
400
|
+
last[i] = -1;
|
401
|
+
head[d] = i;
|
402
|
+
mindeg = std::min<StorageIndex> (mindeg, d); /* find new minimum degree */
|
403
|
+
degree[i] = d;
|
404
|
+
Ci[p++] = i; /* place i in Lk */
|
405
|
+
}
|
406
|
+
nv[k] = nvk; /* # nodes absorbed into k */
|
407
|
+
if((len[k] = p-pk1) == 0) /* length of adj list of element k*/
|
408
|
+
{
|
409
|
+
Cp[k] = -1; /* k is a root of the tree */
|
410
|
+
w[k] = 0; /* k is now a dead element */
|
411
|
+
}
|
412
|
+
if(elenk != 0) cnz = p; /* free unused space in Lk */
|
413
|
+
}
|
414
|
+
|
415
|
+
/* --- Postordering ----------------------------------------------------- */
|
416
|
+
for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
|
417
|
+
for(j = 0; j <= n; j++) head[j] = -1;
|
418
|
+
for(j = n; j >= 0; j--) /* place unordered nodes in lists */
|
419
|
+
{
|
420
|
+
if(nv[j] > 0) continue; /* skip if j is an element */
|
421
|
+
next[j] = head[Cp[j]]; /* place j in list of its parent */
|
422
|
+
head[Cp[j]] = j;
|
423
|
+
}
|
424
|
+
for(e = n; e >= 0; e--) /* place elements in lists */
|
425
|
+
{
|
426
|
+
if(nv[e] <= 0) continue; /* skip unless e is an element */
|
427
|
+
if(Cp[e] != -1)
|
428
|
+
{
|
429
|
+
next[e] = head[Cp[e]]; /* place e in list of its parent */
|
430
|
+
head[Cp[e]] = e;
|
431
|
+
}
|
432
|
+
}
|
433
|
+
for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */
|
434
|
+
{
|
435
|
+
if(Cp[i] == -1) k = internal::cs_tdfs<StorageIndex>(i, k, head, next, perm.indices().data(), w);
|
436
|
+
}
|
437
|
+
|
438
|
+
perm.indices().conservativeResize(n);
|
439
|
+
}
|
440
|
+
|
441
|
+
} // namespace internal
|
442
|
+
|
443
|
+
} // end namespace Eigen
|
444
|
+
|
445
|
+
#endif // EIGEN_SPARSE_AMD_H
|
@@ -0,0 +1,1843 @@
|
|
1
|
+
// // This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
// This file is modified from the colamd/symamd library. The copyright is below
|
11
|
+
|
12
|
+
// The authors of the code itself are Stefan I. Larimore and Timothy A.
|
13
|
+
// Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
|
14
|
+
// developed in collaboration with John Gilbert, Xerox PARC, and Esmond
|
15
|
+
// Ng, Oak Ridge National Laboratory.
|
16
|
+
//
|
17
|
+
// Date:
|
18
|
+
//
|
19
|
+
// September 8, 2003. Version 2.3.
|
20
|
+
//
|
21
|
+
// Acknowledgements:
|
22
|
+
//
|
23
|
+
// This work was supported by the National Science Foundation, under
|
24
|
+
// grants DMS-9504974 and DMS-9803599.
|
25
|
+
//
|
26
|
+
// Notice:
|
27
|
+
//
|
28
|
+
// Copyright (c) 1998-2003 by the University of Florida.
|
29
|
+
// All Rights Reserved.
|
30
|
+
//
|
31
|
+
// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
32
|
+
// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
33
|
+
//
|
34
|
+
// Permission is hereby granted to use, copy, modify, and/or distribute
|
35
|
+
// this program, provided that the Copyright, this License, and the
|
36
|
+
// Availability of the original version is retained on all copies and made
|
37
|
+
// accessible to the end-user of any code or package that includes COLAMD
|
38
|
+
// or any modified version of COLAMD.
|
39
|
+
//
|
40
|
+
// Availability:
|
41
|
+
//
|
42
|
+
// The colamd/symamd library is available at
|
43
|
+
//
|
44
|
+
// http://www.suitesparse.com
|
45
|
+
|
46
|
+
|
47
|
+
#ifndef EIGEN_COLAMD_H
|
48
|
+
#define EIGEN_COLAMD_H
|
49
|
+
|
50
|
+
namespace internal {
|
51
|
+
/* Ensure that debugging is turned off: */
|
52
|
+
#ifndef COLAMD_NDEBUG
|
53
|
+
#define COLAMD_NDEBUG
|
54
|
+
#endif /* NDEBUG */
|
55
|
+
/* ========================================================================== */
|
56
|
+
/* === Knob and statistics definitions ====================================== */
|
57
|
+
/* ========================================================================== */
|
58
|
+
|
59
|
+
/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
|
60
|
+
#define COLAMD_KNOBS 20
|
61
|
+
|
62
|
+
/* number of output statistics. Only stats [0..6] are currently used. */
|
63
|
+
#define COLAMD_STATS 20
|
64
|
+
|
65
|
+
/* knobs [0] and stats [0]: dense row knob and output statistic. */
|
66
|
+
#define COLAMD_DENSE_ROW 0
|
67
|
+
|
68
|
+
/* knobs [1] and stats [1]: dense column knob and output statistic. */
|
69
|
+
#define COLAMD_DENSE_COL 1
|
70
|
+
|
71
|
+
/* stats [2]: memory defragmentation count output statistic */
|
72
|
+
#define COLAMD_DEFRAG_COUNT 2
|
73
|
+
|
74
|
+
/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
|
75
|
+
#define COLAMD_STATUS 3
|
76
|
+
|
77
|
+
/* stats [4..6]: error info, or info on jumbled columns */
|
78
|
+
#define COLAMD_INFO1 4
|
79
|
+
#define COLAMD_INFO2 5
|
80
|
+
#define COLAMD_INFO3 6
|
81
|
+
|
82
|
+
/* error codes returned in stats [3]: */
|
83
|
+
#define COLAMD_OK (0)
|
84
|
+
#define COLAMD_OK_BUT_JUMBLED (1)
|
85
|
+
#define COLAMD_ERROR_A_not_present (-1)
|
86
|
+
#define COLAMD_ERROR_p_not_present (-2)
|
87
|
+
#define COLAMD_ERROR_nrow_negative (-3)
|
88
|
+
#define COLAMD_ERROR_ncol_negative (-4)
|
89
|
+
#define COLAMD_ERROR_nnz_negative (-5)
|
90
|
+
#define COLAMD_ERROR_p0_nonzero (-6)
|
91
|
+
#define COLAMD_ERROR_A_too_small (-7)
|
92
|
+
#define COLAMD_ERROR_col_length_negative (-8)
|
93
|
+
#define COLAMD_ERROR_row_index_out_of_bounds (-9)
|
94
|
+
#define COLAMD_ERROR_out_of_memory (-10)
|
95
|
+
#define COLAMD_ERROR_internal_error (-999)
|
96
|
+
|
97
|
+
/* ========================================================================== */
|
98
|
+
/* === Definitions ========================================================== */
|
99
|
+
/* ========================================================================== */
|
100
|
+
|
101
|
+
#define ONES_COMPLEMENT(r) (-(r)-1)
|
102
|
+
|
103
|
+
/* -------------------------------------------------------------------------- */
|
104
|
+
|
105
|
+
#define COLAMD_EMPTY (-1)
|
106
|
+
|
107
|
+
/* Row and column status */
|
108
|
+
#define ALIVE (0)
|
109
|
+
#define DEAD (-1)
|
110
|
+
|
111
|
+
/* Column status */
|
112
|
+
#define DEAD_PRINCIPAL (-1)
|
113
|
+
#define DEAD_NON_PRINCIPAL (-2)
|
114
|
+
|
115
|
+
/* Macros for row and column status update and checking. */
|
116
|
+
#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
|
117
|
+
#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
|
118
|
+
#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
|
119
|
+
#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
|
120
|
+
#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
|
121
|
+
#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
|
122
|
+
#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
|
123
|
+
#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
|
124
|
+
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
|
125
|
+
|
126
|
+
/* ========================================================================== */
|
127
|
+
/* === Colamd reporting mechanism =========================================== */
|
128
|
+
/* ========================================================================== */
|
129
|
+
|
130
|
+
// == Row and Column structures ==
|
131
|
+
template <typename IndexType>
|
132
|
+
struct colamd_col
|
133
|
+
{
|
134
|
+
IndexType start ; /* index for A of first row in this column, or DEAD */
|
135
|
+
/* if column is dead */
|
136
|
+
IndexType length ; /* number of rows in this column */
|
137
|
+
union
|
138
|
+
{
|
139
|
+
IndexType thickness ; /* number of original columns represented by this */
|
140
|
+
/* col, if the column is alive */
|
141
|
+
IndexType parent ; /* parent in parent tree super-column structure, if */
|
142
|
+
/* the column is dead */
|
143
|
+
} shared1 ;
|
144
|
+
union
|
145
|
+
{
|
146
|
+
IndexType score ; /* the score used to maintain heap, if col is alive */
|
147
|
+
IndexType order ; /* pivot ordering of this column, if col is dead */
|
148
|
+
} shared2 ;
|
149
|
+
union
|
150
|
+
{
|
151
|
+
IndexType headhash ; /* head of a hash bucket, if col is at the head of */
|
152
|
+
/* a degree list */
|
153
|
+
IndexType hash ; /* hash value, if col is not in a degree list */
|
154
|
+
IndexType prev ; /* previous column in degree list, if col is in a */
|
155
|
+
/* degree list (but not at the head of a degree list) */
|
156
|
+
} shared3 ;
|
157
|
+
union
|
158
|
+
{
|
159
|
+
IndexType degree_next ; /* next column, if col is in a degree list */
|
160
|
+
IndexType hash_next ; /* next column, if col is in a hash list */
|
161
|
+
} shared4 ;
|
162
|
+
|
163
|
+
};
|
164
|
+
|
165
|
+
template <typename IndexType>
|
166
|
+
struct Colamd_Row
|
167
|
+
{
|
168
|
+
IndexType start ; /* index for A of first col in this row */
|
169
|
+
IndexType length ; /* number of principal columns in this row */
|
170
|
+
union
|
171
|
+
{
|
172
|
+
IndexType degree ; /* number of principal & non-principal columns in row */
|
173
|
+
IndexType p ; /* used as a row pointer in init_rows_cols () */
|
174
|
+
} shared1 ;
|
175
|
+
union
|
176
|
+
{
|
177
|
+
IndexType mark ; /* for computing set differences and marking dead rows*/
|
178
|
+
IndexType first_column ;/* first column in row (used in garbage collection) */
|
179
|
+
} shared2 ;
|
180
|
+
|
181
|
+
};
|
182
|
+
|
183
|
+
/* ========================================================================== */
|
184
|
+
/* === Colamd recommended memory size ======================================= */
|
185
|
+
/* ========================================================================== */
|
186
|
+
|
187
|
+
/*
|
188
|
+
The recommended length Alen of the array A passed to colamd is given by
|
189
|
+
the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any
|
190
|
+
argument is negative. 2*nnz space is required for the row and column
|
191
|
+
indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
|
192
|
+
required for the Col and Row arrays, respectively, which are internal to
|
193
|
+
colamd. An additional n_col space is the minimal amount of "elbow room",
|
194
|
+
and nnz/5 more space is recommended for run time efficiency.
|
195
|
+
|
196
|
+
This macro is not needed when using symamd.
|
197
|
+
|
198
|
+
Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid
|
199
|
+
gcc -pedantic warning messages.
|
200
|
+
*/
|
201
|
+
template <typename IndexType>
|
202
|
+
inline IndexType colamd_c(IndexType n_col)
|
203
|
+
{ return IndexType( ((n_col) + 1) * sizeof (colamd_col<IndexType>) / sizeof (IndexType) ) ; }
|
204
|
+
|
205
|
+
template <typename IndexType>
|
206
|
+
inline IndexType colamd_r(IndexType n_row)
|
207
|
+
{ return IndexType(((n_row) + 1) * sizeof (Colamd_Row<IndexType>) / sizeof (IndexType)); }
|
208
|
+
|
209
|
+
// Prototypes of non-user callable routines
|
210
|
+
template <typename IndexType>
|
211
|
+
static IndexType init_rows_cols (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> col [], IndexType A [], IndexType p [], IndexType stats[COLAMD_STATS] );
|
212
|
+
|
213
|
+
template <typename IndexType>
|
214
|
+
static void init_scoring (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg);
|
215
|
+
|
216
|
+
template <typename IndexType>
|
217
|
+
static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree);
|
218
|
+
|
219
|
+
template <typename IndexType>
|
220
|
+
static void order_children (IndexType n_col, colamd_col<IndexType> Col [], IndexType p []);
|
221
|
+
|
222
|
+
template <typename IndexType>
|
223
|
+
static void detect_super_cols (colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ;
|
224
|
+
|
225
|
+
template <typename IndexType>
|
226
|
+
static IndexType garbage_collection (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType *pfree) ;
|
227
|
+
|
228
|
+
template <typename IndexType>
|
229
|
+
static inline IndexType clear_mark (IndexType n_row, Colamd_Row<IndexType> Row [] ) ;
|
230
|
+
|
231
|
+
/* === No debugging ========================================================= */
|
232
|
+
|
233
|
+
#define COLAMD_DEBUG0(params) ;
|
234
|
+
#define COLAMD_DEBUG1(params) ;
|
235
|
+
#define COLAMD_DEBUG2(params) ;
|
236
|
+
#define COLAMD_DEBUG3(params) ;
|
237
|
+
#define COLAMD_DEBUG4(params) ;
|
238
|
+
|
239
|
+
#define COLAMD_ASSERT(expression) ((void) 0)
|
240
|
+
|
241
|
+
|
242
|
+
/**
|
243
|
+
* \brief Returns the recommended value of Alen
|
244
|
+
*
|
245
|
+
* Returns recommended value of Alen for use by colamd.
|
246
|
+
* Returns -1 if any input argument is negative.
|
247
|
+
* The use of this routine or macro is optional.
|
248
|
+
* Note that the macro uses its arguments more than once,
|
249
|
+
* so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.
|
250
|
+
*
|
251
|
+
* \param nnz nonzeros in A
|
252
|
+
* \param n_row number of rows in A
|
253
|
+
* \param n_col number of columns in A
|
254
|
+
* \return recommended value of Alen for use by colamd
|
255
|
+
*/
|
256
|
+
template <typename IndexType>
|
257
|
+
inline IndexType colamd_recommended ( IndexType nnz, IndexType n_row, IndexType n_col)
|
258
|
+
{
|
259
|
+
if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
|
260
|
+
return (-1);
|
261
|
+
else
|
262
|
+
return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5));
|
263
|
+
}
|
264
|
+
|
265
|
+
/**
|
266
|
+
* \brief set default parameters The use of this routine is optional.
|
267
|
+
*
|
268
|
+
* Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col)
|
269
|
+
* entries are removed prior to ordering. Columns with more than
|
270
|
+
* (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to
|
271
|
+
* ordering, and placed last in the output column ordering.
|
272
|
+
*
|
273
|
+
* COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
|
274
|
+
* respectively, in colamd.h. Default values of these two knobs
|
275
|
+
* are both 0.5. Currently, only knobs [0] and knobs [1] are
|
276
|
+
* used, but future versions may use more knobs. If so, they will
|
277
|
+
* be properly set to their defaults by the future version of
|
278
|
+
* colamd_set_defaults, so that the code that calls colamd will
|
279
|
+
* not need to change, assuming that you either use
|
280
|
+
* colamd_set_defaults, or pass a (double *) NULL pointer as the
|
281
|
+
* knobs array to colamd or symamd.
|
282
|
+
*
|
283
|
+
* \param knobs parameter settings for colamd
|
284
|
+
*/
|
285
|
+
|
286
|
+
static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS])
|
287
|
+
{
|
288
|
+
/* === Local variables ================================================== */
|
289
|
+
|
290
|
+
int i ;
|
291
|
+
|
292
|
+
if (!knobs)
|
293
|
+
{
|
294
|
+
return ; /* no knobs to initialize */
|
295
|
+
}
|
296
|
+
for (i = 0 ; i < COLAMD_KNOBS ; i++)
|
297
|
+
{
|
298
|
+
knobs [i] = 0 ;
|
299
|
+
}
|
300
|
+
knobs [COLAMD_DENSE_ROW] = 0.5 ; /* ignore rows over 50% dense */
|
301
|
+
knobs [COLAMD_DENSE_COL] = 0.5 ; /* ignore columns over 50% dense */
|
302
|
+
}
|
303
|
+
|
304
|
+
/**
|
305
|
+
* \brief Computes a column ordering using the column approximate minimum degree ordering
|
306
|
+
*
|
307
|
+
* Computes a column ordering (Q) of A such that P(AQ)=LU or
|
308
|
+
* (AQ)'AQ=LL' have less fill-in and require fewer floating point
|
309
|
+
* operations than factorizing the unpermuted matrix A or A'A,
|
310
|
+
* respectively.
|
311
|
+
*
|
312
|
+
*
|
313
|
+
* \param n_row number of rows in A
|
314
|
+
* \param n_col number of columns in A
|
315
|
+
* \param Alen, size of the array A
|
316
|
+
* \param A row indices of the matrix, of size ALen
|
317
|
+
* \param p column pointers of A, of size n_col+1
|
318
|
+
* \param knobs parameter settings for colamd
|
319
|
+
* \param stats colamd output statistics and error codes
|
320
|
+
*/
|
321
|
+
template <typename IndexType>
|
322
|
+
static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS])
|
323
|
+
{
|
324
|
+
/* === Local variables ================================================== */
|
325
|
+
|
326
|
+
IndexType i ; /* loop index */
|
327
|
+
IndexType nnz ; /* nonzeros in A */
|
328
|
+
IndexType Row_size ; /* size of Row [], in integers */
|
329
|
+
IndexType Col_size ; /* size of Col [], in integers */
|
330
|
+
IndexType need ; /* minimum required length of A */
|
331
|
+
Colamd_Row<IndexType> *Row ; /* pointer into A of Row [0..n_row] array */
|
332
|
+
colamd_col<IndexType> *Col ; /* pointer into A of Col [0..n_col] array */
|
333
|
+
IndexType n_col2 ; /* number of non-dense, non-empty columns */
|
334
|
+
IndexType n_row2 ; /* number of non-dense, non-empty rows */
|
335
|
+
IndexType ngarbage ; /* number of garbage collections performed */
|
336
|
+
IndexType max_deg ; /* maximum row degree */
|
337
|
+
double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
|
338
|
+
|
339
|
+
|
340
|
+
/* === Check the input arguments ======================================== */
|
341
|
+
|
342
|
+
if (!stats)
|
343
|
+
{
|
344
|
+
COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
|
345
|
+
return (false) ;
|
346
|
+
}
|
347
|
+
for (i = 0 ; i < COLAMD_STATS ; i++)
|
348
|
+
{
|
349
|
+
stats [i] = 0 ;
|
350
|
+
}
|
351
|
+
stats [COLAMD_STATUS] = COLAMD_OK ;
|
352
|
+
stats [COLAMD_INFO1] = -1 ;
|
353
|
+
stats [COLAMD_INFO2] = -1 ;
|
354
|
+
|
355
|
+
if (!A) /* A is not present */
|
356
|
+
{
|
357
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
|
358
|
+
COLAMD_DEBUG0 (("colamd: A not present\n")) ;
|
359
|
+
return (false) ;
|
360
|
+
}
|
361
|
+
|
362
|
+
if (!p) /* p is not present */
|
363
|
+
{
|
364
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
|
365
|
+
COLAMD_DEBUG0 (("colamd: p not present\n")) ;
|
366
|
+
return (false) ;
|
367
|
+
}
|
368
|
+
|
369
|
+
if (n_row < 0) /* n_row must be >= 0 */
|
370
|
+
{
|
371
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
|
372
|
+
stats [COLAMD_INFO1] = n_row ;
|
373
|
+
COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
|
374
|
+
return (false) ;
|
375
|
+
}
|
376
|
+
|
377
|
+
if (n_col < 0) /* n_col must be >= 0 */
|
378
|
+
{
|
379
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
|
380
|
+
stats [COLAMD_INFO1] = n_col ;
|
381
|
+
COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
|
382
|
+
return (false) ;
|
383
|
+
}
|
384
|
+
|
385
|
+
nnz = p [n_col] ;
|
386
|
+
if (nnz < 0) /* nnz must be >= 0 */
|
387
|
+
{
|
388
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
|
389
|
+
stats [COLAMD_INFO1] = nnz ;
|
390
|
+
COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
|
391
|
+
return (false) ;
|
392
|
+
}
|
393
|
+
|
394
|
+
if (p [0] != 0)
|
395
|
+
{
|
396
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
|
397
|
+
stats [COLAMD_INFO1] = p [0] ;
|
398
|
+
COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
|
399
|
+
return (false) ;
|
400
|
+
}
|
401
|
+
|
402
|
+
/* === If no knobs, set default knobs =================================== */
|
403
|
+
|
404
|
+
if (!knobs)
|
405
|
+
{
|
406
|
+
colamd_set_defaults (default_knobs) ;
|
407
|
+
knobs = default_knobs ;
|
408
|
+
}
|
409
|
+
|
410
|
+
/* === Allocate the Row and Col arrays from array A ===================== */
|
411
|
+
|
412
|
+
Col_size = colamd_c (n_col) ;
|
413
|
+
Row_size = colamd_r (n_row) ;
|
414
|
+
need = 2*nnz + n_col + Col_size + Row_size ;
|
415
|
+
|
416
|
+
if (need > Alen)
|
417
|
+
{
|
418
|
+
/* not enough space in array A to perform the ordering */
|
419
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
|
420
|
+
stats [COLAMD_INFO1] = need ;
|
421
|
+
stats [COLAMD_INFO2] = Alen ;
|
422
|
+
COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
|
423
|
+
return (false) ;
|
424
|
+
}
|
425
|
+
|
426
|
+
Alen -= Col_size + Row_size ;
|
427
|
+
Col = (colamd_col<IndexType> *) &A [Alen] ;
|
428
|
+
Row = (Colamd_Row<IndexType> *) &A [Alen + Col_size] ;
|
429
|
+
|
430
|
+
/* === Construct the row and column data structures ===================== */
|
431
|
+
|
432
|
+
if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
|
433
|
+
{
|
434
|
+
/* input matrix is invalid */
|
435
|
+
COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
|
436
|
+
return (false) ;
|
437
|
+
}
|
438
|
+
|
439
|
+
/* === Initialize scores, kill dense rows/columns ======================= */
|
440
|
+
|
441
|
+
Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
|
442
|
+
&n_row2, &n_col2, &max_deg) ;
|
443
|
+
|
444
|
+
/* === Order the supercolumns =========================================== */
|
445
|
+
|
446
|
+
ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
|
447
|
+
n_col2, max_deg, 2*nnz) ;
|
448
|
+
|
449
|
+
/* === Order the non-principal columns ================================== */
|
450
|
+
|
451
|
+
Eigen::internal::order_children (n_col, Col, p) ;
|
452
|
+
|
453
|
+
/* === Return statistics in stats ======================================= */
|
454
|
+
|
455
|
+
stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
|
456
|
+
stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
|
457
|
+
stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
|
458
|
+
COLAMD_DEBUG0 (("colamd: done.\n")) ;
|
459
|
+
return (true) ;
|
460
|
+
}
|
461
|
+
|
462
|
+
/* ========================================================================== */
|
463
|
+
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
|
464
|
+
/* ========================================================================== */
|
465
|
+
|
466
|
+
/* There are no user-callable routines beyond this point in the file */
|
467
|
+
|
468
|
+
|
469
|
+
/* ========================================================================== */
|
470
|
+
/* === init_rows_cols ======================================================= */
|
471
|
+
/* ========================================================================== */
|
472
|
+
|
473
|
+
/*
|
474
|
+
Takes the column form of the matrix in A and creates the row form of the
|
475
|
+
matrix. Also, row and column attributes are stored in the Col and Row
|
476
|
+
structs. If the columns are un-sorted or contain duplicate row indices,
|
477
|
+
this routine will also sort and remove duplicate row indices from the
|
478
|
+
column form of the matrix. Returns false if the matrix is invalid,
|
479
|
+
true otherwise. Not user-callable.
|
480
|
+
*/
|
481
|
+
template <typename IndexType>
|
482
|
+
static IndexType init_rows_cols /* returns true if OK, or false otherwise */
|
483
|
+
(
|
484
|
+
/* === Parameters ======================================================= */
|
485
|
+
|
486
|
+
IndexType n_row, /* number of rows of A */
|
487
|
+
IndexType n_col, /* number of columns of A */
|
488
|
+
Colamd_Row<IndexType> Row [], /* of size n_row+1 */
|
489
|
+
colamd_col<IndexType> Col [], /* of size n_col+1 */
|
490
|
+
IndexType A [], /* row indices of A, of size Alen */
|
491
|
+
IndexType p [], /* pointers to columns in A, of size n_col+1 */
|
492
|
+
IndexType stats [COLAMD_STATS] /* colamd statistics */
|
493
|
+
)
|
494
|
+
{
|
495
|
+
/* === Local variables ================================================== */
|
496
|
+
|
497
|
+
IndexType col ; /* a column index */
|
498
|
+
IndexType row ; /* a row index */
|
499
|
+
IndexType *cp ; /* a column pointer */
|
500
|
+
IndexType *cp_end ; /* a pointer to the end of a column */
|
501
|
+
IndexType *rp ; /* a row pointer */
|
502
|
+
IndexType *rp_end ; /* a pointer to the end of a row */
|
503
|
+
IndexType last_row ; /* previous row */
|
504
|
+
|
505
|
+
/* === Initialize columns, and check column pointers ==================== */
|
506
|
+
|
507
|
+
for (col = 0 ; col < n_col ; col++)
|
508
|
+
{
|
509
|
+
Col [col].start = p [col] ;
|
510
|
+
Col [col].length = p [col+1] - p [col] ;
|
511
|
+
|
512
|
+
if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200
|
513
|
+
{
|
514
|
+
/* column pointers must be non-decreasing */
|
515
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
|
516
|
+
stats [COLAMD_INFO1] = col ;
|
517
|
+
stats [COLAMD_INFO2] = Col [col].length ;
|
518
|
+
COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
|
519
|
+
return (false) ;
|
520
|
+
}
|
521
|
+
|
522
|
+
Col [col].shared1.thickness = 1 ;
|
523
|
+
Col [col].shared2.score = 0 ;
|
524
|
+
Col [col].shared3.prev = COLAMD_EMPTY ;
|
525
|
+
Col [col].shared4.degree_next = COLAMD_EMPTY ;
|
526
|
+
}
|
527
|
+
|
528
|
+
/* p [0..n_col] no longer needed, used as "head" in subsequent routines */
|
529
|
+
|
530
|
+
/* === Scan columns, compute row degrees, and check row indices ========= */
|
531
|
+
|
532
|
+
stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
|
533
|
+
|
534
|
+
for (row = 0 ; row < n_row ; row++)
|
535
|
+
{
|
536
|
+
Row [row].length = 0 ;
|
537
|
+
Row [row].shared2.mark = -1 ;
|
538
|
+
}
|
539
|
+
|
540
|
+
for (col = 0 ; col < n_col ; col++)
|
541
|
+
{
|
542
|
+
last_row = -1 ;
|
543
|
+
|
544
|
+
cp = &A [p [col]] ;
|
545
|
+
cp_end = &A [p [col+1]] ;
|
546
|
+
|
547
|
+
while (cp < cp_end)
|
548
|
+
{
|
549
|
+
row = *cp++ ;
|
550
|
+
|
551
|
+
/* make sure row indices within range */
|
552
|
+
if (row < 0 || row >= n_row)
|
553
|
+
{
|
554
|
+
stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
|
555
|
+
stats [COLAMD_INFO1] = col ;
|
556
|
+
stats [COLAMD_INFO2] = row ;
|
557
|
+
stats [COLAMD_INFO3] = n_row ;
|
558
|
+
COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
|
559
|
+
return (false) ;
|
560
|
+
}
|
561
|
+
|
562
|
+
if (row <= last_row || Row [row].shared2.mark == col)
|
563
|
+
{
|
564
|
+
/* row index are unsorted or repeated (or both), thus col */
|
565
|
+
/* is jumbled. This is a notice, not an error condition. */
|
566
|
+
stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
|
567
|
+
stats [COLAMD_INFO1] = col ;
|
568
|
+
stats [COLAMD_INFO2] = row ;
|
569
|
+
(stats [COLAMD_INFO3]) ++ ;
|
570
|
+
COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
|
571
|
+
}
|
572
|
+
|
573
|
+
if (Row [row].shared2.mark != col)
|
574
|
+
{
|
575
|
+
Row [row].length++ ;
|
576
|
+
}
|
577
|
+
else
|
578
|
+
{
|
579
|
+
/* this is a repeated entry in the column, */
|
580
|
+
/* it will be removed */
|
581
|
+
Col [col].length-- ;
|
582
|
+
}
|
583
|
+
|
584
|
+
/* mark the row as having been seen in this column */
|
585
|
+
Row [row].shared2.mark = col ;
|
586
|
+
|
587
|
+
last_row = row ;
|
588
|
+
}
|
589
|
+
}
|
590
|
+
|
591
|
+
/* === Compute row pointers ============================================= */
|
592
|
+
|
593
|
+
/* row form of the matrix starts directly after the column */
|
594
|
+
/* form of matrix in A */
|
595
|
+
Row [0].start = p [n_col] ;
|
596
|
+
Row [0].shared1.p = Row [0].start ;
|
597
|
+
Row [0].shared2.mark = -1 ;
|
598
|
+
for (row = 1 ; row < n_row ; row++)
|
599
|
+
{
|
600
|
+
Row [row].start = Row [row-1].start + Row [row-1].length ;
|
601
|
+
Row [row].shared1.p = Row [row].start ;
|
602
|
+
Row [row].shared2.mark = -1 ;
|
603
|
+
}
|
604
|
+
|
605
|
+
/* === Create row form ================================================== */
|
606
|
+
|
607
|
+
if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
|
608
|
+
{
|
609
|
+
/* if cols jumbled, watch for repeated row indices */
|
610
|
+
for (col = 0 ; col < n_col ; col++)
|
611
|
+
{
|
612
|
+
cp = &A [p [col]] ;
|
613
|
+
cp_end = &A [p [col+1]] ;
|
614
|
+
while (cp < cp_end)
|
615
|
+
{
|
616
|
+
row = *cp++ ;
|
617
|
+
if (Row [row].shared2.mark != col)
|
618
|
+
{
|
619
|
+
A [(Row [row].shared1.p)++] = col ;
|
620
|
+
Row [row].shared2.mark = col ;
|
621
|
+
}
|
622
|
+
}
|
623
|
+
}
|
624
|
+
}
|
625
|
+
else
|
626
|
+
{
|
627
|
+
/* if cols not jumbled, we don't need the mark (this is faster) */
|
628
|
+
for (col = 0 ; col < n_col ; col++)
|
629
|
+
{
|
630
|
+
cp = &A [p [col]] ;
|
631
|
+
cp_end = &A [p [col+1]] ;
|
632
|
+
while (cp < cp_end)
|
633
|
+
{
|
634
|
+
A [(Row [*cp++].shared1.p)++] = col ;
|
635
|
+
}
|
636
|
+
}
|
637
|
+
}
|
638
|
+
|
639
|
+
/* === Clear the row marks and set row degrees ========================== */
|
640
|
+
|
641
|
+
for (row = 0 ; row < n_row ; row++)
|
642
|
+
{
|
643
|
+
Row [row].shared2.mark = 0 ;
|
644
|
+
Row [row].shared1.degree = Row [row].length ;
|
645
|
+
}
|
646
|
+
|
647
|
+
/* === See if we need to re-create columns ============================== */
|
648
|
+
|
649
|
+
if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
|
650
|
+
{
|
651
|
+
COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
|
652
|
+
|
653
|
+
|
654
|
+
/* === Compute col pointers ========================================= */
|
655
|
+
|
656
|
+
/* col form of the matrix starts at A [0]. */
|
657
|
+
/* Note, we may have a gap between the col form and the row */
|
658
|
+
/* form if there were duplicate entries, if so, it will be */
|
659
|
+
/* removed upon the first garbage collection */
|
660
|
+
Col [0].start = 0 ;
|
661
|
+
p [0] = Col [0].start ;
|
662
|
+
for (col = 1 ; col < n_col ; col++)
|
663
|
+
{
|
664
|
+
/* note that the lengths here are for pruned columns, i.e. */
|
665
|
+
/* no duplicate row indices will exist for these columns */
|
666
|
+
Col [col].start = Col [col-1].start + Col [col-1].length ;
|
667
|
+
p [col] = Col [col].start ;
|
668
|
+
}
|
669
|
+
|
670
|
+
/* === Re-create col form =========================================== */
|
671
|
+
|
672
|
+
for (row = 0 ; row < n_row ; row++)
|
673
|
+
{
|
674
|
+
rp = &A [Row [row].start] ;
|
675
|
+
rp_end = rp + Row [row].length ;
|
676
|
+
while (rp < rp_end)
|
677
|
+
{
|
678
|
+
A [(p [*rp++])++] = row ;
|
679
|
+
}
|
680
|
+
}
|
681
|
+
}
|
682
|
+
|
683
|
+
/* === Done. Matrix is not (or no longer) jumbled ====================== */
|
684
|
+
|
685
|
+
return (true) ;
|
686
|
+
}
|
687
|
+
|
688
|
+
|
689
|
+
/* ========================================================================== */
|
690
|
+
/* === init_scoring ========================================================= */
|
691
|
+
/* ========================================================================== */
|
692
|
+
|
693
|
+
/*
|
694
|
+
Kills dense or empty columns and rows, calculates an initial score for
|
695
|
+
each column, and places all columns in the degree lists. Not user-callable.
|
696
|
+
*/
|
697
|
+
template <typename IndexType>
|
698
|
+
static void init_scoring
|
699
|
+
(
|
700
|
+
/* === Parameters ======================================================= */
|
701
|
+
|
702
|
+
IndexType n_row, /* number of rows of A */
|
703
|
+
IndexType n_col, /* number of columns of A */
|
704
|
+
Colamd_Row<IndexType> Row [], /* of size n_row+1 */
|
705
|
+
colamd_col<IndexType> Col [], /* of size n_col+1 */
|
706
|
+
IndexType A [], /* column form and row form of A */
|
707
|
+
IndexType head [], /* of size n_col+1 */
|
708
|
+
double knobs [COLAMD_KNOBS],/* parameters */
|
709
|
+
IndexType *p_n_row2, /* number of non-dense, non-empty rows */
|
710
|
+
IndexType *p_n_col2, /* number of non-dense, non-empty columns */
|
711
|
+
IndexType *p_max_deg /* maximum row degree */
|
712
|
+
)
|
713
|
+
{
|
714
|
+
/* === Local variables ================================================== */
|
715
|
+
|
716
|
+
IndexType c ; /* a column index */
|
717
|
+
IndexType r, row ; /* a row index */
|
718
|
+
IndexType *cp ; /* a column pointer */
|
719
|
+
IndexType deg ; /* degree of a row or column */
|
720
|
+
IndexType *cp_end ; /* a pointer to the end of a column */
|
721
|
+
IndexType *new_cp ; /* new column pointer */
|
722
|
+
IndexType col_length ; /* length of pruned column */
|
723
|
+
IndexType score ; /* current column score */
|
724
|
+
IndexType n_col2 ; /* number of non-dense, non-empty columns */
|
725
|
+
IndexType n_row2 ; /* number of non-dense, non-empty rows */
|
726
|
+
IndexType dense_row_count ; /* remove rows with more entries than this */
|
727
|
+
IndexType dense_col_count ; /* remove cols with more entries than this */
|
728
|
+
IndexType min_score ; /* smallest column score */
|
729
|
+
IndexType max_deg ; /* maximum row degree */
|
730
|
+
IndexType next_col ; /* Used to add to degree list.*/
|
731
|
+
|
732
|
+
|
733
|
+
/* === Extract knobs ==================================================== */
|
734
|
+
|
735
|
+
dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_ROW] * n_col), n_col)) ;
|
736
|
+
dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_COL] * n_row), n_row)) ;
|
737
|
+
COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
|
738
|
+
max_deg = 0 ;
|
739
|
+
n_col2 = n_col ;
|
740
|
+
n_row2 = n_row ;
|
741
|
+
|
742
|
+
/* === Kill empty columns =============================================== */
|
743
|
+
|
744
|
+
/* Put the empty columns at the end in their natural order, so that LU */
|
745
|
+
/* factorization can proceed as far as possible. */
|
746
|
+
for (c = n_col-1 ; c >= 0 ; c--)
|
747
|
+
{
|
748
|
+
deg = Col [c].length ;
|
749
|
+
if (deg == 0)
|
750
|
+
{
|
751
|
+
/* this is a empty column, kill and order it last */
|
752
|
+
Col [c].shared2.order = --n_col2 ;
|
753
|
+
KILL_PRINCIPAL_COL (c) ;
|
754
|
+
}
|
755
|
+
}
|
756
|
+
COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
|
757
|
+
|
758
|
+
/* === Kill dense columns =============================================== */
|
759
|
+
|
760
|
+
/* Put the dense columns at the end, in their natural order */
|
761
|
+
for (c = n_col-1 ; c >= 0 ; c--)
|
762
|
+
{
|
763
|
+
/* skip any dead columns */
|
764
|
+
if (COL_IS_DEAD (c))
|
765
|
+
{
|
766
|
+
continue ;
|
767
|
+
}
|
768
|
+
deg = Col [c].length ;
|
769
|
+
if (deg > dense_col_count)
|
770
|
+
{
|
771
|
+
/* this is a dense column, kill and order it last */
|
772
|
+
Col [c].shared2.order = --n_col2 ;
|
773
|
+
/* decrement the row degrees */
|
774
|
+
cp = &A [Col [c].start] ;
|
775
|
+
cp_end = cp + Col [c].length ;
|
776
|
+
while (cp < cp_end)
|
777
|
+
{
|
778
|
+
Row [*cp++].shared1.degree-- ;
|
779
|
+
}
|
780
|
+
KILL_PRINCIPAL_COL (c) ;
|
781
|
+
}
|
782
|
+
}
|
783
|
+
COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
|
784
|
+
|
785
|
+
/* === Kill dense and empty rows ======================================== */
|
786
|
+
|
787
|
+
for (r = 0 ; r < n_row ; r++)
|
788
|
+
{
|
789
|
+
deg = Row [r].shared1.degree ;
|
790
|
+
COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
|
791
|
+
if (deg > dense_row_count || deg == 0)
|
792
|
+
{
|
793
|
+
/* kill a dense or empty row */
|
794
|
+
KILL_ROW (r) ;
|
795
|
+
--n_row2 ;
|
796
|
+
}
|
797
|
+
else
|
798
|
+
{
|
799
|
+
/* keep track of max degree of remaining rows */
|
800
|
+
max_deg = numext::maxi(max_deg, deg) ;
|
801
|
+
}
|
802
|
+
}
|
803
|
+
COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
|
804
|
+
|
805
|
+
/* === Compute initial column scores ==================================== */
|
806
|
+
|
807
|
+
/* At this point the row degrees are accurate. They reflect the number */
|
808
|
+
/* of "live" (non-dense) columns in each row. No empty rows exist. */
|
809
|
+
/* Some "live" columns may contain only dead rows, however. These are */
|
810
|
+
/* pruned in the code below. */
|
811
|
+
|
812
|
+
/* now find the initial matlab score for each column */
|
813
|
+
for (c = n_col-1 ; c >= 0 ; c--)
|
814
|
+
{
|
815
|
+
/* skip dead column */
|
816
|
+
if (COL_IS_DEAD (c))
|
817
|
+
{
|
818
|
+
continue ;
|
819
|
+
}
|
820
|
+
score = 0 ;
|
821
|
+
cp = &A [Col [c].start] ;
|
822
|
+
new_cp = cp ;
|
823
|
+
cp_end = cp + Col [c].length ;
|
824
|
+
while (cp < cp_end)
|
825
|
+
{
|
826
|
+
/* get a row */
|
827
|
+
row = *cp++ ;
|
828
|
+
/* skip if dead */
|
829
|
+
if (ROW_IS_DEAD (row))
|
830
|
+
{
|
831
|
+
continue ;
|
832
|
+
}
|
833
|
+
/* compact the column */
|
834
|
+
*new_cp++ = row ;
|
835
|
+
/* add row's external degree */
|
836
|
+
score += Row [row].shared1.degree - 1 ;
|
837
|
+
/* guard against integer overflow */
|
838
|
+
score = numext::mini(score, n_col) ;
|
839
|
+
}
|
840
|
+
/* determine pruned column length */
|
841
|
+
col_length = (IndexType) (new_cp - &A [Col [c].start]) ;
|
842
|
+
if (col_length == 0)
|
843
|
+
{
|
844
|
+
/* a newly-made null column (all rows in this col are "dense" */
|
845
|
+
/* and have already been killed) */
|
846
|
+
COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
|
847
|
+
Col [c].shared2.order = --n_col2 ;
|
848
|
+
KILL_PRINCIPAL_COL (c) ;
|
849
|
+
}
|
850
|
+
else
|
851
|
+
{
|
852
|
+
/* set column length and set score */
|
853
|
+
COLAMD_ASSERT (score >= 0) ;
|
854
|
+
COLAMD_ASSERT (score <= n_col) ;
|
855
|
+
Col [c].length = col_length ;
|
856
|
+
Col [c].shared2.score = score ;
|
857
|
+
}
|
858
|
+
}
|
859
|
+
COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
|
860
|
+
n_col-n_col2)) ;
|
861
|
+
|
862
|
+
/* At this point, all empty rows and columns are dead. All live columns */
|
863
|
+
/* are "clean" (containing no dead rows) and simplicial (no supercolumns */
|
864
|
+
/* yet). Rows may contain dead columns, but all live rows contain at */
|
865
|
+
/* least one live column. */
|
866
|
+
|
867
|
+
/* === Initialize degree lists ========================================== */
|
868
|
+
|
869
|
+
|
870
|
+
/* clear the hash buckets */
|
871
|
+
for (c = 0 ; c <= n_col ; c++)
|
872
|
+
{
|
873
|
+
head [c] = COLAMD_EMPTY ;
|
874
|
+
}
|
875
|
+
min_score = n_col ;
|
876
|
+
/* place in reverse order, so low column indices are at the front */
|
877
|
+
/* of the lists. This is to encourage natural tie-breaking */
|
878
|
+
for (c = n_col-1 ; c >= 0 ; c--)
|
879
|
+
{
|
880
|
+
/* only add principal columns to degree lists */
|
881
|
+
if (COL_IS_ALIVE (c))
|
882
|
+
{
|
883
|
+
COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
|
884
|
+
c, Col [c].shared2.score, min_score, n_col)) ;
|
885
|
+
|
886
|
+
/* === Add columns score to DList =============================== */
|
887
|
+
|
888
|
+
score = Col [c].shared2.score ;
|
889
|
+
|
890
|
+
COLAMD_ASSERT (min_score >= 0) ;
|
891
|
+
COLAMD_ASSERT (min_score <= n_col) ;
|
892
|
+
COLAMD_ASSERT (score >= 0) ;
|
893
|
+
COLAMD_ASSERT (score <= n_col) ;
|
894
|
+
COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ;
|
895
|
+
|
896
|
+
/* now add this column to dList at proper score location */
|
897
|
+
next_col = head [score] ;
|
898
|
+
Col [c].shared3.prev = COLAMD_EMPTY ;
|
899
|
+
Col [c].shared4.degree_next = next_col ;
|
900
|
+
|
901
|
+
/* if there already was a column with the same score, set its */
|
902
|
+
/* previous pointer to this new column */
|
903
|
+
if (next_col != COLAMD_EMPTY)
|
904
|
+
{
|
905
|
+
Col [next_col].shared3.prev = c ;
|
906
|
+
}
|
907
|
+
head [score] = c ;
|
908
|
+
|
909
|
+
/* see if this score is less than current min */
|
910
|
+
min_score = numext::mini(min_score, score) ;
|
911
|
+
|
912
|
+
|
913
|
+
}
|
914
|
+
}
|
915
|
+
|
916
|
+
|
917
|
+
/* === Return number of remaining columns, and max row degree =========== */
|
918
|
+
|
919
|
+
*p_n_col2 = n_col2 ;
|
920
|
+
*p_n_row2 = n_row2 ;
|
921
|
+
*p_max_deg = max_deg ;
|
922
|
+
}
|
923
|
+
|
924
|
+
|
925
|
+
/* ========================================================================== */
|
926
|
+
/* === find_ordering ======================================================== */
|
927
|
+
/* ========================================================================== */
|
928
|
+
|
929
|
+
/*
|
930
|
+
Order the principal columns of the supercolumn form of the matrix
|
931
|
+
(no supercolumns on input). Uses a minimum approximate column minimum
|
932
|
+
degree ordering method. Not user-callable.
|
933
|
+
*/
|
934
|
+
template <typename IndexType>
|
935
|
+
static IndexType find_ordering /* return the number of garbage collections */
|
936
|
+
(
|
937
|
+
/* === Parameters ======================================================= */
|
938
|
+
|
939
|
+
IndexType n_row, /* number of rows of A */
|
940
|
+
IndexType n_col, /* number of columns of A */
|
941
|
+
IndexType Alen, /* size of A, 2*nnz + n_col or larger */
|
942
|
+
Colamd_Row<IndexType> Row [], /* of size n_row+1 */
|
943
|
+
colamd_col<IndexType> Col [], /* of size n_col+1 */
|
944
|
+
IndexType A [], /* column form and row form of A */
|
945
|
+
IndexType head [], /* of size n_col+1 */
|
946
|
+
IndexType n_col2, /* Remaining columns to order */
|
947
|
+
IndexType max_deg, /* Maximum row degree */
|
948
|
+
IndexType pfree /* index of first free slot (2*nnz on entry) */
|
949
|
+
)
|
950
|
+
{
|
951
|
+
/* === Local variables ================================================== */
|
952
|
+
|
953
|
+
IndexType k ; /* current pivot ordering step */
|
954
|
+
IndexType pivot_col ; /* current pivot column */
|
955
|
+
IndexType *cp ; /* a column pointer */
|
956
|
+
IndexType *rp ; /* a row pointer */
|
957
|
+
IndexType pivot_row ; /* current pivot row */
|
958
|
+
IndexType *new_cp ; /* modified column pointer */
|
959
|
+
IndexType *new_rp ; /* modified row pointer */
|
960
|
+
IndexType pivot_row_start ; /* pointer to start of pivot row */
|
961
|
+
IndexType pivot_row_degree ; /* number of columns in pivot row */
|
962
|
+
IndexType pivot_row_length ; /* number of supercolumns in pivot row */
|
963
|
+
IndexType pivot_col_score ; /* score of pivot column */
|
964
|
+
IndexType needed_memory ; /* free space needed for pivot row */
|
965
|
+
IndexType *cp_end ; /* pointer to the end of a column */
|
966
|
+
IndexType *rp_end ; /* pointer to the end of a row */
|
967
|
+
IndexType row ; /* a row index */
|
968
|
+
IndexType col ; /* a column index */
|
969
|
+
IndexType max_score ; /* maximum possible score */
|
970
|
+
IndexType cur_score ; /* score of current column */
|
971
|
+
unsigned int hash ; /* hash value for supernode detection */
|
972
|
+
IndexType head_column ; /* head of hash bucket */
|
973
|
+
IndexType first_col ; /* first column in hash bucket */
|
974
|
+
IndexType tag_mark ; /* marker value for mark array */
|
975
|
+
IndexType row_mark ; /* Row [row].shared2.mark */
|
976
|
+
IndexType set_difference ; /* set difference size of row with pivot row */
|
977
|
+
IndexType min_score ; /* smallest column score */
|
978
|
+
IndexType col_thickness ; /* "thickness" (no. of columns in a supercol) */
|
979
|
+
IndexType max_mark ; /* maximum value of tag_mark */
|
980
|
+
IndexType pivot_col_thickness ; /* number of columns represented by pivot col */
|
981
|
+
IndexType prev_col ; /* Used by Dlist operations. */
|
982
|
+
IndexType next_col ; /* Used by Dlist operations. */
|
983
|
+
IndexType ngarbage ; /* number of garbage collections performed */
|
984
|
+
|
985
|
+
|
986
|
+
/* === Initialization and clear mark ==================================== */
|
987
|
+
|
988
|
+
max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
|
989
|
+
tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
|
990
|
+
min_score = 0 ;
|
991
|
+
ngarbage = 0 ;
|
992
|
+
COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
|
993
|
+
|
994
|
+
/* === Order the columns ================================================ */
|
995
|
+
|
996
|
+
for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
|
997
|
+
{
|
998
|
+
|
999
|
+
/* === Select pivot column, and order it ============================ */
|
1000
|
+
|
1001
|
+
/* make sure degree list isn't empty */
|
1002
|
+
COLAMD_ASSERT (min_score >= 0) ;
|
1003
|
+
COLAMD_ASSERT (min_score <= n_col) ;
|
1004
|
+
COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ;
|
1005
|
+
|
1006
|
+
/* get pivot column from head of minimum degree list */
|
1007
|
+
while (min_score < n_col && head [min_score] == COLAMD_EMPTY)
|
1008
|
+
{
|
1009
|
+
min_score++ ;
|
1010
|
+
}
|
1011
|
+
pivot_col = head [min_score] ;
|
1012
|
+
COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
|
1013
|
+
next_col = Col [pivot_col].shared4.degree_next ;
|
1014
|
+
head [min_score] = next_col ;
|
1015
|
+
if (next_col != COLAMD_EMPTY)
|
1016
|
+
{
|
1017
|
+
Col [next_col].shared3.prev = COLAMD_EMPTY ;
|
1018
|
+
}
|
1019
|
+
|
1020
|
+
COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ;
|
1021
|
+
COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ;
|
1022
|
+
|
1023
|
+
/* remember score for defrag check */
|
1024
|
+
pivot_col_score = Col [pivot_col].shared2.score ;
|
1025
|
+
|
1026
|
+
/* the pivot column is the kth column in the pivot order */
|
1027
|
+
Col [pivot_col].shared2.order = k ;
|
1028
|
+
|
1029
|
+
/* increment order count by column thickness */
|
1030
|
+
pivot_col_thickness = Col [pivot_col].shared1.thickness ;
|
1031
|
+
k += pivot_col_thickness ;
|
1032
|
+
COLAMD_ASSERT (pivot_col_thickness > 0) ;
|
1033
|
+
|
1034
|
+
/* === Garbage_collection, if necessary ============================= */
|
1035
|
+
|
1036
|
+
needed_memory = numext::mini(pivot_col_score, n_col - k) ;
|
1037
|
+
if (pfree + needed_memory >= Alen)
|
1038
|
+
{
|
1039
|
+
pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
|
1040
|
+
ngarbage++ ;
|
1041
|
+
/* after garbage collection we will have enough */
|
1042
|
+
COLAMD_ASSERT (pfree + needed_memory < Alen) ;
|
1043
|
+
/* garbage collection has wiped out the Row[].shared2.mark array */
|
1044
|
+
tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
|
1045
|
+
|
1046
|
+
}
|
1047
|
+
|
1048
|
+
/* === Compute pivot row pattern ==================================== */
|
1049
|
+
|
1050
|
+
/* get starting location for this new merged row */
|
1051
|
+
pivot_row_start = pfree ;
|
1052
|
+
|
1053
|
+
/* initialize new row counts to zero */
|
1054
|
+
pivot_row_degree = 0 ;
|
1055
|
+
|
1056
|
+
/* tag pivot column as having been visited so it isn't included */
|
1057
|
+
/* in merged pivot row */
|
1058
|
+
Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
|
1059
|
+
|
1060
|
+
/* pivot row is the union of all rows in the pivot column pattern */
|
1061
|
+
cp = &A [Col [pivot_col].start] ;
|
1062
|
+
cp_end = cp + Col [pivot_col].length ;
|
1063
|
+
while (cp < cp_end)
|
1064
|
+
{
|
1065
|
+
/* get a row */
|
1066
|
+
row = *cp++ ;
|
1067
|
+
COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
|
1068
|
+
/* skip if row is dead */
|
1069
|
+
if (ROW_IS_DEAD (row))
|
1070
|
+
{
|
1071
|
+
continue ;
|
1072
|
+
}
|
1073
|
+
rp = &A [Row [row].start] ;
|
1074
|
+
rp_end = rp + Row [row].length ;
|
1075
|
+
while (rp < rp_end)
|
1076
|
+
{
|
1077
|
+
/* get a column */
|
1078
|
+
col = *rp++ ;
|
1079
|
+
/* add the column, if alive and untagged */
|
1080
|
+
col_thickness = Col [col].shared1.thickness ;
|
1081
|
+
if (col_thickness > 0 && COL_IS_ALIVE (col))
|
1082
|
+
{
|
1083
|
+
/* tag column in pivot row */
|
1084
|
+
Col [col].shared1.thickness = -col_thickness ;
|
1085
|
+
COLAMD_ASSERT (pfree < Alen) ;
|
1086
|
+
/* place column in pivot row */
|
1087
|
+
A [pfree++] = col ;
|
1088
|
+
pivot_row_degree += col_thickness ;
|
1089
|
+
}
|
1090
|
+
}
|
1091
|
+
}
|
1092
|
+
|
1093
|
+
/* clear tag on pivot column */
|
1094
|
+
Col [pivot_col].shared1.thickness = pivot_col_thickness ;
|
1095
|
+
max_deg = numext::maxi(max_deg, pivot_row_degree) ;
|
1096
|
+
|
1097
|
+
|
1098
|
+
/* === Kill all rows used to construct pivot row ==================== */
|
1099
|
+
|
1100
|
+
/* also kill pivot row, temporarily */
|
1101
|
+
cp = &A [Col [pivot_col].start] ;
|
1102
|
+
cp_end = cp + Col [pivot_col].length ;
|
1103
|
+
while (cp < cp_end)
|
1104
|
+
{
|
1105
|
+
/* may be killing an already dead row */
|
1106
|
+
row = *cp++ ;
|
1107
|
+
COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
|
1108
|
+
KILL_ROW (row) ;
|
1109
|
+
}
|
1110
|
+
|
1111
|
+
/* === Select a row index to use as the new pivot row =============== */
|
1112
|
+
|
1113
|
+
pivot_row_length = pfree - pivot_row_start ;
|
1114
|
+
if (pivot_row_length > 0)
|
1115
|
+
{
|
1116
|
+
/* pick the "pivot" row arbitrarily (first row in col) */
|
1117
|
+
pivot_row = A [Col [pivot_col].start] ;
|
1118
|
+
COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
|
1119
|
+
}
|
1120
|
+
else
|
1121
|
+
{
|
1122
|
+
/* there is no pivot row, since it is of zero length */
|
1123
|
+
pivot_row = COLAMD_EMPTY ;
|
1124
|
+
COLAMD_ASSERT (pivot_row_length == 0) ;
|
1125
|
+
}
|
1126
|
+
COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
|
1127
|
+
|
1128
|
+
/* === Approximate degree computation =============================== */
|
1129
|
+
|
1130
|
+
/* Here begins the computation of the approximate degree. The column */
|
1131
|
+
/* score is the sum of the pivot row "length", plus the size of the */
|
1132
|
+
/* set differences of each row in the column minus the pattern of the */
|
1133
|
+
/* pivot row itself. The column ("thickness") itself is also */
|
1134
|
+
/* excluded from the column score (we thus use an approximate */
|
1135
|
+
/* external degree). */
|
1136
|
+
|
1137
|
+
/* The time taken by the following code (compute set differences, and */
|
1138
|
+
/* add them up) is proportional to the size of the data structure */
|
1139
|
+
/* being scanned - that is, the sum of the sizes of each column in */
|
1140
|
+
/* the pivot row. Thus, the amortized time to compute a column score */
|
1141
|
+
/* is proportional to the size of that column (where size, in this */
|
1142
|
+
/* context, is the column "length", or the number of row indices */
|
1143
|
+
/* in that column). The number of row indices in a column is */
|
1144
|
+
/* monotonically non-decreasing, from the length of the original */
|
1145
|
+
/* column on input to colamd. */
|
1146
|
+
|
1147
|
+
/* === Compute set differences ====================================== */
|
1148
|
+
|
1149
|
+
COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ;
|
1150
|
+
|
1151
|
+
/* pivot row is currently dead - it will be revived later. */
|
1152
|
+
|
1153
|
+
COLAMD_DEBUG3 (("Pivot row: ")) ;
|
1154
|
+
/* for each column in pivot row */
|
1155
|
+
rp = &A [pivot_row_start] ;
|
1156
|
+
rp_end = rp + pivot_row_length ;
|
1157
|
+
while (rp < rp_end)
|
1158
|
+
{
|
1159
|
+
col = *rp++ ;
|
1160
|
+
COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
|
1161
|
+
COLAMD_DEBUG3 (("Col: %d\n", col)) ;
|
1162
|
+
|
1163
|
+
/* clear tags used to construct pivot row pattern */
|
1164
|
+
col_thickness = -Col [col].shared1.thickness ;
|
1165
|
+
COLAMD_ASSERT (col_thickness > 0) ;
|
1166
|
+
Col [col].shared1.thickness = col_thickness ;
|
1167
|
+
|
1168
|
+
/* === Remove column from degree list =========================== */
|
1169
|
+
|
1170
|
+
cur_score = Col [col].shared2.score ;
|
1171
|
+
prev_col = Col [col].shared3.prev ;
|
1172
|
+
next_col = Col [col].shared4.degree_next ;
|
1173
|
+
COLAMD_ASSERT (cur_score >= 0) ;
|
1174
|
+
COLAMD_ASSERT (cur_score <= n_col) ;
|
1175
|
+
COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ;
|
1176
|
+
if (prev_col == COLAMD_EMPTY)
|
1177
|
+
{
|
1178
|
+
head [cur_score] = next_col ;
|
1179
|
+
}
|
1180
|
+
else
|
1181
|
+
{
|
1182
|
+
Col [prev_col].shared4.degree_next = next_col ;
|
1183
|
+
}
|
1184
|
+
if (next_col != COLAMD_EMPTY)
|
1185
|
+
{
|
1186
|
+
Col [next_col].shared3.prev = prev_col ;
|
1187
|
+
}
|
1188
|
+
|
1189
|
+
/* === Scan the column ========================================== */
|
1190
|
+
|
1191
|
+
cp = &A [Col [col].start] ;
|
1192
|
+
cp_end = cp + Col [col].length ;
|
1193
|
+
while (cp < cp_end)
|
1194
|
+
{
|
1195
|
+
/* get a row */
|
1196
|
+
row = *cp++ ;
|
1197
|
+
row_mark = Row [row].shared2.mark ;
|
1198
|
+
/* skip if dead */
|
1199
|
+
if (ROW_IS_MARKED_DEAD (row_mark))
|
1200
|
+
{
|
1201
|
+
continue ;
|
1202
|
+
}
|
1203
|
+
COLAMD_ASSERT (row != pivot_row) ;
|
1204
|
+
set_difference = row_mark - tag_mark ;
|
1205
|
+
/* check if the row has been seen yet */
|
1206
|
+
if (set_difference < 0)
|
1207
|
+
{
|
1208
|
+
COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ;
|
1209
|
+
set_difference = Row [row].shared1.degree ;
|
1210
|
+
}
|
1211
|
+
/* subtract column thickness from this row's set difference */
|
1212
|
+
set_difference -= col_thickness ;
|
1213
|
+
COLAMD_ASSERT (set_difference >= 0) ;
|
1214
|
+
/* absorb this row if the set difference becomes zero */
|
1215
|
+
if (set_difference == 0)
|
1216
|
+
{
|
1217
|
+
COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
|
1218
|
+
KILL_ROW (row) ;
|
1219
|
+
}
|
1220
|
+
else
|
1221
|
+
{
|
1222
|
+
/* save the new mark */
|
1223
|
+
Row [row].shared2.mark = set_difference + tag_mark ;
|
1224
|
+
}
|
1225
|
+
}
|
1226
|
+
}
|
1227
|
+
|
1228
|
+
|
1229
|
+
/* === Add up set differences for each column ======================= */
|
1230
|
+
|
1231
|
+
COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ;
|
1232
|
+
|
1233
|
+
/* for each column in pivot row */
|
1234
|
+
rp = &A [pivot_row_start] ;
|
1235
|
+
rp_end = rp + pivot_row_length ;
|
1236
|
+
while (rp < rp_end)
|
1237
|
+
{
|
1238
|
+
/* get a column */
|
1239
|
+
col = *rp++ ;
|
1240
|
+
COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
|
1241
|
+
hash = 0 ;
|
1242
|
+
cur_score = 0 ;
|
1243
|
+
cp = &A [Col [col].start] ;
|
1244
|
+
/* compact the column */
|
1245
|
+
new_cp = cp ;
|
1246
|
+
cp_end = cp + Col [col].length ;
|
1247
|
+
|
1248
|
+
COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
|
1249
|
+
|
1250
|
+
while (cp < cp_end)
|
1251
|
+
{
|
1252
|
+
/* get a row */
|
1253
|
+
row = *cp++ ;
|
1254
|
+
COLAMD_ASSERT(row >= 0 && row < n_row) ;
|
1255
|
+
row_mark = Row [row].shared2.mark ;
|
1256
|
+
/* skip if dead */
|
1257
|
+
if (ROW_IS_MARKED_DEAD (row_mark))
|
1258
|
+
{
|
1259
|
+
continue ;
|
1260
|
+
}
|
1261
|
+
COLAMD_ASSERT (row_mark > tag_mark) ;
|
1262
|
+
/* compact the column */
|
1263
|
+
*new_cp++ = row ;
|
1264
|
+
/* compute hash function */
|
1265
|
+
hash += row ;
|
1266
|
+
/* add set difference */
|
1267
|
+
cur_score += row_mark - tag_mark ;
|
1268
|
+
/* integer overflow... */
|
1269
|
+
cur_score = numext::mini(cur_score, n_col) ;
|
1270
|
+
}
|
1271
|
+
|
1272
|
+
/* recompute the column's length */
|
1273
|
+
Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ;
|
1274
|
+
|
1275
|
+
/* === Further mass elimination ================================= */
|
1276
|
+
|
1277
|
+
if (Col [col].length == 0)
|
1278
|
+
{
|
1279
|
+
COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
|
1280
|
+
/* nothing left but the pivot row in this column */
|
1281
|
+
KILL_PRINCIPAL_COL (col) ;
|
1282
|
+
pivot_row_degree -= Col [col].shared1.thickness ;
|
1283
|
+
COLAMD_ASSERT (pivot_row_degree >= 0) ;
|
1284
|
+
/* order it */
|
1285
|
+
Col [col].shared2.order = k ;
|
1286
|
+
/* increment order count by column thickness */
|
1287
|
+
k += Col [col].shared1.thickness ;
|
1288
|
+
}
|
1289
|
+
else
|
1290
|
+
{
|
1291
|
+
/* === Prepare for supercolumn detection ==================== */
|
1292
|
+
|
1293
|
+
COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
|
1294
|
+
|
1295
|
+
/* save score so far */
|
1296
|
+
Col [col].shared2.score = cur_score ;
|
1297
|
+
|
1298
|
+
/* add column to hash table, for supercolumn detection */
|
1299
|
+
hash %= n_col + 1 ;
|
1300
|
+
|
1301
|
+
COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
|
1302
|
+
COLAMD_ASSERT (hash <= n_col) ;
|
1303
|
+
|
1304
|
+
head_column = head [hash] ;
|
1305
|
+
if (head_column > COLAMD_EMPTY)
|
1306
|
+
{
|
1307
|
+
/* degree list "hash" is non-empty, use prev (shared3) of */
|
1308
|
+
/* first column in degree list as head of hash bucket */
|
1309
|
+
first_col = Col [head_column].shared3.headhash ;
|
1310
|
+
Col [head_column].shared3.headhash = col ;
|
1311
|
+
}
|
1312
|
+
else
|
1313
|
+
{
|
1314
|
+
/* degree list "hash" is empty, use head as hash bucket */
|
1315
|
+
first_col = - (head_column + 2) ;
|
1316
|
+
head [hash] = - (col + 2) ;
|
1317
|
+
}
|
1318
|
+
Col [col].shared4.hash_next = first_col ;
|
1319
|
+
|
1320
|
+
/* save hash function in Col [col].shared3.hash */
|
1321
|
+
Col [col].shared3.hash = (IndexType) hash ;
|
1322
|
+
COLAMD_ASSERT (COL_IS_ALIVE (col)) ;
|
1323
|
+
}
|
1324
|
+
}
|
1325
|
+
|
1326
|
+
/* The approximate external column degree is now computed. */
|
1327
|
+
|
1328
|
+
/* === Supercolumn detection ======================================== */
|
1329
|
+
|
1330
|
+
COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ;
|
1331
|
+
|
1332
|
+
Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ;
|
1333
|
+
|
1334
|
+
/* === Kill the pivotal column ====================================== */
|
1335
|
+
|
1336
|
+
KILL_PRINCIPAL_COL (pivot_col) ;
|
1337
|
+
|
1338
|
+
/* === Clear mark =================================================== */
|
1339
|
+
|
1340
|
+
tag_mark += (max_deg + 1) ;
|
1341
|
+
if (tag_mark >= max_mark)
|
1342
|
+
{
|
1343
|
+
COLAMD_DEBUG2 (("clearing tag_mark\n")) ;
|
1344
|
+
tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
|
1345
|
+
}
|
1346
|
+
|
1347
|
+
/* === Finalize the new pivot row, and column scores ================ */
|
1348
|
+
|
1349
|
+
COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ;
|
1350
|
+
|
1351
|
+
/* for each column in pivot row */
|
1352
|
+
rp = &A [pivot_row_start] ;
|
1353
|
+
/* compact the pivot row */
|
1354
|
+
new_rp = rp ;
|
1355
|
+
rp_end = rp + pivot_row_length ;
|
1356
|
+
while (rp < rp_end)
|
1357
|
+
{
|
1358
|
+
col = *rp++ ;
|
1359
|
+
/* skip dead columns */
|
1360
|
+
if (COL_IS_DEAD (col))
|
1361
|
+
{
|
1362
|
+
continue ;
|
1363
|
+
}
|
1364
|
+
*new_rp++ = col ;
|
1365
|
+
/* add new pivot row to column */
|
1366
|
+
A [Col [col].start + (Col [col].length++)] = pivot_row ;
|
1367
|
+
|
1368
|
+
/* retrieve score so far and add on pivot row's degree. */
|
1369
|
+
/* (we wait until here for this in case the pivot */
|
1370
|
+
/* row's degree was reduced due to mass elimination). */
|
1371
|
+
cur_score = Col [col].shared2.score + pivot_row_degree ;
|
1372
|
+
|
1373
|
+
/* calculate the max possible score as the number of */
|
1374
|
+
/* external columns minus the 'k' value minus the */
|
1375
|
+
/* columns thickness */
|
1376
|
+
max_score = n_col - k - Col [col].shared1.thickness ;
|
1377
|
+
|
1378
|
+
/* make the score the external degree of the union-of-rows */
|
1379
|
+
cur_score -= Col [col].shared1.thickness ;
|
1380
|
+
|
1381
|
+
/* make sure score is less or equal than the max score */
|
1382
|
+
cur_score = numext::mini(cur_score, max_score) ;
|
1383
|
+
COLAMD_ASSERT (cur_score >= 0) ;
|
1384
|
+
|
1385
|
+
/* store updated score */
|
1386
|
+
Col [col].shared2.score = cur_score ;
|
1387
|
+
|
1388
|
+
/* === Place column back in degree list ========================= */
|
1389
|
+
|
1390
|
+
COLAMD_ASSERT (min_score >= 0) ;
|
1391
|
+
COLAMD_ASSERT (min_score <= n_col) ;
|
1392
|
+
COLAMD_ASSERT (cur_score >= 0) ;
|
1393
|
+
COLAMD_ASSERT (cur_score <= n_col) ;
|
1394
|
+
COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ;
|
1395
|
+
next_col = head [cur_score] ;
|
1396
|
+
Col [col].shared4.degree_next = next_col ;
|
1397
|
+
Col [col].shared3.prev = COLAMD_EMPTY ;
|
1398
|
+
if (next_col != COLAMD_EMPTY)
|
1399
|
+
{
|
1400
|
+
Col [next_col].shared3.prev = col ;
|
1401
|
+
}
|
1402
|
+
head [cur_score] = col ;
|
1403
|
+
|
1404
|
+
/* see if this score is less than current min */
|
1405
|
+
min_score = numext::mini(min_score, cur_score) ;
|
1406
|
+
|
1407
|
+
}
|
1408
|
+
|
1409
|
+
/* === Resurrect the new pivot row ================================== */
|
1410
|
+
|
1411
|
+
if (pivot_row_degree > 0)
|
1412
|
+
{
|
1413
|
+
/* update pivot row length to reflect any cols that were killed */
|
1414
|
+
/* during super-col detection and mass elimination */
|
1415
|
+
Row [pivot_row].start = pivot_row_start ;
|
1416
|
+
Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ;
|
1417
|
+
Row [pivot_row].shared1.degree = pivot_row_degree ;
|
1418
|
+
Row [pivot_row].shared2.mark = 0 ;
|
1419
|
+
/* pivot row is no longer dead */
|
1420
|
+
}
|
1421
|
+
}
|
1422
|
+
|
1423
|
+
/* === All principal columns have now been ordered ====================== */
|
1424
|
+
|
1425
|
+
return (ngarbage) ;
|
1426
|
+
}
|
1427
|
+
|
1428
|
+
|
1429
|
+
/* ========================================================================== */
|
1430
|
+
/* === order_children ======================================================= */
|
1431
|
+
/* ========================================================================== */
|
1432
|
+
|
1433
|
+
/*
|
1434
|
+
The find_ordering routine has ordered all of the principal columns (the
|
1435
|
+
representatives of the supercolumns). The non-principal columns have not
|
1436
|
+
yet been ordered. This routine orders those columns by walking up the
|
1437
|
+
parent tree (a column is a child of the column which absorbed it). The
|
1438
|
+
final permutation vector is then placed in p [0 ... n_col-1], with p [0]
|
1439
|
+
being the first column, and p [n_col-1] being the last. It doesn't look
|
1440
|
+
like it at first glance, but be assured that this routine takes time linear
|
1441
|
+
in the number of columns. Although not immediately obvious, the time
|
1442
|
+
taken by this routine is O (n_col), that is, linear in the number of
|
1443
|
+
columns. Not user-callable.
|
1444
|
+
*/
|
1445
|
+
template <typename IndexType>
|
1446
|
+
static inline void order_children
|
1447
|
+
(
|
1448
|
+
/* === Parameters ======================================================= */
|
1449
|
+
|
1450
|
+
IndexType n_col, /* number of columns of A */
|
1451
|
+
colamd_col<IndexType> Col [], /* of size n_col+1 */
|
1452
|
+
IndexType p [] /* p [0 ... n_col-1] is the column permutation*/
|
1453
|
+
)
|
1454
|
+
{
|
1455
|
+
/* === Local variables ================================================== */
|
1456
|
+
|
1457
|
+
IndexType i ; /* loop counter for all columns */
|
1458
|
+
IndexType c ; /* column index */
|
1459
|
+
IndexType parent ; /* index of column's parent */
|
1460
|
+
IndexType order ; /* column's order */
|
1461
|
+
|
1462
|
+
/* === Order each non-principal column ================================== */
|
1463
|
+
|
1464
|
+
for (i = 0 ; i < n_col ; i++)
|
1465
|
+
{
|
1466
|
+
/* find an un-ordered non-principal column */
|
1467
|
+
COLAMD_ASSERT (COL_IS_DEAD (i)) ;
|
1468
|
+
if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY)
|
1469
|
+
{
|
1470
|
+
parent = i ;
|
1471
|
+
/* once found, find its principal parent */
|
1472
|
+
do
|
1473
|
+
{
|
1474
|
+
parent = Col [parent].shared1.parent ;
|
1475
|
+
} while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
|
1476
|
+
|
1477
|
+
/* now, order all un-ordered non-principal columns along path */
|
1478
|
+
/* to this parent. collapse tree at the same time */
|
1479
|
+
c = i ;
|
1480
|
+
/* get order of parent */
|
1481
|
+
order = Col [parent].shared2.order ;
|
1482
|
+
|
1483
|
+
do
|
1484
|
+
{
|
1485
|
+
COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ;
|
1486
|
+
|
1487
|
+
/* order this column */
|
1488
|
+
Col [c].shared2.order = order++ ;
|
1489
|
+
/* collaps tree */
|
1490
|
+
Col [c].shared1.parent = parent ;
|
1491
|
+
|
1492
|
+
/* get immediate parent of this column */
|
1493
|
+
c = Col [c].shared1.parent ;
|
1494
|
+
|
1495
|
+
/* continue until we hit an ordered column. There are */
|
1496
|
+
/* guarranteed not to be anymore unordered columns */
|
1497
|
+
/* above an ordered column */
|
1498
|
+
} while (Col [c].shared2.order == COLAMD_EMPTY) ;
|
1499
|
+
|
1500
|
+
/* re-order the super_col parent to largest order for this group */
|
1501
|
+
Col [parent].shared2.order = order ;
|
1502
|
+
}
|
1503
|
+
}
|
1504
|
+
|
1505
|
+
/* === Generate the permutation ========================================= */
|
1506
|
+
|
1507
|
+
for (c = 0 ; c < n_col ; c++)
|
1508
|
+
{
|
1509
|
+
p [Col [c].shared2.order] = c ;
|
1510
|
+
}
|
1511
|
+
}
|
1512
|
+
|
1513
|
+
|
1514
|
+
/* ========================================================================== */
|
1515
|
+
/* === detect_super_cols ==================================================== */
|
1516
|
+
/* ========================================================================== */
|
1517
|
+
|
1518
|
+
/*
|
1519
|
+
Detects supercolumns by finding matches between columns in the hash buckets.
|
1520
|
+
Check amongst columns in the set A [row_start ... row_start + row_length-1].
|
1521
|
+
The columns under consideration are currently *not* in the degree lists,
|
1522
|
+
and have already been placed in the hash buckets.
|
1523
|
+
|
1524
|
+
The hash bucket for columns whose hash function is equal to h is stored
|
1525
|
+
as follows:
|
1526
|
+
|
1527
|
+
if head [h] is >= 0, then head [h] contains a degree list, so:
|
1528
|
+
|
1529
|
+
head [h] is the first column in degree bucket h.
|
1530
|
+
Col [head [h]].headhash gives the first column in hash bucket h.
|
1531
|
+
|
1532
|
+
otherwise, the degree list is empty, and:
|
1533
|
+
|
1534
|
+
-(head [h] + 2) is the first column in hash bucket h.
|
1535
|
+
|
1536
|
+
For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
|
1537
|
+
column" pointer. Col [c].shared3.hash is used instead as the hash number
|
1538
|
+
for that column. The value of Col [c].shared4.hash_next is the next column
|
1539
|
+
in the same hash bucket.
|
1540
|
+
|
1541
|
+
Assuming no, or "few" hash collisions, the time taken by this routine is
|
1542
|
+
linear in the sum of the sizes (lengths) of each column whose score has
|
1543
|
+
just been computed in the approximate degree computation.
|
1544
|
+
Not user-callable.
|
1545
|
+
*/
|
1546
|
+
template <typename IndexType>
|
1547
|
+
static void detect_super_cols
|
1548
|
+
(
|
1549
|
+
/* === Parameters ======================================================= */
|
1550
|
+
|
1551
|
+
colamd_col<IndexType> Col [], /* of size n_col+1 */
|
1552
|
+
IndexType A [], /* row indices of A */
|
1553
|
+
IndexType head [], /* head of degree lists and hash buckets */
|
1554
|
+
IndexType row_start, /* pointer to set of columns to check */
|
1555
|
+
IndexType row_length /* number of columns to check */
|
1556
|
+
)
|
1557
|
+
{
|
1558
|
+
/* === Local variables ================================================== */
|
1559
|
+
|
1560
|
+
IndexType hash ; /* hash value for a column */
|
1561
|
+
IndexType *rp ; /* pointer to a row */
|
1562
|
+
IndexType c ; /* a column index */
|
1563
|
+
IndexType super_c ; /* column index of the column to absorb into */
|
1564
|
+
IndexType *cp1 ; /* column pointer for column super_c */
|
1565
|
+
IndexType *cp2 ; /* column pointer for column c */
|
1566
|
+
IndexType length ; /* length of column super_c */
|
1567
|
+
IndexType prev_c ; /* column preceding c in hash bucket */
|
1568
|
+
IndexType i ; /* loop counter */
|
1569
|
+
IndexType *rp_end ; /* pointer to the end of the row */
|
1570
|
+
IndexType col ; /* a column index in the row to check */
|
1571
|
+
IndexType head_column ; /* first column in hash bucket or degree list */
|
1572
|
+
IndexType first_col ; /* first column in hash bucket */
|
1573
|
+
|
1574
|
+
/* === Consider each column in the row ================================== */
|
1575
|
+
|
1576
|
+
rp = &A [row_start] ;
|
1577
|
+
rp_end = rp + row_length ;
|
1578
|
+
while (rp < rp_end)
|
1579
|
+
{
|
1580
|
+
col = *rp++ ;
|
1581
|
+
if (COL_IS_DEAD (col))
|
1582
|
+
{
|
1583
|
+
continue ;
|
1584
|
+
}
|
1585
|
+
|
1586
|
+
/* get hash number for this column */
|
1587
|
+
hash = Col [col].shared3.hash ;
|
1588
|
+
COLAMD_ASSERT (hash <= n_col) ;
|
1589
|
+
|
1590
|
+
/* === Get the first column in this hash bucket ===================== */
|
1591
|
+
|
1592
|
+
head_column = head [hash] ;
|
1593
|
+
if (head_column > COLAMD_EMPTY)
|
1594
|
+
{
|
1595
|
+
first_col = Col [head_column].shared3.headhash ;
|
1596
|
+
}
|
1597
|
+
else
|
1598
|
+
{
|
1599
|
+
first_col = - (head_column + 2) ;
|
1600
|
+
}
|
1601
|
+
|
1602
|
+
/* === Consider each column in the hash bucket ====================== */
|
1603
|
+
|
1604
|
+
for (super_c = first_col ; super_c != COLAMD_EMPTY ;
|
1605
|
+
super_c = Col [super_c].shared4.hash_next)
|
1606
|
+
{
|
1607
|
+
COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ;
|
1608
|
+
COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ;
|
1609
|
+
length = Col [super_c].length ;
|
1610
|
+
|
1611
|
+
/* prev_c is the column preceding column c in the hash bucket */
|
1612
|
+
prev_c = super_c ;
|
1613
|
+
|
1614
|
+
/* === Compare super_c with all columns after it ================ */
|
1615
|
+
|
1616
|
+
for (c = Col [super_c].shared4.hash_next ;
|
1617
|
+
c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next)
|
1618
|
+
{
|
1619
|
+
COLAMD_ASSERT (c != super_c) ;
|
1620
|
+
COLAMD_ASSERT (COL_IS_ALIVE (c)) ;
|
1621
|
+
COLAMD_ASSERT (Col [c].shared3.hash == hash) ;
|
1622
|
+
|
1623
|
+
/* not identical if lengths or scores are different */
|
1624
|
+
if (Col [c].length != length ||
|
1625
|
+
Col [c].shared2.score != Col [super_c].shared2.score)
|
1626
|
+
{
|
1627
|
+
prev_c = c ;
|
1628
|
+
continue ;
|
1629
|
+
}
|
1630
|
+
|
1631
|
+
/* compare the two columns */
|
1632
|
+
cp1 = &A [Col [super_c].start] ;
|
1633
|
+
cp2 = &A [Col [c].start] ;
|
1634
|
+
|
1635
|
+
for (i = 0 ; i < length ; i++)
|
1636
|
+
{
|
1637
|
+
/* the columns are "clean" (no dead rows) */
|
1638
|
+
COLAMD_ASSERT (ROW_IS_ALIVE (*cp1)) ;
|
1639
|
+
COLAMD_ASSERT (ROW_IS_ALIVE (*cp2)) ;
|
1640
|
+
/* row indices will same order for both supercols, */
|
1641
|
+
/* no gather scatter nessasary */
|
1642
|
+
if (*cp1++ != *cp2++)
|
1643
|
+
{
|
1644
|
+
break ;
|
1645
|
+
}
|
1646
|
+
}
|
1647
|
+
|
1648
|
+
/* the two columns are different if the for-loop "broke" */
|
1649
|
+
if (i != length)
|
1650
|
+
{
|
1651
|
+
prev_c = c ;
|
1652
|
+
continue ;
|
1653
|
+
}
|
1654
|
+
|
1655
|
+
/* === Got it! two columns are identical =================== */
|
1656
|
+
|
1657
|
+
COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
|
1658
|
+
|
1659
|
+
Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
|
1660
|
+
Col [c].shared1.parent = super_c ;
|
1661
|
+
KILL_NON_PRINCIPAL_COL (c) ;
|
1662
|
+
/* order c later, in order_children() */
|
1663
|
+
Col [c].shared2.order = COLAMD_EMPTY ;
|
1664
|
+
/* remove c from hash bucket */
|
1665
|
+
Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
|
1666
|
+
}
|
1667
|
+
}
|
1668
|
+
|
1669
|
+
/* === Empty this hash bucket ======================================= */
|
1670
|
+
|
1671
|
+
if (head_column > COLAMD_EMPTY)
|
1672
|
+
{
|
1673
|
+
/* corresponding degree list "hash" is not empty */
|
1674
|
+
Col [head_column].shared3.headhash = COLAMD_EMPTY ;
|
1675
|
+
}
|
1676
|
+
else
|
1677
|
+
{
|
1678
|
+
/* corresponding degree list "hash" is empty */
|
1679
|
+
head [hash] = COLAMD_EMPTY ;
|
1680
|
+
}
|
1681
|
+
}
|
1682
|
+
}
|
1683
|
+
|
1684
|
+
|
1685
|
+
/* ========================================================================== */
|
1686
|
+
/* === garbage_collection =================================================== */
|
1687
|
+
/* ========================================================================== */
|
1688
|
+
|
1689
|
+
/*
|
1690
|
+
Defragments and compacts columns and rows in the workspace A. Used when
|
1691
|
+
all avaliable memory has been used while performing row merging. Returns
|
1692
|
+
the index of the first free position in A, after garbage collection. The
|
1693
|
+
time taken by this routine is linear is the size of the array A, which is
|
1694
|
+
itself linear in the number of nonzeros in the input matrix.
|
1695
|
+
Not user-callable.
|
1696
|
+
*/
|
1697
|
+
template <typename IndexType>
|
1698
|
+
static IndexType garbage_collection /* returns the new value of pfree */
|
1699
|
+
(
|
1700
|
+
/* === Parameters ======================================================= */
|
1701
|
+
|
1702
|
+
IndexType n_row, /* number of rows */
|
1703
|
+
IndexType n_col, /* number of columns */
|
1704
|
+
Colamd_Row<IndexType> Row [], /* row info */
|
1705
|
+
colamd_col<IndexType> Col [], /* column info */
|
1706
|
+
IndexType A [], /* A [0 ... Alen-1] holds the matrix */
|
1707
|
+
IndexType *pfree /* &A [0] ... pfree is in use */
|
1708
|
+
)
|
1709
|
+
{
|
1710
|
+
/* === Local variables ================================================== */
|
1711
|
+
|
1712
|
+
IndexType *psrc ; /* source pointer */
|
1713
|
+
IndexType *pdest ; /* destination pointer */
|
1714
|
+
IndexType j ; /* counter */
|
1715
|
+
IndexType r ; /* a row index */
|
1716
|
+
IndexType c ; /* a column index */
|
1717
|
+
IndexType length ; /* length of a row or column */
|
1718
|
+
|
1719
|
+
/* === Defragment the columns =========================================== */
|
1720
|
+
|
1721
|
+
pdest = &A[0] ;
|
1722
|
+
for (c = 0 ; c < n_col ; c++)
|
1723
|
+
{
|
1724
|
+
if (COL_IS_ALIVE (c))
|
1725
|
+
{
|
1726
|
+
psrc = &A [Col [c].start] ;
|
1727
|
+
|
1728
|
+
/* move and compact the column */
|
1729
|
+
COLAMD_ASSERT (pdest <= psrc) ;
|
1730
|
+
Col [c].start = (IndexType) (pdest - &A [0]) ;
|
1731
|
+
length = Col [c].length ;
|
1732
|
+
for (j = 0 ; j < length ; j++)
|
1733
|
+
{
|
1734
|
+
r = *psrc++ ;
|
1735
|
+
if (ROW_IS_ALIVE (r))
|
1736
|
+
{
|
1737
|
+
*pdest++ = r ;
|
1738
|
+
}
|
1739
|
+
}
|
1740
|
+
Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ;
|
1741
|
+
}
|
1742
|
+
}
|
1743
|
+
|
1744
|
+
/* === Prepare to defragment the rows =================================== */
|
1745
|
+
|
1746
|
+
for (r = 0 ; r < n_row ; r++)
|
1747
|
+
{
|
1748
|
+
if (ROW_IS_ALIVE (r))
|
1749
|
+
{
|
1750
|
+
if (Row [r].length == 0)
|
1751
|
+
{
|
1752
|
+
/* this row is of zero length. cannot compact it, so kill it */
|
1753
|
+
COLAMD_DEBUG3 (("Defrag row kill\n")) ;
|
1754
|
+
KILL_ROW (r) ;
|
1755
|
+
}
|
1756
|
+
else
|
1757
|
+
{
|
1758
|
+
/* save first column index in Row [r].shared2.first_column */
|
1759
|
+
psrc = &A [Row [r].start] ;
|
1760
|
+
Row [r].shared2.first_column = *psrc ;
|
1761
|
+
COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
|
1762
|
+
/* flag the start of the row with the one's complement of row */
|
1763
|
+
*psrc = ONES_COMPLEMENT (r) ;
|
1764
|
+
|
1765
|
+
}
|
1766
|
+
}
|
1767
|
+
}
|
1768
|
+
|
1769
|
+
/* === Defragment the rows ============================================== */
|
1770
|
+
|
1771
|
+
psrc = pdest ;
|
1772
|
+
while (psrc < pfree)
|
1773
|
+
{
|
1774
|
+
/* find a negative number ... the start of a row */
|
1775
|
+
if (*psrc++ < 0)
|
1776
|
+
{
|
1777
|
+
psrc-- ;
|
1778
|
+
/* get the row index */
|
1779
|
+
r = ONES_COMPLEMENT (*psrc) ;
|
1780
|
+
COLAMD_ASSERT (r >= 0 && r < n_row) ;
|
1781
|
+
/* restore first column index */
|
1782
|
+
*psrc = Row [r].shared2.first_column ;
|
1783
|
+
COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
|
1784
|
+
|
1785
|
+
/* move and compact the row */
|
1786
|
+
COLAMD_ASSERT (pdest <= psrc) ;
|
1787
|
+
Row [r].start = (IndexType) (pdest - &A [0]) ;
|
1788
|
+
length = Row [r].length ;
|
1789
|
+
for (j = 0 ; j < length ; j++)
|
1790
|
+
{
|
1791
|
+
c = *psrc++ ;
|
1792
|
+
if (COL_IS_ALIVE (c))
|
1793
|
+
{
|
1794
|
+
*pdest++ = c ;
|
1795
|
+
}
|
1796
|
+
}
|
1797
|
+
Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ;
|
1798
|
+
|
1799
|
+
}
|
1800
|
+
}
|
1801
|
+
/* ensure we found all the rows */
|
1802
|
+
COLAMD_ASSERT (debug_rows == 0) ;
|
1803
|
+
|
1804
|
+
/* === Return the new value of pfree ==================================== */
|
1805
|
+
|
1806
|
+
return ((IndexType) (pdest - &A [0])) ;
|
1807
|
+
}
|
1808
|
+
|
1809
|
+
|
1810
|
+
/* ========================================================================== */
|
1811
|
+
/* === clear_mark =========================================================== */
|
1812
|
+
/* ========================================================================== */
|
1813
|
+
|
1814
|
+
/*
|
1815
|
+
Clears the Row [].shared2.mark array, and returns the new tag_mark.
|
1816
|
+
Return value is the new tag_mark. Not user-callable.
|
1817
|
+
*/
|
1818
|
+
template <typename IndexType>
|
1819
|
+
static inline IndexType clear_mark /* return the new value for tag_mark */
|
1820
|
+
(
|
1821
|
+
/* === Parameters ======================================================= */
|
1822
|
+
|
1823
|
+
IndexType n_row, /* number of rows in A */
|
1824
|
+
Colamd_Row<IndexType> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
|
1825
|
+
)
|
1826
|
+
{
|
1827
|
+
/* === Local variables ================================================== */
|
1828
|
+
|
1829
|
+
IndexType r ;
|
1830
|
+
|
1831
|
+
for (r = 0 ; r < n_row ; r++)
|
1832
|
+
{
|
1833
|
+
if (ROW_IS_ALIVE (r))
|
1834
|
+
{
|
1835
|
+
Row [r].shared2.mark = 0 ;
|
1836
|
+
}
|
1837
|
+
}
|
1838
|
+
return (1) ;
|
1839
|
+
}
|
1840
|
+
|
1841
|
+
|
1842
|
+
} // namespace internal
|
1843
|
+
#endif
|