tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,415 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
5
|
+
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_INVERSE_IMPL_H
|
12
|
+
#define EIGEN_INVERSE_IMPL_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
|
18
|
+
/**********************************
|
19
|
+
*** General case implementation ***
|
20
|
+
**********************************/
|
21
|
+
|
22
|
+
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
|
23
|
+
struct compute_inverse
|
24
|
+
{
|
25
|
+
EIGEN_DEVICE_FUNC
|
26
|
+
static inline void run(const MatrixType& matrix, ResultType& result)
|
27
|
+
{
|
28
|
+
result = matrix.partialPivLu().inverse();
|
29
|
+
}
|
30
|
+
};
|
31
|
+
|
32
|
+
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
|
33
|
+
struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
|
34
|
+
|
35
|
+
/****************************
|
36
|
+
*** Size 1 implementation ***
|
37
|
+
****************************/
|
38
|
+
|
39
|
+
template<typename MatrixType, typename ResultType>
|
40
|
+
struct compute_inverse<MatrixType, ResultType, 1>
|
41
|
+
{
|
42
|
+
EIGEN_DEVICE_FUNC
|
43
|
+
static inline void run(const MatrixType& matrix, ResultType& result)
|
44
|
+
{
|
45
|
+
typedef typename MatrixType::Scalar Scalar;
|
46
|
+
internal::evaluator<MatrixType> matrixEval(matrix);
|
47
|
+
result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
|
48
|
+
}
|
49
|
+
};
|
50
|
+
|
51
|
+
template<typename MatrixType, typename ResultType>
|
52
|
+
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
|
53
|
+
{
|
54
|
+
EIGEN_DEVICE_FUNC
|
55
|
+
static inline void run(
|
56
|
+
const MatrixType& matrix,
|
57
|
+
const typename MatrixType::RealScalar& absDeterminantThreshold,
|
58
|
+
ResultType& result,
|
59
|
+
typename ResultType::Scalar& determinant,
|
60
|
+
bool& invertible
|
61
|
+
)
|
62
|
+
{
|
63
|
+
using std::abs;
|
64
|
+
determinant = matrix.coeff(0,0);
|
65
|
+
invertible = abs(determinant) > absDeterminantThreshold;
|
66
|
+
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
|
67
|
+
}
|
68
|
+
};
|
69
|
+
|
70
|
+
/****************************
|
71
|
+
*** Size 2 implementation ***
|
72
|
+
****************************/
|
73
|
+
|
74
|
+
template<typename MatrixType, typename ResultType>
|
75
|
+
EIGEN_DEVICE_FUNC
|
76
|
+
inline void compute_inverse_size2_helper(
|
77
|
+
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
|
78
|
+
ResultType& result)
|
79
|
+
{
|
80
|
+
result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
|
81
|
+
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
|
82
|
+
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
|
83
|
+
result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
|
84
|
+
}
|
85
|
+
|
86
|
+
template<typename MatrixType, typename ResultType>
|
87
|
+
struct compute_inverse<MatrixType, ResultType, 2>
|
88
|
+
{
|
89
|
+
EIGEN_DEVICE_FUNC
|
90
|
+
static inline void run(const MatrixType& matrix, ResultType& result)
|
91
|
+
{
|
92
|
+
typedef typename ResultType::Scalar Scalar;
|
93
|
+
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
|
94
|
+
compute_inverse_size2_helper(matrix, invdet, result);
|
95
|
+
}
|
96
|
+
};
|
97
|
+
|
98
|
+
template<typename MatrixType, typename ResultType>
|
99
|
+
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
|
100
|
+
{
|
101
|
+
EIGEN_DEVICE_FUNC
|
102
|
+
static inline void run(
|
103
|
+
const MatrixType& matrix,
|
104
|
+
const typename MatrixType::RealScalar& absDeterminantThreshold,
|
105
|
+
ResultType& inverse,
|
106
|
+
typename ResultType::Scalar& determinant,
|
107
|
+
bool& invertible
|
108
|
+
)
|
109
|
+
{
|
110
|
+
using std::abs;
|
111
|
+
typedef typename ResultType::Scalar Scalar;
|
112
|
+
determinant = matrix.determinant();
|
113
|
+
invertible = abs(determinant) > absDeterminantThreshold;
|
114
|
+
if(!invertible) return;
|
115
|
+
const Scalar invdet = Scalar(1) / determinant;
|
116
|
+
compute_inverse_size2_helper(matrix, invdet, inverse);
|
117
|
+
}
|
118
|
+
};
|
119
|
+
|
120
|
+
/****************************
|
121
|
+
*** Size 3 implementation ***
|
122
|
+
****************************/
|
123
|
+
|
124
|
+
template<typename MatrixType, int i, int j>
|
125
|
+
EIGEN_DEVICE_FUNC
|
126
|
+
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
|
127
|
+
{
|
128
|
+
enum {
|
129
|
+
i1 = (i+1) % 3,
|
130
|
+
i2 = (i+2) % 3,
|
131
|
+
j1 = (j+1) % 3,
|
132
|
+
j2 = (j+2) % 3
|
133
|
+
};
|
134
|
+
return m.coeff(i1, j1) * m.coeff(i2, j2)
|
135
|
+
- m.coeff(i1, j2) * m.coeff(i2, j1);
|
136
|
+
}
|
137
|
+
|
138
|
+
template<typename MatrixType, typename ResultType>
|
139
|
+
EIGEN_DEVICE_FUNC
|
140
|
+
inline void compute_inverse_size3_helper(
|
141
|
+
const MatrixType& matrix,
|
142
|
+
const typename ResultType::Scalar& invdet,
|
143
|
+
const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
|
144
|
+
ResultType& result)
|
145
|
+
{
|
146
|
+
result.row(0) = cofactors_col0 * invdet;
|
147
|
+
result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
|
148
|
+
result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
|
149
|
+
result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
|
150
|
+
result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
|
151
|
+
result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
|
152
|
+
result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
|
153
|
+
}
|
154
|
+
|
155
|
+
template<typename MatrixType, typename ResultType>
|
156
|
+
struct compute_inverse<MatrixType, ResultType, 3>
|
157
|
+
{
|
158
|
+
EIGEN_DEVICE_FUNC
|
159
|
+
static inline void run(const MatrixType& matrix, ResultType& result)
|
160
|
+
{
|
161
|
+
typedef typename ResultType::Scalar Scalar;
|
162
|
+
Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
|
163
|
+
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
|
164
|
+
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
|
165
|
+
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
|
166
|
+
const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
|
167
|
+
const Scalar invdet = Scalar(1) / det;
|
168
|
+
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
|
169
|
+
}
|
170
|
+
};
|
171
|
+
|
172
|
+
template<typename MatrixType, typename ResultType>
|
173
|
+
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
|
174
|
+
{
|
175
|
+
EIGEN_DEVICE_FUNC
|
176
|
+
static inline void run(
|
177
|
+
const MatrixType& matrix,
|
178
|
+
const typename MatrixType::RealScalar& absDeterminantThreshold,
|
179
|
+
ResultType& inverse,
|
180
|
+
typename ResultType::Scalar& determinant,
|
181
|
+
bool& invertible
|
182
|
+
)
|
183
|
+
{
|
184
|
+
using std::abs;
|
185
|
+
typedef typename ResultType::Scalar Scalar;
|
186
|
+
Matrix<Scalar,3,1> cofactors_col0;
|
187
|
+
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
|
188
|
+
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
|
189
|
+
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
|
190
|
+
determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
|
191
|
+
invertible = abs(determinant) > absDeterminantThreshold;
|
192
|
+
if(!invertible) return;
|
193
|
+
const Scalar invdet = Scalar(1) / determinant;
|
194
|
+
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
|
195
|
+
}
|
196
|
+
};
|
197
|
+
|
198
|
+
/****************************
|
199
|
+
*** Size 4 implementation ***
|
200
|
+
****************************/
|
201
|
+
|
202
|
+
template<typename Derived>
|
203
|
+
EIGEN_DEVICE_FUNC
|
204
|
+
inline const typename Derived::Scalar general_det3_helper
|
205
|
+
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
|
206
|
+
{
|
207
|
+
return matrix.coeff(i1,j1)
|
208
|
+
* (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
|
209
|
+
}
|
210
|
+
|
211
|
+
template<typename MatrixType, int i, int j>
|
212
|
+
EIGEN_DEVICE_FUNC
|
213
|
+
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
|
214
|
+
{
|
215
|
+
enum {
|
216
|
+
i1 = (i+1) % 4,
|
217
|
+
i2 = (i+2) % 4,
|
218
|
+
i3 = (i+3) % 4,
|
219
|
+
j1 = (j+1) % 4,
|
220
|
+
j2 = (j+2) % 4,
|
221
|
+
j3 = (j+3) % 4
|
222
|
+
};
|
223
|
+
return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
|
224
|
+
+ general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
|
225
|
+
+ general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
|
226
|
+
}
|
227
|
+
|
228
|
+
template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
|
229
|
+
struct compute_inverse_size4
|
230
|
+
{
|
231
|
+
EIGEN_DEVICE_FUNC
|
232
|
+
static void run(const MatrixType& matrix, ResultType& result)
|
233
|
+
{
|
234
|
+
result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
|
235
|
+
result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
|
236
|
+
result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
|
237
|
+
result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
|
238
|
+
result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
|
239
|
+
result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
|
240
|
+
result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
|
241
|
+
result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
|
242
|
+
result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
|
243
|
+
result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
|
244
|
+
result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
|
245
|
+
result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
|
246
|
+
result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
|
247
|
+
result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
|
248
|
+
result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
|
249
|
+
result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
|
250
|
+
result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
|
251
|
+
}
|
252
|
+
};
|
253
|
+
|
254
|
+
template<typename MatrixType, typename ResultType>
|
255
|
+
struct compute_inverse<MatrixType, ResultType, 4>
|
256
|
+
: compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
|
257
|
+
MatrixType, ResultType>
|
258
|
+
{
|
259
|
+
};
|
260
|
+
|
261
|
+
template<typename MatrixType, typename ResultType>
|
262
|
+
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
|
263
|
+
{
|
264
|
+
EIGEN_DEVICE_FUNC
|
265
|
+
static inline void run(
|
266
|
+
const MatrixType& matrix,
|
267
|
+
const typename MatrixType::RealScalar& absDeterminantThreshold,
|
268
|
+
ResultType& inverse,
|
269
|
+
typename ResultType::Scalar& determinant,
|
270
|
+
bool& invertible
|
271
|
+
)
|
272
|
+
{
|
273
|
+
using std::abs;
|
274
|
+
determinant = matrix.determinant();
|
275
|
+
invertible = abs(determinant) > absDeterminantThreshold;
|
276
|
+
if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
|
277
|
+
}
|
278
|
+
};
|
279
|
+
|
280
|
+
/*************************
|
281
|
+
*** MatrixBase methods ***
|
282
|
+
*************************/
|
283
|
+
|
284
|
+
} // end namespace internal
|
285
|
+
|
286
|
+
namespace internal {
|
287
|
+
|
288
|
+
// Specialization for "dense = dense_xpr.inverse()"
|
289
|
+
template<typename DstXprType, typename XprType>
|
290
|
+
struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
|
291
|
+
{
|
292
|
+
typedef Inverse<XprType> SrcXprType;
|
293
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
|
294
|
+
{
|
295
|
+
Index dstRows = src.rows();
|
296
|
+
Index dstCols = src.cols();
|
297
|
+
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
298
|
+
dst.resize(dstRows, dstCols);
|
299
|
+
|
300
|
+
const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
|
301
|
+
EIGEN_ONLY_USED_FOR_DEBUG(Size);
|
302
|
+
eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
|
303
|
+
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
|
304
|
+
|
305
|
+
typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
|
306
|
+
typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
|
307
|
+
|
308
|
+
ActualXprType actual_xpr(src.nestedExpression());
|
309
|
+
|
310
|
+
compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
|
311
|
+
}
|
312
|
+
};
|
313
|
+
|
314
|
+
|
315
|
+
} // end namespace internal
|
316
|
+
|
317
|
+
/** \lu_module
|
318
|
+
*
|
319
|
+
* \returns the matrix inverse of this matrix.
|
320
|
+
*
|
321
|
+
* For small fixed sizes up to 4x4, this method uses cofactors.
|
322
|
+
* In the general case, this method uses class PartialPivLU.
|
323
|
+
*
|
324
|
+
* \note This matrix must be invertible, otherwise the result is undefined. If you need an
|
325
|
+
* invertibility check, do the following:
|
326
|
+
* \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
|
327
|
+
* \li for the general case, use class FullPivLU.
|
328
|
+
*
|
329
|
+
* Example: \include MatrixBase_inverse.cpp
|
330
|
+
* Output: \verbinclude MatrixBase_inverse.out
|
331
|
+
*
|
332
|
+
* \sa computeInverseAndDetWithCheck()
|
333
|
+
*/
|
334
|
+
template<typename Derived>
|
335
|
+
inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
|
336
|
+
{
|
337
|
+
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
|
338
|
+
eigen_assert(rows() == cols());
|
339
|
+
return Inverse<Derived>(derived());
|
340
|
+
}
|
341
|
+
|
342
|
+
/** \lu_module
|
343
|
+
*
|
344
|
+
* Computation of matrix inverse and determinant, with invertibility check.
|
345
|
+
*
|
346
|
+
* This is only for fixed-size square matrices of size up to 4x4.
|
347
|
+
*
|
348
|
+
* \param inverse Reference to the matrix in which to store the inverse.
|
349
|
+
* \param determinant Reference to the variable in which to store the determinant.
|
350
|
+
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
|
351
|
+
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
|
352
|
+
* The matrix will be declared invertible if the absolute value of its
|
353
|
+
* determinant is greater than this threshold.
|
354
|
+
*
|
355
|
+
* Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
|
356
|
+
* Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
|
357
|
+
*
|
358
|
+
* \sa inverse(), computeInverseWithCheck()
|
359
|
+
*/
|
360
|
+
template<typename Derived>
|
361
|
+
template<typename ResultType>
|
362
|
+
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
|
363
|
+
ResultType& inverse,
|
364
|
+
typename ResultType::Scalar& determinant,
|
365
|
+
bool& invertible,
|
366
|
+
const RealScalar& absDeterminantThreshold
|
367
|
+
) const
|
368
|
+
{
|
369
|
+
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
|
370
|
+
eigen_assert(rows() == cols());
|
371
|
+
// for 2x2, it's worth giving a chance to avoid evaluating.
|
372
|
+
// for larger sizes, evaluating has negligible cost and limits code size.
|
373
|
+
typedef typename internal::conditional<
|
374
|
+
RowsAtCompileTime == 2,
|
375
|
+
typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
|
376
|
+
PlainObject
|
377
|
+
>::type MatrixType;
|
378
|
+
internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
|
379
|
+
(derived(), absDeterminantThreshold, inverse, determinant, invertible);
|
380
|
+
}
|
381
|
+
|
382
|
+
/** \lu_module
|
383
|
+
*
|
384
|
+
* Computation of matrix inverse, with invertibility check.
|
385
|
+
*
|
386
|
+
* This is only for fixed-size square matrices of size up to 4x4.
|
387
|
+
*
|
388
|
+
* \param inverse Reference to the matrix in which to store the inverse.
|
389
|
+
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
|
390
|
+
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
|
391
|
+
* The matrix will be declared invertible if the absolute value of its
|
392
|
+
* determinant is greater than this threshold.
|
393
|
+
*
|
394
|
+
* Example: \include MatrixBase_computeInverseWithCheck.cpp
|
395
|
+
* Output: \verbinclude MatrixBase_computeInverseWithCheck.out
|
396
|
+
*
|
397
|
+
* \sa inverse(), computeInverseAndDetWithCheck()
|
398
|
+
*/
|
399
|
+
template<typename Derived>
|
400
|
+
template<typename ResultType>
|
401
|
+
inline void MatrixBase<Derived>::computeInverseWithCheck(
|
402
|
+
ResultType& inverse,
|
403
|
+
bool& invertible,
|
404
|
+
const RealScalar& absDeterminantThreshold
|
405
|
+
) const
|
406
|
+
{
|
407
|
+
Scalar determinant;
|
408
|
+
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
|
409
|
+
eigen_assert(rows() == cols());
|
410
|
+
computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
|
411
|
+
}
|
412
|
+
|
413
|
+
} // end namespace Eigen
|
414
|
+
|
415
|
+
#endif // EIGEN_INVERSE_IMPL_H
|
@@ -0,0 +1,611 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
5
|
+
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_PARTIALLU_H
|
12
|
+
#define EIGEN_PARTIALLU_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
|
18
|
+
: traits<_MatrixType>
|
19
|
+
{
|
20
|
+
typedef MatrixXpr XprKind;
|
21
|
+
typedef SolverStorage StorageKind;
|
22
|
+
typedef traits<_MatrixType> BaseTraits;
|
23
|
+
enum {
|
24
|
+
Flags = BaseTraits::Flags & RowMajorBit,
|
25
|
+
CoeffReadCost = Dynamic
|
26
|
+
};
|
27
|
+
};
|
28
|
+
|
29
|
+
template<typename T,typename Derived>
|
30
|
+
struct enable_if_ref;
|
31
|
+
// {
|
32
|
+
// typedef Derived type;
|
33
|
+
// };
|
34
|
+
|
35
|
+
template<typename T,typename Derived>
|
36
|
+
struct enable_if_ref<Ref<T>,Derived> {
|
37
|
+
typedef Derived type;
|
38
|
+
};
|
39
|
+
|
40
|
+
} // end namespace internal
|
41
|
+
|
42
|
+
/** \ingroup LU_Module
|
43
|
+
*
|
44
|
+
* \class PartialPivLU
|
45
|
+
*
|
46
|
+
* \brief LU decomposition of a matrix with partial pivoting, and related features
|
47
|
+
*
|
48
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
|
49
|
+
*
|
50
|
+
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
|
51
|
+
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
|
52
|
+
* is a permutation matrix.
|
53
|
+
*
|
54
|
+
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
|
55
|
+
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
|
56
|
+
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
|
57
|
+
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
|
58
|
+
*
|
59
|
+
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
|
60
|
+
* by class FullPivLU.
|
61
|
+
*
|
62
|
+
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
|
63
|
+
* such as rank computation. If you need these features, use class FullPivLU.
|
64
|
+
*
|
65
|
+
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
|
66
|
+
* in the general case.
|
67
|
+
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
|
68
|
+
*
|
69
|
+
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
|
70
|
+
*
|
71
|
+
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
72
|
+
*
|
73
|
+
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
|
74
|
+
*/
|
75
|
+
template<typename _MatrixType> class PartialPivLU
|
76
|
+
: public SolverBase<PartialPivLU<_MatrixType> >
|
77
|
+
{
|
78
|
+
public:
|
79
|
+
|
80
|
+
typedef _MatrixType MatrixType;
|
81
|
+
typedef SolverBase<PartialPivLU> Base;
|
82
|
+
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
|
83
|
+
// FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
|
84
|
+
enum {
|
85
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
86
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
87
|
+
};
|
88
|
+
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
|
89
|
+
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
|
90
|
+
typedef typename MatrixType::PlainObject PlainObject;
|
91
|
+
|
92
|
+
/**
|
93
|
+
* \brief Default Constructor.
|
94
|
+
*
|
95
|
+
* The default constructor is useful in cases in which the user intends to
|
96
|
+
* perform decompositions via PartialPivLU::compute(const MatrixType&).
|
97
|
+
*/
|
98
|
+
PartialPivLU();
|
99
|
+
|
100
|
+
/** \brief Default Constructor with memory preallocation
|
101
|
+
*
|
102
|
+
* Like the default constructor but with preallocation of the internal data
|
103
|
+
* according to the specified problem \a size.
|
104
|
+
* \sa PartialPivLU()
|
105
|
+
*/
|
106
|
+
explicit PartialPivLU(Index size);
|
107
|
+
|
108
|
+
/** Constructor.
|
109
|
+
*
|
110
|
+
* \param matrix the matrix of which to compute the LU decomposition.
|
111
|
+
*
|
112
|
+
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
|
113
|
+
* If you need to deal with non-full rank, use class FullPivLU instead.
|
114
|
+
*/
|
115
|
+
template<typename InputType>
|
116
|
+
explicit PartialPivLU(const EigenBase<InputType>& matrix);
|
117
|
+
|
118
|
+
/** Constructor for \link InplaceDecomposition inplace decomposition \endlink
|
119
|
+
*
|
120
|
+
* \param matrix the matrix of which to compute the LU decomposition.
|
121
|
+
*
|
122
|
+
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
|
123
|
+
* If you need to deal with non-full rank, use class FullPivLU instead.
|
124
|
+
*/
|
125
|
+
template<typename InputType>
|
126
|
+
explicit PartialPivLU(EigenBase<InputType>& matrix);
|
127
|
+
|
128
|
+
template<typename InputType>
|
129
|
+
PartialPivLU& compute(const EigenBase<InputType>& matrix) {
|
130
|
+
m_lu = matrix.derived();
|
131
|
+
compute();
|
132
|
+
return *this;
|
133
|
+
}
|
134
|
+
|
135
|
+
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
|
136
|
+
* unit-lower-triangular part is L (at least for square matrices; in the non-square
|
137
|
+
* case, special care is needed, see the documentation of class FullPivLU).
|
138
|
+
*
|
139
|
+
* \sa matrixL(), matrixU()
|
140
|
+
*/
|
141
|
+
inline const MatrixType& matrixLU() const
|
142
|
+
{
|
143
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
144
|
+
return m_lu;
|
145
|
+
}
|
146
|
+
|
147
|
+
/** \returns the permutation matrix P.
|
148
|
+
*/
|
149
|
+
inline const PermutationType& permutationP() const
|
150
|
+
{
|
151
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
152
|
+
return m_p;
|
153
|
+
}
|
154
|
+
|
155
|
+
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
|
156
|
+
* *this is the LU decomposition.
|
157
|
+
*
|
158
|
+
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
|
159
|
+
* the only requirement in order for the equation to make sense is that
|
160
|
+
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
|
161
|
+
*
|
162
|
+
* \returns the solution.
|
163
|
+
*
|
164
|
+
* Example: \include PartialPivLU_solve.cpp
|
165
|
+
* Output: \verbinclude PartialPivLU_solve.out
|
166
|
+
*
|
167
|
+
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
|
168
|
+
* theoretically exists and is unique regardless of b.
|
169
|
+
*
|
170
|
+
* \sa TriangularView::solve(), inverse(), computeInverse()
|
171
|
+
*/
|
172
|
+
// FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
|
173
|
+
template<typename Rhs>
|
174
|
+
inline const Solve<PartialPivLU, Rhs>
|
175
|
+
solve(const MatrixBase<Rhs>& b) const
|
176
|
+
{
|
177
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
178
|
+
return Solve<PartialPivLU, Rhs>(*this, b.derived());
|
179
|
+
}
|
180
|
+
|
181
|
+
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
|
182
|
+
the LU decomposition.
|
183
|
+
*/
|
184
|
+
inline RealScalar rcond() const
|
185
|
+
{
|
186
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
187
|
+
return internal::rcond_estimate_helper(m_l1_norm, *this);
|
188
|
+
}
|
189
|
+
|
190
|
+
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
191
|
+
*
|
192
|
+
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
|
193
|
+
* invertibility, use class FullPivLU instead.
|
194
|
+
*
|
195
|
+
* \sa MatrixBase::inverse(), LU::inverse()
|
196
|
+
*/
|
197
|
+
inline const Inverse<PartialPivLU> inverse() const
|
198
|
+
{
|
199
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
200
|
+
return Inverse<PartialPivLU>(*this);
|
201
|
+
}
|
202
|
+
|
203
|
+
/** \returns the determinant of the matrix of which
|
204
|
+
* *this is the LU decomposition. It has only linear complexity
|
205
|
+
* (that is, O(n) where n is the dimension of the square matrix)
|
206
|
+
* as the LU decomposition has already been computed.
|
207
|
+
*
|
208
|
+
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
|
209
|
+
* optimized paths.
|
210
|
+
*
|
211
|
+
* \warning a determinant can be very big or small, so for matrices
|
212
|
+
* of large enough dimension, there is a risk of overflow/underflow.
|
213
|
+
*
|
214
|
+
* \sa MatrixBase::determinant()
|
215
|
+
*/
|
216
|
+
Scalar determinant() const;
|
217
|
+
|
218
|
+
MatrixType reconstructedMatrix() const;
|
219
|
+
|
220
|
+
inline Index rows() const { return m_lu.rows(); }
|
221
|
+
inline Index cols() const { return m_lu.cols(); }
|
222
|
+
|
223
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
224
|
+
template<typename RhsType, typename DstType>
|
225
|
+
EIGEN_DEVICE_FUNC
|
226
|
+
void _solve_impl(const RhsType &rhs, DstType &dst) const {
|
227
|
+
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
|
228
|
+
* So we proceed as follows:
|
229
|
+
* Step 1: compute c = Pb.
|
230
|
+
* Step 2: replace c by the solution x to Lx = c.
|
231
|
+
* Step 3: replace c by the solution x to Ux = c.
|
232
|
+
*/
|
233
|
+
|
234
|
+
eigen_assert(rhs.rows() == m_lu.rows());
|
235
|
+
|
236
|
+
// Step 1
|
237
|
+
dst = permutationP() * rhs;
|
238
|
+
|
239
|
+
// Step 2
|
240
|
+
m_lu.template triangularView<UnitLower>().solveInPlace(dst);
|
241
|
+
|
242
|
+
// Step 3
|
243
|
+
m_lu.template triangularView<Upper>().solveInPlace(dst);
|
244
|
+
}
|
245
|
+
|
246
|
+
template<bool Conjugate, typename RhsType, typename DstType>
|
247
|
+
EIGEN_DEVICE_FUNC
|
248
|
+
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
|
249
|
+
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
|
250
|
+
* So we proceed as follows:
|
251
|
+
* Step 1: compute c = Pb.
|
252
|
+
* Step 2: replace c by the solution x to Lx = c.
|
253
|
+
* Step 3: replace c by the solution x to Ux = c.
|
254
|
+
*/
|
255
|
+
|
256
|
+
eigen_assert(rhs.rows() == m_lu.cols());
|
257
|
+
|
258
|
+
if (Conjugate) {
|
259
|
+
// Step 1
|
260
|
+
dst = m_lu.template triangularView<Upper>().adjoint().solve(rhs);
|
261
|
+
// Step 2
|
262
|
+
m_lu.template triangularView<UnitLower>().adjoint().solveInPlace(dst);
|
263
|
+
} else {
|
264
|
+
// Step 1
|
265
|
+
dst = m_lu.template triangularView<Upper>().transpose().solve(rhs);
|
266
|
+
// Step 2
|
267
|
+
m_lu.template triangularView<UnitLower>().transpose().solveInPlace(dst);
|
268
|
+
}
|
269
|
+
// Step 3
|
270
|
+
dst = permutationP().transpose() * dst;
|
271
|
+
}
|
272
|
+
#endif
|
273
|
+
|
274
|
+
protected:
|
275
|
+
|
276
|
+
static void check_template_parameters()
|
277
|
+
{
|
278
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
279
|
+
}
|
280
|
+
|
281
|
+
void compute();
|
282
|
+
|
283
|
+
MatrixType m_lu;
|
284
|
+
PermutationType m_p;
|
285
|
+
TranspositionType m_rowsTranspositions;
|
286
|
+
RealScalar m_l1_norm;
|
287
|
+
signed char m_det_p;
|
288
|
+
bool m_isInitialized;
|
289
|
+
};
|
290
|
+
|
291
|
+
template<typename MatrixType>
|
292
|
+
PartialPivLU<MatrixType>::PartialPivLU()
|
293
|
+
: m_lu(),
|
294
|
+
m_p(),
|
295
|
+
m_rowsTranspositions(),
|
296
|
+
m_l1_norm(0),
|
297
|
+
m_det_p(0),
|
298
|
+
m_isInitialized(false)
|
299
|
+
{
|
300
|
+
}
|
301
|
+
|
302
|
+
template<typename MatrixType>
|
303
|
+
PartialPivLU<MatrixType>::PartialPivLU(Index size)
|
304
|
+
: m_lu(size, size),
|
305
|
+
m_p(size),
|
306
|
+
m_rowsTranspositions(size),
|
307
|
+
m_l1_norm(0),
|
308
|
+
m_det_p(0),
|
309
|
+
m_isInitialized(false)
|
310
|
+
{
|
311
|
+
}
|
312
|
+
|
313
|
+
template<typename MatrixType>
|
314
|
+
template<typename InputType>
|
315
|
+
PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
|
316
|
+
: m_lu(matrix.rows(),matrix.cols()),
|
317
|
+
m_p(matrix.rows()),
|
318
|
+
m_rowsTranspositions(matrix.rows()),
|
319
|
+
m_l1_norm(0),
|
320
|
+
m_det_p(0),
|
321
|
+
m_isInitialized(false)
|
322
|
+
{
|
323
|
+
compute(matrix.derived());
|
324
|
+
}
|
325
|
+
|
326
|
+
template<typename MatrixType>
|
327
|
+
template<typename InputType>
|
328
|
+
PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
|
329
|
+
: m_lu(matrix.derived()),
|
330
|
+
m_p(matrix.rows()),
|
331
|
+
m_rowsTranspositions(matrix.rows()),
|
332
|
+
m_l1_norm(0),
|
333
|
+
m_det_p(0),
|
334
|
+
m_isInitialized(false)
|
335
|
+
{
|
336
|
+
compute();
|
337
|
+
}
|
338
|
+
|
339
|
+
namespace internal {
|
340
|
+
|
341
|
+
/** \internal This is the blocked version of fullpivlu_unblocked() */
|
342
|
+
template<typename Scalar, int StorageOrder, typename PivIndex>
|
343
|
+
struct partial_lu_impl
|
344
|
+
{
|
345
|
+
// FIXME add a stride to Map, so that the following mapping becomes easier,
|
346
|
+
// another option would be to create an expression being able to automatically
|
347
|
+
// warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
|
348
|
+
// a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
|
349
|
+
// and Block.
|
350
|
+
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
|
351
|
+
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
|
352
|
+
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
|
353
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
354
|
+
|
355
|
+
/** \internal performs the LU decomposition in-place of the matrix \a lu
|
356
|
+
* using an unblocked algorithm.
|
357
|
+
*
|
358
|
+
* In addition, this function returns the row transpositions in the
|
359
|
+
* vector \a row_transpositions which must have a size equal to the number
|
360
|
+
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
361
|
+
* which returns the actual number of transpositions.
|
362
|
+
*
|
363
|
+
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
|
364
|
+
*/
|
365
|
+
static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
|
366
|
+
{
|
367
|
+
typedef scalar_score_coeff_op<Scalar> Scoring;
|
368
|
+
typedef typename Scoring::result_type Score;
|
369
|
+
const Index rows = lu.rows();
|
370
|
+
const Index cols = lu.cols();
|
371
|
+
const Index size = (std::min)(rows,cols);
|
372
|
+
nb_transpositions = 0;
|
373
|
+
Index first_zero_pivot = -1;
|
374
|
+
for(Index k = 0; k < size; ++k)
|
375
|
+
{
|
376
|
+
Index rrows = rows-k-1;
|
377
|
+
Index rcols = cols-k-1;
|
378
|
+
|
379
|
+
Index row_of_biggest_in_col;
|
380
|
+
Score biggest_in_corner
|
381
|
+
= lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
|
382
|
+
row_of_biggest_in_col += k;
|
383
|
+
|
384
|
+
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
|
385
|
+
|
386
|
+
if(biggest_in_corner != Score(0))
|
387
|
+
{
|
388
|
+
if(k != row_of_biggest_in_col)
|
389
|
+
{
|
390
|
+
lu.row(k).swap(lu.row(row_of_biggest_in_col));
|
391
|
+
++nb_transpositions;
|
392
|
+
}
|
393
|
+
|
394
|
+
// FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
|
395
|
+
// overflow but not the actual quotient?
|
396
|
+
lu.col(k).tail(rrows) /= lu.coeff(k,k);
|
397
|
+
}
|
398
|
+
else if(first_zero_pivot==-1)
|
399
|
+
{
|
400
|
+
// the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
|
401
|
+
// and continue the factorization such we still have A = PLU
|
402
|
+
first_zero_pivot = k;
|
403
|
+
}
|
404
|
+
|
405
|
+
if(k<rows-1)
|
406
|
+
lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
|
407
|
+
}
|
408
|
+
return first_zero_pivot;
|
409
|
+
}
|
410
|
+
|
411
|
+
/** \internal performs the LU decomposition in-place of the matrix represented
|
412
|
+
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
|
413
|
+
* recursive, blocked algorithm.
|
414
|
+
*
|
415
|
+
* In addition, this function returns the row transpositions in the
|
416
|
+
* vector \a row_transpositions which must have a size equal to the number
|
417
|
+
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
418
|
+
* which returns the actual number of transpositions.
|
419
|
+
*
|
420
|
+
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
|
421
|
+
*
|
422
|
+
* \note This very low level interface using pointers, etc. is to:
|
423
|
+
* 1 - reduce the number of instanciations to the strict minimum
|
424
|
+
* 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
|
425
|
+
*/
|
426
|
+
static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
|
427
|
+
{
|
428
|
+
MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
|
429
|
+
MatrixType lu(lu1,0,0,rows,cols);
|
430
|
+
|
431
|
+
const Index size = (std::min)(rows,cols);
|
432
|
+
|
433
|
+
// if the matrix is too small, no blocking:
|
434
|
+
if(size<=16)
|
435
|
+
{
|
436
|
+
return unblocked_lu(lu, row_transpositions, nb_transpositions);
|
437
|
+
}
|
438
|
+
|
439
|
+
// automatically adjust the number of subdivisions to the size
|
440
|
+
// of the matrix so that there is enough sub blocks:
|
441
|
+
Index blockSize;
|
442
|
+
{
|
443
|
+
blockSize = size/8;
|
444
|
+
blockSize = (blockSize/16)*16;
|
445
|
+
blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
|
446
|
+
}
|
447
|
+
|
448
|
+
nb_transpositions = 0;
|
449
|
+
Index first_zero_pivot = -1;
|
450
|
+
for(Index k = 0; k < size; k+=blockSize)
|
451
|
+
{
|
452
|
+
Index bs = (std::min)(size-k,blockSize); // actual size of the block
|
453
|
+
Index trows = rows - k - bs; // trailing rows
|
454
|
+
Index tsize = size - k - bs; // trailing size
|
455
|
+
|
456
|
+
// partition the matrix:
|
457
|
+
// A00 | A01 | A02
|
458
|
+
// lu = A_0 | A_1 | A_2 = A10 | A11 | A12
|
459
|
+
// A20 | A21 | A22
|
460
|
+
BlockType A_0(lu,0,0,rows,k);
|
461
|
+
BlockType A_2(lu,0,k+bs,rows,tsize);
|
462
|
+
BlockType A11(lu,k,k,bs,bs);
|
463
|
+
BlockType A12(lu,k,k+bs,bs,tsize);
|
464
|
+
BlockType A21(lu,k+bs,k,trows,bs);
|
465
|
+
BlockType A22(lu,k+bs,k+bs,trows,tsize);
|
466
|
+
|
467
|
+
PivIndex nb_transpositions_in_panel;
|
468
|
+
// recursively call the blocked LU algorithm on [A11^T A21^T]^T
|
469
|
+
// with a very small blocking size:
|
470
|
+
Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
|
471
|
+
row_transpositions+k, nb_transpositions_in_panel, 16);
|
472
|
+
if(ret>=0 && first_zero_pivot==-1)
|
473
|
+
first_zero_pivot = k+ret;
|
474
|
+
|
475
|
+
nb_transpositions += nb_transpositions_in_panel;
|
476
|
+
// update permutations and apply them to A_0
|
477
|
+
for(Index i=k; i<k+bs; ++i)
|
478
|
+
{
|
479
|
+
Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
|
480
|
+
A_0.row(i).swap(A_0.row(piv));
|
481
|
+
}
|
482
|
+
|
483
|
+
if(trows)
|
484
|
+
{
|
485
|
+
// apply permutations to A_2
|
486
|
+
for(Index i=k;i<k+bs; ++i)
|
487
|
+
A_2.row(i).swap(A_2.row(row_transpositions[i]));
|
488
|
+
|
489
|
+
// A12 = A11^-1 A12
|
490
|
+
A11.template triangularView<UnitLower>().solveInPlace(A12);
|
491
|
+
|
492
|
+
A22.noalias() -= A21 * A12;
|
493
|
+
}
|
494
|
+
}
|
495
|
+
return first_zero_pivot;
|
496
|
+
}
|
497
|
+
};
|
498
|
+
|
499
|
+
/** \internal performs the LU decomposition with partial pivoting in-place.
|
500
|
+
*/
|
501
|
+
template<typename MatrixType, typename TranspositionType>
|
502
|
+
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
|
503
|
+
{
|
504
|
+
eigen_assert(lu.cols() == row_transpositions.size());
|
505
|
+
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
|
506
|
+
|
507
|
+
partial_lu_impl
|
508
|
+
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndex>
|
509
|
+
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
|
510
|
+
}
|
511
|
+
|
512
|
+
} // end namespace internal
|
513
|
+
|
514
|
+
template<typename MatrixType>
|
515
|
+
void PartialPivLU<MatrixType>::compute()
|
516
|
+
{
|
517
|
+
check_template_parameters();
|
518
|
+
|
519
|
+
// the row permutation is stored as int indices, so just to be sure:
|
520
|
+
eigen_assert(m_lu.rows()<NumTraits<int>::highest());
|
521
|
+
|
522
|
+
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
|
523
|
+
|
524
|
+
eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
|
525
|
+
const Index size = m_lu.rows();
|
526
|
+
|
527
|
+
m_rowsTranspositions.resize(size);
|
528
|
+
|
529
|
+
typename TranspositionType::StorageIndex nb_transpositions;
|
530
|
+
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
|
531
|
+
m_det_p = (nb_transpositions%2) ? -1 : 1;
|
532
|
+
|
533
|
+
m_p = m_rowsTranspositions;
|
534
|
+
|
535
|
+
m_isInitialized = true;
|
536
|
+
}
|
537
|
+
|
538
|
+
template<typename MatrixType>
|
539
|
+
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
|
540
|
+
{
|
541
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
542
|
+
return Scalar(m_det_p) * m_lu.diagonal().prod();
|
543
|
+
}
|
544
|
+
|
545
|
+
/** \returns the matrix represented by the decomposition,
|
546
|
+
* i.e., it returns the product: P^{-1} L U.
|
547
|
+
* This function is provided for debug purpose. */
|
548
|
+
template<typename MatrixType>
|
549
|
+
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
|
550
|
+
{
|
551
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
552
|
+
// LU
|
553
|
+
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
|
554
|
+
* m_lu.template triangularView<Upper>();
|
555
|
+
|
556
|
+
// P^{-1}(LU)
|
557
|
+
res = m_p.inverse() * res;
|
558
|
+
|
559
|
+
return res;
|
560
|
+
}
|
561
|
+
|
562
|
+
/***** Implementation details *****************************************************/
|
563
|
+
|
564
|
+
namespace internal {
|
565
|
+
|
566
|
+
/***** Implementation of inverse() *****************************************************/
|
567
|
+
template<typename DstXprType, typename MatrixType>
|
568
|
+
struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
|
569
|
+
{
|
570
|
+
typedef PartialPivLU<MatrixType> LuType;
|
571
|
+
typedef Inverse<LuType> SrcXprType;
|
572
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
|
573
|
+
{
|
574
|
+
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
|
575
|
+
}
|
576
|
+
};
|
577
|
+
} // end namespace internal
|
578
|
+
|
579
|
+
/******** MatrixBase methods *******/
|
580
|
+
|
581
|
+
/** \lu_module
|
582
|
+
*
|
583
|
+
* \return the partial-pivoting LU decomposition of \c *this.
|
584
|
+
*
|
585
|
+
* \sa class PartialPivLU
|
586
|
+
*/
|
587
|
+
template<typename Derived>
|
588
|
+
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
|
589
|
+
MatrixBase<Derived>::partialPivLu() const
|
590
|
+
{
|
591
|
+
return PartialPivLU<PlainObject>(eval());
|
592
|
+
}
|
593
|
+
|
594
|
+
/** \lu_module
|
595
|
+
*
|
596
|
+
* Synonym of partialPivLu().
|
597
|
+
*
|
598
|
+
* \return the partial-pivoting LU decomposition of \c *this.
|
599
|
+
*
|
600
|
+
* \sa class PartialPivLU
|
601
|
+
*/
|
602
|
+
template<typename Derived>
|
603
|
+
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
|
604
|
+
MatrixBase<Derived>::lu() const
|
605
|
+
{
|
606
|
+
return PartialPivLU<PlainObject>(eval());
|
607
|
+
}
|
608
|
+
|
609
|
+
} // end namespace Eigen
|
610
|
+
|
611
|
+
#endif // EIGEN_PARTIALLU_H
|