tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,157 @@
1
+
2
+ // This file is part of Eigen, a lightweight C++ template library
3
+ // for linear algebra.
4
+ //
5
+ // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_ORDERING_H
12
+ #define EIGEN_ORDERING_H
13
+
14
+ namespace Eigen {
15
+
16
+ #include "Eigen_Colamd.h"
17
+
18
+ namespace internal {
19
+
20
+ /** \internal
21
+ * \ingroup OrderingMethods_Module
22
+ * \param[in] A the input non-symmetric matrix
23
+ * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A.
24
+ * FIXME: The values should not be considered here
25
+ */
26
+ template<typename MatrixType>
27
+ void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat)
28
+ {
29
+ MatrixType C;
30
+ C = A.transpose(); // NOTE: Could be costly
31
+ for (int i = 0; i < C.rows(); i++)
32
+ {
33
+ for (typename MatrixType::InnerIterator it(C, i); it; ++it)
34
+ it.valueRef() = 0.0;
35
+ }
36
+ symmat = C + A;
37
+ }
38
+
39
+ }
40
+
41
+ #ifndef EIGEN_MPL2_ONLY
42
+
43
+ /** \ingroup OrderingMethods_Module
44
+ * \class AMDOrdering
45
+ *
46
+ * Functor computing the \em approximate \em minimum \em degree ordering
47
+ * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
48
+ * \tparam StorageIndex The type of indices of the matrix
49
+ * \sa COLAMDOrdering
50
+ */
51
+ template <typename StorageIndex>
52
+ class AMDOrdering
53
+ {
54
+ public:
55
+ typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
56
+
57
+ /** Compute the permutation vector from a sparse matrix
58
+ * This routine is much faster if the input matrix is column-major
59
+ */
60
+ template <typename MatrixType>
61
+ void operator()(const MatrixType& mat, PermutationType& perm)
62
+ {
63
+ // Compute the symmetric pattern
64
+ SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm;
65
+ internal::ordering_helper_at_plus_a(mat,symm);
66
+
67
+ // Call the AMD routine
68
+ //m_mat.prune(keep_diag());
69
+ internal::minimum_degree_ordering(symm, perm);
70
+ }
71
+
72
+ /** Compute the permutation with a selfadjoint matrix */
73
+ template <typename SrcType, unsigned int SrcUpLo>
74
+ void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
75
+ {
76
+ SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat;
77
+
78
+ // Call the AMD routine
79
+ // m_mat.prune(keep_diag()); //Remove the diagonal elements
80
+ internal::minimum_degree_ordering(C, perm);
81
+ }
82
+ };
83
+
84
+ #endif // EIGEN_MPL2_ONLY
85
+
86
+ /** \ingroup OrderingMethods_Module
87
+ * \class NaturalOrdering
88
+ *
89
+ * Functor computing the natural ordering (identity)
90
+ *
91
+ * \note Returns an empty permutation matrix
92
+ * \tparam StorageIndex The type of indices of the matrix
93
+ */
94
+ template <typename StorageIndex>
95
+ class NaturalOrdering
96
+ {
97
+ public:
98
+ typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
99
+
100
+ /** Compute the permutation vector from a column-major sparse matrix */
101
+ template <typename MatrixType>
102
+ void operator()(const MatrixType& /*mat*/, PermutationType& perm)
103
+ {
104
+ perm.resize(0);
105
+ }
106
+
107
+ };
108
+
109
+ /** \ingroup OrderingMethods_Module
110
+ * \class COLAMDOrdering
111
+ *
112
+ * \tparam StorageIndex The type of indices of the matrix
113
+ *
114
+ * Functor computing the \em column \em approximate \em minimum \em degree ordering
115
+ * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
116
+ */
117
+ template<typename StorageIndex>
118
+ class COLAMDOrdering
119
+ {
120
+ public:
121
+ typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
122
+ typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
123
+
124
+ /** Compute the permutation vector \a perm form the sparse matrix \a mat
125
+ * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
126
+ */
127
+ template <typename MatrixType>
128
+ void operator() (const MatrixType& mat, PermutationType& perm)
129
+ {
130
+ eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
131
+
132
+ StorageIndex m = StorageIndex(mat.rows());
133
+ StorageIndex n = StorageIndex(mat.cols());
134
+ StorageIndex nnz = StorageIndex(mat.nonZeros());
135
+ // Get the recommended value of Alen to be used by colamd
136
+ StorageIndex Alen = internal::colamd_recommended(nnz, m, n);
137
+ // Set the default parameters
138
+ double knobs [COLAMD_KNOBS];
139
+ StorageIndex stats [COLAMD_STATS];
140
+ internal::colamd_set_defaults(knobs);
141
+
142
+ IndexVector p(n+1), A(Alen);
143
+ for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
144
+ for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
145
+ // Call Colamd routine to compute the ordering
146
+ StorageIndex info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
147
+ EIGEN_UNUSED_VARIABLE(info);
148
+ eigen_assert( info && "COLAMD failed " );
149
+
150
+ perm.resize(n);
151
+ for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i;
152
+ }
153
+ };
154
+
155
+ } // end namespace Eigen
156
+
157
+ #endif
@@ -0,0 +1,678 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_PASTIXSUPPORT_H
11
+ #define EIGEN_PASTIXSUPPORT_H
12
+
13
+ namespace Eigen {
14
+
15
+ #if defined(DCOMPLEX)
16
+ #define PASTIX_COMPLEX COMPLEX
17
+ #define PASTIX_DCOMPLEX DCOMPLEX
18
+ #else
19
+ #define PASTIX_COMPLEX std::complex<float>
20
+ #define PASTIX_DCOMPLEX std::complex<double>
21
+ #endif
22
+
23
+ /** \ingroup PaStiXSupport_Module
24
+ * \brief Interface to the PaStix solver
25
+ *
26
+ * This class is used to solve the linear systems A.X = B via the PaStix library.
27
+ * The matrix can be either real or complex, symmetric or not.
28
+ *
29
+ * \sa TutorialSparseDirectSolvers
30
+ */
31
+ template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
32
+ template<typename _MatrixType, int Options> class PastixLLT;
33
+ template<typename _MatrixType, int Options> class PastixLDLT;
34
+
35
+ namespace internal
36
+ {
37
+
38
+ template<class Pastix> struct pastix_traits;
39
+
40
+ template<typename _MatrixType>
41
+ struct pastix_traits< PastixLU<_MatrixType> >
42
+ {
43
+ typedef _MatrixType MatrixType;
44
+ typedef typename _MatrixType::Scalar Scalar;
45
+ typedef typename _MatrixType::RealScalar RealScalar;
46
+ typedef typename _MatrixType::StorageIndex StorageIndex;
47
+ };
48
+
49
+ template<typename _MatrixType, int Options>
50
+ struct pastix_traits< PastixLLT<_MatrixType,Options> >
51
+ {
52
+ typedef _MatrixType MatrixType;
53
+ typedef typename _MatrixType::Scalar Scalar;
54
+ typedef typename _MatrixType::RealScalar RealScalar;
55
+ typedef typename _MatrixType::StorageIndex StorageIndex;
56
+ };
57
+
58
+ template<typename _MatrixType, int Options>
59
+ struct pastix_traits< PastixLDLT<_MatrixType,Options> >
60
+ {
61
+ typedef _MatrixType MatrixType;
62
+ typedef typename _MatrixType::Scalar Scalar;
63
+ typedef typename _MatrixType::RealScalar RealScalar;
64
+ typedef typename _MatrixType::StorageIndex StorageIndex;
65
+ };
66
+
67
+ inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
68
+ {
69
+ if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
70
+ if (nbrhs == 0) {x = NULL; nbrhs=1;}
71
+ s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
72
+ }
73
+
74
+ inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
75
+ {
76
+ if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
77
+ if (nbrhs == 0) {x = NULL; nbrhs=1;}
78
+ d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
79
+ }
80
+
81
+ inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
82
+ {
83
+ if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
84
+ if (nbrhs == 0) {x = NULL; nbrhs=1;}
85
+ c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);
86
+ }
87
+
88
+ inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
89
+ {
90
+ if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
91
+ if (nbrhs == 0) {x = NULL; nbrhs=1;}
92
+ z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm);
93
+ }
94
+
95
+ // Convert the matrix to Fortran-style Numbering
96
+ template <typename MatrixType>
97
+ void c_to_fortran_numbering (MatrixType& mat)
98
+ {
99
+ if ( !(mat.outerIndexPtr()[0]) )
100
+ {
101
+ int i;
102
+ for(i = 0; i <= mat.rows(); ++i)
103
+ ++mat.outerIndexPtr()[i];
104
+ for(i = 0; i < mat.nonZeros(); ++i)
105
+ ++mat.innerIndexPtr()[i];
106
+ }
107
+ }
108
+
109
+ // Convert to C-style Numbering
110
+ template <typename MatrixType>
111
+ void fortran_to_c_numbering (MatrixType& mat)
112
+ {
113
+ // Check the Numbering
114
+ if ( mat.outerIndexPtr()[0] == 1 )
115
+ { // Convert to C-style numbering
116
+ int i;
117
+ for(i = 0; i <= mat.rows(); ++i)
118
+ --mat.outerIndexPtr()[i];
119
+ for(i = 0; i < mat.nonZeros(); ++i)
120
+ --mat.innerIndexPtr()[i];
121
+ }
122
+ }
123
+ }
124
+
125
+ // This is the base class to interface with PaStiX functions.
126
+ // Users should not used this class directly.
127
+ template <class Derived>
128
+ class PastixBase : public SparseSolverBase<Derived>
129
+ {
130
+ protected:
131
+ typedef SparseSolverBase<Derived> Base;
132
+ using Base::derived;
133
+ using Base::m_isInitialized;
134
+ public:
135
+ using Base::_solve_impl;
136
+
137
+ typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
138
+ typedef _MatrixType MatrixType;
139
+ typedef typename MatrixType::Scalar Scalar;
140
+ typedef typename MatrixType::RealScalar RealScalar;
141
+ typedef typename MatrixType::StorageIndex StorageIndex;
142
+ typedef Matrix<Scalar,Dynamic,1> Vector;
143
+ typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
144
+ enum {
145
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
146
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
147
+ };
148
+
149
+ public:
150
+
151
+ PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0)
152
+ {
153
+ init();
154
+ }
155
+
156
+ ~PastixBase()
157
+ {
158
+ clean();
159
+ }
160
+
161
+ template<typename Rhs,typename Dest>
162
+ bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
163
+
164
+ /** Returns a reference to the integer vector IPARM of PaStiX parameters
165
+ * to modify the default parameters.
166
+ * The statistics related to the different phases of factorization and solve are saved here as well
167
+ * \sa analyzePattern() factorize()
168
+ */
169
+ Array<StorageIndex,IPARM_SIZE,1>& iparm()
170
+ {
171
+ return m_iparm;
172
+ }
173
+
174
+ /** Return a reference to a particular index parameter of the IPARM vector
175
+ * \sa iparm()
176
+ */
177
+
178
+ int& iparm(int idxparam)
179
+ {
180
+ return m_iparm(idxparam);
181
+ }
182
+
183
+ /** Returns a reference to the double vector DPARM of PaStiX parameters
184
+ * The statistics related to the different phases of factorization and solve are saved here as well
185
+ * \sa analyzePattern() factorize()
186
+ */
187
+ Array<double,DPARM_SIZE,1>& dparm()
188
+ {
189
+ return m_dparm;
190
+ }
191
+
192
+
193
+ /** Return a reference to a particular index parameter of the DPARM vector
194
+ * \sa dparm()
195
+ */
196
+ double& dparm(int idxparam)
197
+ {
198
+ return m_dparm(idxparam);
199
+ }
200
+
201
+ inline Index cols() const { return m_size; }
202
+ inline Index rows() const { return m_size; }
203
+
204
+ /** \brief Reports whether previous computation was successful.
205
+ *
206
+ * \returns \c Success if computation was succesful,
207
+ * \c NumericalIssue if the PaStiX reports a problem
208
+ * \c InvalidInput if the input matrix is invalid
209
+ *
210
+ * \sa iparm()
211
+ */
212
+ ComputationInfo info() const
213
+ {
214
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
215
+ return m_info;
216
+ }
217
+
218
+ protected:
219
+
220
+ // Initialize the Pastix data structure, check the matrix
221
+ void init();
222
+
223
+ // Compute the ordering and the symbolic factorization
224
+ void analyzePattern(ColSpMatrix& mat);
225
+
226
+ // Compute the numerical factorization
227
+ void factorize(ColSpMatrix& mat);
228
+
229
+ // Free all the data allocated by Pastix
230
+ void clean()
231
+ {
232
+ eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
233
+ m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
234
+ m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
235
+ internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
236
+ m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
237
+ }
238
+
239
+ void compute(ColSpMatrix& mat);
240
+
241
+ int m_initisOk;
242
+ int m_analysisIsOk;
243
+ int m_factorizationIsOk;
244
+ mutable ComputationInfo m_info;
245
+ mutable pastix_data_t *m_pastixdata; // Data structure for pastix
246
+ mutable int m_comm; // The MPI communicator identifier
247
+ mutable Array<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
248
+ mutable Array<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
249
+ mutable Matrix<StorageIndex,Dynamic,1> m_perm; // Permutation vector
250
+ mutable Matrix<StorageIndex,Dynamic,1> m_invp; // Inverse permutation vector
251
+ mutable int m_size; // Size of the matrix
252
+ };
253
+
254
+ /** Initialize the PaStiX data structure.
255
+ *A first call to this function fills iparm and dparm with the default PaStiX parameters
256
+ * \sa iparm() dparm()
257
+ */
258
+ template <class Derived>
259
+ void PastixBase<Derived>::init()
260
+ {
261
+ m_size = 0;
262
+ m_iparm.setZero(IPARM_SIZE);
263
+ m_dparm.setZero(DPARM_SIZE);
264
+
265
+ m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
266
+ pastix(&m_pastixdata, MPI_COMM_WORLD,
267
+ 0, 0, 0, 0,
268
+ 0, 0, 0, 1, m_iparm.data(), m_dparm.data());
269
+
270
+ m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
271
+ m_iparm[IPARM_VERBOSE] = API_VERBOSE_NOT;
272
+ m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH;
273
+ m_iparm[IPARM_INCOMPLETE] = API_NO;
274
+ m_iparm[IPARM_OOC_LIMIT] = 2000;
275
+ m_iparm[IPARM_RHS_MAKING] = API_RHS_B;
276
+ m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
277
+
278
+ m_iparm(IPARM_START_TASK) = API_TASK_INIT;
279
+ m_iparm(IPARM_END_TASK) = API_TASK_INIT;
280
+ internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
281
+ 0, 0, 0, 0, m_iparm.data(), m_dparm.data());
282
+
283
+ // Check the returned error
284
+ if(m_iparm(IPARM_ERROR_NUMBER)) {
285
+ m_info = InvalidInput;
286
+ m_initisOk = false;
287
+ }
288
+ else {
289
+ m_info = Success;
290
+ m_initisOk = true;
291
+ }
292
+ }
293
+
294
+ template <class Derived>
295
+ void PastixBase<Derived>::compute(ColSpMatrix& mat)
296
+ {
297
+ eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
298
+
299
+ analyzePattern(mat);
300
+ factorize(mat);
301
+
302
+ m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
303
+ }
304
+
305
+
306
+ template <class Derived>
307
+ void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
308
+ {
309
+ eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
310
+
311
+ // clean previous calls
312
+ if(m_size>0)
313
+ clean();
314
+
315
+ m_size = internal::convert_index<int>(mat.rows());
316
+ m_perm.resize(m_size);
317
+ m_invp.resize(m_size);
318
+
319
+ m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
320
+ m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
321
+ internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
322
+ mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
323
+
324
+ // Check the returned error
325
+ if(m_iparm(IPARM_ERROR_NUMBER))
326
+ {
327
+ m_info = NumericalIssue;
328
+ m_analysisIsOk = false;
329
+ }
330
+ else
331
+ {
332
+ m_info = Success;
333
+ m_analysisIsOk = true;
334
+ }
335
+ }
336
+
337
+ template <class Derived>
338
+ void PastixBase<Derived>::factorize(ColSpMatrix& mat)
339
+ {
340
+ // if(&m_cpyMat != &mat) m_cpyMat = mat;
341
+ eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
342
+ m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
343
+ m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
344
+ m_size = internal::convert_index<int>(mat.rows());
345
+
346
+ internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
347
+ mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
348
+
349
+ // Check the returned error
350
+ if(m_iparm(IPARM_ERROR_NUMBER))
351
+ {
352
+ m_info = NumericalIssue;
353
+ m_factorizationIsOk = false;
354
+ m_isInitialized = false;
355
+ }
356
+ else
357
+ {
358
+ m_info = Success;
359
+ m_factorizationIsOk = true;
360
+ m_isInitialized = true;
361
+ }
362
+ }
363
+
364
+ /* Solve the system */
365
+ template<typename Base>
366
+ template<typename Rhs,typename Dest>
367
+ bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
368
+ {
369
+ eigen_assert(m_isInitialized && "The matrix should be factorized first");
370
+ EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
371
+ THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
372
+ int rhs = 1;
373
+
374
+ x = b; /* on return, x is overwritten by the computed solution */
375
+
376
+ for (int i = 0; i < b.cols(); i++){
377
+ m_iparm[IPARM_START_TASK] = API_TASK_SOLVE;
378
+ m_iparm[IPARM_END_TASK] = API_TASK_REFINE;
379
+
380
+ internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0,
381
+ m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
382
+ }
383
+
384
+ // Check the returned error
385
+ m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
386
+
387
+ return m_iparm(IPARM_ERROR_NUMBER)==0;
388
+ }
389
+
390
+ /** \ingroup PaStiXSupport_Module
391
+ * \class PastixLU
392
+ * \brief Sparse direct LU solver based on PaStiX library
393
+ *
394
+ * This class is used to solve the linear systems A.X = B with a supernodal LU
395
+ * factorization in the PaStiX library. The matrix A should be squared and nonsingular
396
+ * PaStiX requires that the matrix A has a symmetric structural pattern.
397
+ * This interface can symmetrize the input matrix otherwise.
398
+ * The vectors or matrices X and B can be either dense or sparse.
399
+ *
400
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
401
+ * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
402
+ * NOTE : Note that if the analysis and factorization phase are called separately,
403
+ * the input matrix will be symmetrized at each call, hence it is advised to
404
+ * symmetrize the matrix in a end-user program and set \p IsStrSym to true
405
+ *
406
+ * \implsparsesolverconcept
407
+ *
408
+ * \sa \ref TutorialSparseSolverConcept, class SparseLU
409
+ *
410
+ */
411
+ template<typename _MatrixType, bool IsStrSym>
412
+ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
413
+ {
414
+ public:
415
+ typedef _MatrixType MatrixType;
416
+ typedef PastixBase<PastixLU<MatrixType> > Base;
417
+ typedef typename Base::ColSpMatrix ColSpMatrix;
418
+ typedef typename MatrixType::StorageIndex StorageIndex;
419
+
420
+ public:
421
+ PastixLU() : Base()
422
+ {
423
+ init();
424
+ }
425
+
426
+ explicit PastixLU(const MatrixType& matrix):Base()
427
+ {
428
+ init();
429
+ compute(matrix);
430
+ }
431
+ /** Compute the LU supernodal factorization of \p matrix.
432
+ * iparm and dparm can be used to tune the PaStiX parameters.
433
+ * see the PaStiX user's manual
434
+ * \sa analyzePattern() factorize()
435
+ */
436
+ void compute (const MatrixType& matrix)
437
+ {
438
+ m_structureIsUptodate = false;
439
+ ColSpMatrix temp;
440
+ grabMatrix(matrix, temp);
441
+ Base::compute(temp);
442
+ }
443
+ /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
444
+ * Several ordering methods can be used at this step. See the PaStiX user's manual.
445
+ * The result of this operation can be used with successive matrices having the same pattern as \p matrix
446
+ * \sa factorize()
447
+ */
448
+ void analyzePattern(const MatrixType& matrix)
449
+ {
450
+ m_structureIsUptodate = false;
451
+ ColSpMatrix temp;
452
+ grabMatrix(matrix, temp);
453
+ Base::analyzePattern(temp);
454
+ }
455
+
456
+ /** Compute the LU supernodal factorization of \p matrix
457
+ * WARNING The matrix \p matrix should have the same structural pattern
458
+ * as the same used in the analysis phase.
459
+ * \sa analyzePattern()
460
+ */
461
+ void factorize(const MatrixType& matrix)
462
+ {
463
+ ColSpMatrix temp;
464
+ grabMatrix(matrix, temp);
465
+ Base::factorize(temp);
466
+ }
467
+ protected:
468
+
469
+ void init()
470
+ {
471
+ m_structureIsUptodate = false;
472
+ m_iparm(IPARM_SYM) = API_SYM_NO;
473
+ m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
474
+ }
475
+
476
+ void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
477
+ {
478
+ if(IsStrSym)
479
+ out = matrix;
480
+ else
481
+ {
482
+ if(!m_structureIsUptodate)
483
+ {
484
+ // update the transposed structure
485
+ m_transposedStructure = matrix.transpose();
486
+
487
+ // Set the elements of the matrix to zero
488
+ for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
489
+ for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
490
+ it.valueRef() = 0.0;
491
+
492
+ m_structureIsUptodate = true;
493
+ }
494
+
495
+ out = m_transposedStructure + matrix;
496
+ }
497
+ internal::c_to_fortran_numbering(out);
498
+ }
499
+
500
+ using Base::m_iparm;
501
+ using Base::m_dparm;
502
+
503
+ ColSpMatrix m_transposedStructure;
504
+ bool m_structureIsUptodate;
505
+ };
506
+
507
+ /** \ingroup PaStiXSupport_Module
508
+ * \class PastixLLT
509
+ * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
510
+ *
511
+ * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
512
+ * available in the PaStiX library. The matrix A should be symmetric and positive definite
513
+ * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
514
+ * The vectors or matrices X and B can be either dense or sparse
515
+ *
516
+ * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
517
+ * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
518
+ *
519
+ * \implsparsesolverconcept
520
+ *
521
+ * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT
522
+ */
523
+ template<typename _MatrixType, int _UpLo>
524
+ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
525
+ {
526
+ public:
527
+ typedef _MatrixType MatrixType;
528
+ typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
529
+ typedef typename Base::ColSpMatrix ColSpMatrix;
530
+
531
+ public:
532
+ enum { UpLo = _UpLo };
533
+ PastixLLT() : Base()
534
+ {
535
+ init();
536
+ }
537
+
538
+ explicit PastixLLT(const MatrixType& matrix):Base()
539
+ {
540
+ init();
541
+ compute(matrix);
542
+ }
543
+
544
+ /** Compute the L factor of the LL^T supernodal factorization of \p matrix
545
+ * \sa analyzePattern() factorize()
546
+ */
547
+ void compute (const MatrixType& matrix)
548
+ {
549
+ ColSpMatrix temp;
550
+ grabMatrix(matrix, temp);
551
+ Base::compute(temp);
552
+ }
553
+
554
+ /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
555
+ * The result of this operation can be used with successive matrices having the same pattern as \p matrix
556
+ * \sa factorize()
557
+ */
558
+ void analyzePattern(const MatrixType& matrix)
559
+ {
560
+ ColSpMatrix temp;
561
+ grabMatrix(matrix, temp);
562
+ Base::analyzePattern(temp);
563
+ }
564
+ /** Compute the LL^T supernodal numerical factorization of \p matrix
565
+ * \sa analyzePattern()
566
+ */
567
+ void factorize(const MatrixType& matrix)
568
+ {
569
+ ColSpMatrix temp;
570
+ grabMatrix(matrix, temp);
571
+ Base::factorize(temp);
572
+ }
573
+ protected:
574
+ using Base::m_iparm;
575
+
576
+ void init()
577
+ {
578
+ m_iparm(IPARM_SYM) = API_SYM_YES;
579
+ m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
580
+ }
581
+
582
+ void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
583
+ {
584
+ out.resize(matrix.rows(), matrix.cols());
585
+ // Pastix supports only lower, column-major matrices
586
+ out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
587
+ internal::c_to_fortran_numbering(out);
588
+ }
589
+ };
590
+
591
+ /** \ingroup PaStiXSupport_Module
592
+ * \class PastixLDLT
593
+ * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
594
+ *
595
+ * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
596
+ * available in the PaStiX library. The matrix A should be symmetric and positive definite
597
+ * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
598
+ * The vectors or matrices X and B can be either dense or sparse
599
+ *
600
+ * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
601
+ * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
602
+ *
603
+ * \implsparsesolverconcept
604
+ *
605
+ * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT
606
+ */
607
+ template<typename _MatrixType, int _UpLo>
608
+ class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
609
+ {
610
+ public:
611
+ typedef _MatrixType MatrixType;
612
+ typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
613
+ typedef typename Base::ColSpMatrix ColSpMatrix;
614
+
615
+ public:
616
+ enum { UpLo = _UpLo };
617
+ PastixLDLT():Base()
618
+ {
619
+ init();
620
+ }
621
+
622
+ explicit PastixLDLT(const MatrixType& matrix):Base()
623
+ {
624
+ init();
625
+ compute(matrix);
626
+ }
627
+
628
+ /** Compute the L and D factors of the LDL^T factorization of \p matrix
629
+ * \sa analyzePattern() factorize()
630
+ */
631
+ void compute (const MatrixType& matrix)
632
+ {
633
+ ColSpMatrix temp;
634
+ grabMatrix(matrix, temp);
635
+ Base::compute(temp);
636
+ }
637
+
638
+ /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
639
+ * The result of this operation can be used with successive matrices having the same pattern as \p matrix
640
+ * \sa factorize()
641
+ */
642
+ void analyzePattern(const MatrixType& matrix)
643
+ {
644
+ ColSpMatrix temp;
645
+ grabMatrix(matrix, temp);
646
+ Base::analyzePattern(temp);
647
+ }
648
+ /** Compute the LDL^T supernodal numerical factorization of \p matrix
649
+ *
650
+ */
651
+ void factorize(const MatrixType& matrix)
652
+ {
653
+ ColSpMatrix temp;
654
+ grabMatrix(matrix, temp);
655
+ Base::factorize(temp);
656
+ }
657
+
658
+ protected:
659
+ using Base::m_iparm;
660
+
661
+ void init()
662
+ {
663
+ m_iparm(IPARM_SYM) = API_SYM_YES;
664
+ m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
665
+ }
666
+
667
+ void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
668
+ {
669
+ // Pastix supports only lower, column-major matrices
670
+ out.resize(matrix.rows(), matrix.cols());
671
+ out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
672
+ internal::c_to_fortran_numbering(out);
673
+ }
674
+ };
675
+
676
+ } // end namespace Eigen
677
+
678
+ #endif