tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,101 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_DETERMINANT_H
11
+ #define EIGEN_DETERMINANT_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+ template<typename Derived>
18
+ inline const typename Derived::Scalar bruteforce_det3_helper
19
+ (const MatrixBase<Derived>& matrix, int a, int b, int c)
20
+ {
21
+ return matrix.coeff(0,a)
22
+ * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
23
+ }
24
+
25
+ template<typename Derived>
26
+ const typename Derived::Scalar bruteforce_det4_helper
27
+ (const MatrixBase<Derived>& matrix, int j, int k, int m, int n)
28
+ {
29
+ return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1))
30
+ * (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3));
31
+ }
32
+
33
+ template<typename Derived,
34
+ int DeterminantType = Derived::RowsAtCompileTime
35
+ > struct determinant_impl
36
+ {
37
+ static inline typename traits<Derived>::Scalar run(const Derived& m)
38
+ {
39
+ if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0)
40
+ return typename traits<Derived>::Scalar(1);
41
+ return m.partialPivLu().determinant();
42
+ }
43
+ };
44
+
45
+ template<typename Derived> struct determinant_impl<Derived, 1>
46
+ {
47
+ static inline typename traits<Derived>::Scalar run(const Derived& m)
48
+ {
49
+ return m.coeff(0,0);
50
+ }
51
+ };
52
+
53
+ template<typename Derived> struct determinant_impl<Derived, 2>
54
+ {
55
+ static inline typename traits<Derived>::Scalar run(const Derived& m)
56
+ {
57
+ return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
58
+ }
59
+ };
60
+
61
+ template<typename Derived> struct determinant_impl<Derived, 3>
62
+ {
63
+ static inline typename traits<Derived>::Scalar run(const Derived& m)
64
+ {
65
+ return bruteforce_det3_helper(m,0,1,2)
66
+ - bruteforce_det3_helper(m,1,0,2)
67
+ + bruteforce_det3_helper(m,2,0,1);
68
+ }
69
+ };
70
+
71
+ template<typename Derived> struct determinant_impl<Derived, 4>
72
+ {
73
+ static typename traits<Derived>::Scalar run(const Derived& m)
74
+ {
75
+ // trick by Martin Costabel to compute 4x4 det with only 30 muls
76
+ return bruteforce_det4_helper(m,0,1,2,3)
77
+ - bruteforce_det4_helper(m,0,2,1,3)
78
+ + bruteforce_det4_helper(m,0,3,1,2)
79
+ + bruteforce_det4_helper(m,1,2,0,3)
80
+ - bruteforce_det4_helper(m,1,3,0,2)
81
+ + bruteforce_det4_helper(m,2,3,0,1);
82
+ }
83
+ };
84
+
85
+ } // end namespace internal
86
+
87
+ /** \lu_module
88
+ *
89
+ * \returns the determinant of this matrix
90
+ */
91
+ template<typename Derived>
92
+ inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
93
+ {
94
+ eigen_assert(rows() == cols());
95
+ typedef typename internal::nested_eval<Derived,Base::RowsAtCompileTime>::type Nested;
96
+ return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
97
+ }
98
+
99
+ } // end namespace Eigen
100
+
101
+ #endif // EIGEN_DETERMINANT_H
@@ -0,0 +1,891 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_LU_H
11
+ #define EIGEN_LU_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+ template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
17
+ : traits<_MatrixType>
18
+ {
19
+ typedef MatrixXpr XprKind;
20
+ typedef SolverStorage StorageKind;
21
+ enum { Flags = 0 };
22
+ };
23
+
24
+ } // end namespace internal
25
+
26
+ /** \ingroup LU_Module
27
+ *
28
+ * \class FullPivLU
29
+ *
30
+ * \brief LU decomposition of a matrix with complete pivoting, and related features
31
+ *
32
+ * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
33
+ *
34
+ * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
35
+ * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
36
+ * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
37
+ * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
38
+ * zeros are at the end.
39
+ *
40
+ * This decomposition provides the generic approach to solving systems of linear equations, computing
41
+ * the rank, invertibility, inverse, kernel, and determinant.
42
+ *
43
+ * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
44
+ * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
45
+ * working with the SVD allows to select the smallest singular values of the matrix, something that
46
+ * the LU decomposition doesn't see.
47
+ *
48
+ * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
49
+ * permutationP(), permutationQ().
50
+ *
51
+ * As an exemple, here is how the original matrix can be retrieved:
52
+ * \include class_FullPivLU.cpp
53
+ * Output: \verbinclude class_FullPivLU.out
54
+ *
55
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
56
+ *
57
+ * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
58
+ */
59
+ template<typename _MatrixType> class FullPivLU
60
+ : public SolverBase<FullPivLU<_MatrixType> >
61
+ {
62
+ public:
63
+ typedef _MatrixType MatrixType;
64
+ typedef SolverBase<FullPivLU> Base;
65
+
66
+ EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
67
+ // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
68
+ enum {
69
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
70
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
71
+ };
72
+ typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
73
+ typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
74
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
75
+ typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
76
+ typedef typename MatrixType::PlainObject PlainObject;
77
+
78
+ /**
79
+ * \brief Default Constructor.
80
+ *
81
+ * The default constructor is useful in cases in which the user intends to
82
+ * perform decompositions via LU::compute(const MatrixType&).
83
+ */
84
+ FullPivLU();
85
+
86
+ /** \brief Default Constructor with memory preallocation
87
+ *
88
+ * Like the default constructor but with preallocation of the internal data
89
+ * according to the specified problem \a size.
90
+ * \sa FullPivLU()
91
+ */
92
+ FullPivLU(Index rows, Index cols);
93
+
94
+ /** Constructor.
95
+ *
96
+ * \param matrix the matrix of which to compute the LU decomposition.
97
+ * It is required to be nonzero.
98
+ */
99
+ template<typename InputType>
100
+ explicit FullPivLU(const EigenBase<InputType>& matrix);
101
+
102
+ /** \brief Constructs a LU factorization from a given matrix
103
+ *
104
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
105
+ *
106
+ * \sa FullPivLU(const EigenBase&)
107
+ */
108
+ template<typename InputType>
109
+ explicit FullPivLU(EigenBase<InputType>& matrix);
110
+
111
+ /** Computes the LU decomposition of the given matrix.
112
+ *
113
+ * \param matrix the matrix of which to compute the LU decomposition.
114
+ * It is required to be nonzero.
115
+ *
116
+ * \returns a reference to *this
117
+ */
118
+ template<typename InputType>
119
+ FullPivLU& compute(const EigenBase<InputType>& matrix) {
120
+ m_lu = matrix.derived();
121
+ computeInPlace();
122
+ return *this;
123
+ }
124
+
125
+ /** \returns the LU decomposition matrix: the upper-triangular part is U, the
126
+ * unit-lower-triangular part is L (at least for square matrices; in the non-square
127
+ * case, special care is needed, see the documentation of class FullPivLU).
128
+ *
129
+ * \sa matrixL(), matrixU()
130
+ */
131
+ inline const MatrixType& matrixLU() const
132
+ {
133
+ eigen_assert(m_isInitialized && "LU is not initialized.");
134
+ return m_lu;
135
+ }
136
+
137
+ /** \returns the number of nonzero pivots in the LU decomposition.
138
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
139
+ * So that notion isn't really intrinsically interesting, but it is
140
+ * still useful when implementing algorithms.
141
+ *
142
+ * \sa rank()
143
+ */
144
+ inline Index nonzeroPivots() const
145
+ {
146
+ eigen_assert(m_isInitialized && "LU is not initialized.");
147
+ return m_nonzero_pivots;
148
+ }
149
+
150
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
151
+ * diagonal coefficient of U.
152
+ */
153
+ RealScalar maxPivot() const { return m_maxpivot; }
154
+
155
+ /** \returns the permutation matrix P
156
+ *
157
+ * \sa permutationQ()
158
+ */
159
+ EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
160
+ {
161
+ eigen_assert(m_isInitialized && "LU is not initialized.");
162
+ return m_p;
163
+ }
164
+
165
+ /** \returns the permutation matrix Q
166
+ *
167
+ * \sa permutationP()
168
+ */
169
+ inline const PermutationQType& permutationQ() const
170
+ {
171
+ eigen_assert(m_isInitialized && "LU is not initialized.");
172
+ return m_q;
173
+ }
174
+
175
+ /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
176
+ * will form a basis of the kernel.
177
+ *
178
+ * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
179
+ *
180
+ * \note This method has to determine which pivots should be considered nonzero.
181
+ * For that, it uses the threshold value that you can control by calling
182
+ * setThreshold(const RealScalar&).
183
+ *
184
+ * Example: \include FullPivLU_kernel.cpp
185
+ * Output: \verbinclude FullPivLU_kernel.out
186
+ *
187
+ * \sa image()
188
+ */
189
+ inline const internal::kernel_retval<FullPivLU> kernel() const
190
+ {
191
+ eigen_assert(m_isInitialized && "LU is not initialized.");
192
+ return internal::kernel_retval<FullPivLU>(*this);
193
+ }
194
+
195
+ /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
196
+ * will form a basis of the image (column-space).
197
+ *
198
+ * \param originalMatrix the original matrix, of which *this is the LU decomposition.
199
+ * The reason why it is needed to pass it here, is that this allows
200
+ * a large optimization, as otherwise this method would need to reconstruct it
201
+ * from the LU decomposition.
202
+ *
203
+ * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
204
+ *
205
+ * \note This method has to determine which pivots should be considered nonzero.
206
+ * For that, it uses the threshold value that you can control by calling
207
+ * setThreshold(const RealScalar&).
208
+ *
209
+ * Example: \include FullPivLU_image.cpp
210
+ * Output: \verbinclude FullPivLU_image.out
211
+ *
212
+ * \sa kernel()
213
+ */
214
+ inline const internal::image_retval<FullPivLU>
215
+ image(const MatrixType& originalMatrix) const
216
+ {
217
+ eigen_assert(m_isInitialized && "LU is not initialized.");
218
+ return internal::image_retval<FullPivLU>(*this, originalMatrix);
219
+ }
220
+
221
+ /** \return a solution x to the equation Ax=b, where A is the matrix of which
222
+ * *this is the LU decomposition.
223
+ *
224
+ * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
225
+ * the only requirement in order for the equation to make sense is that
226
+ * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
227
+ *
228
+ * \returns a solution.
229
+ *
230
+ * \note_about_checking_solutions
231
+ *
232
+ * \note_about_arbitrary_choice_of_solution
233
+ * \note_about_using_kernel_to_study_multiple_solutions
234
+ *
235
+ * Example: \include FullPivLU_solve.cpp
236
+ * Output: \verbinclude FullPivLU_solve.out
237
+ *
238
+ * \sa TriangularView::solve(), kernel(), inverse()
239
+ */
240
+ // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
241
+ template<typename Rhs>
242
+ inline const Solve<FullPivLU, Rhs>
243
+ solve(const MatrixBase<Rhs>& b) const
244
+ {
245
+ eigen_assert(m_isInitialized && "LU is not initialized.");
246
+ return Solve<FullPivLU, Rhs>(*this, b.derived());
247
+ }
248
+
249
+ /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
250
+ the LU decomposition.
251
+ */
252
+ inline RealScalar rcond() const
253
+ {
254
+ eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
255
+ return internal::rcond_estimate_helper(m_l1_norm, *this);
256
+ }
257
+
258
+ /** \returns the determinant of the matrix of which
259
+ * *this is the LU decomposition. It has only linear complexity
260
+ * (that is, O(n) where n is the dimension of the square matrix)
261
+ * as the LU decomposition has already been computed.
262
+ *
263
+ * \note This is only for square matrices.
264
+ *
265
+ * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
266
+ * optimized paths.
267
+ *
268
+ * \warning a determinant can be very big or small, so for matrices
269
+ * of large enough dimension, there is a risk of overflow/underflow.
270
+ *
271
+ * \sa MatrixBase::determinant()
272
+ */
273
+ typename internal::traits<MatrixType>::Scalar determinant() const;
274
+
275
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
276
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
277
+ * LU decomposition itself.
278
+ *
279
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
280
+ * uses a formula to automatically determine a reasonable threshold.
281
+ * Once you have called the present method setThreshold(const RealScalar&),
282
+ * your value is used instead.
283
+ *
284
+ * \param threshold The new value to use as the threshold.
285
+ *
286
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
287
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
288
+ * where maxpivot is the biggest pivot.
289
+ *
290
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
291
+ */
292
+ FullPivLU& setThreshold(const RealScalar& threshold)
293
+ {
294
+ m_usePrescribedThreshold = true;
295
+ m_prescribedThreshold = threshold;
296
+ return *this;
297
+ }
298
+
299
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
300
+ * determining the threshold.
301
+ *
302
+ * You should pass the special object Eigen::Default as parameter here.
303
+ * \code lu.setThreshold(Eigen::Default); \endcode
304
+ *
305
+ * See the documentation of setThreshold(const RealScalar&).
306
+ */
307
+ FullPivLU& setThreshold(Default_t)
308
+ {
309
+ m_usePrescribedThreshold = false;
310
+ return *this;
311
+ }
312
+
313
+ /** Returns the threshold that will be used by certain methods such as rank().
314
+ *
315
+ * See the documentation of setThreshold(const RealScalar&).
316
+ */
317
+ RealScalar threshold() const
318
+ {
319
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
320
+ return m_usePrescribedThreshold ? m_prescribedThreshold
321
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
322
+ // and turns out to be identical to Higham's formula used already in LDLt.
323
+ : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
324
+ }
325
+
326
+ /** \returns the rank of the matrix of which *this is the LU decomposition.
327
+ *
328
+ * \note This method has to determine which pivots should be considered nonzero.
329
+ * For that, it uses the threshold value that you can control by calling
330
+ * setThreshold(const RealScalar&).
331
+ */
332
+ inline Index rank() const
333
+ {
334
+ using std::abs;
335
+ eigen_assert(m_isInitialized && "LU is not initialized.");
336
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
337
+ Index result = 0;
338
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
339
+ result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
340
+ return result;
341
+ }
342
+
343
+ /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
344
+ *
345
+ * \note This method has to determine which pivots should be considered nonzero.
346
+ * For that, it uses the threshold value that you can control by calling
347
+ * setThreshold(const RealScalar&).
348
+ */
349
+ inline Index dimensionOfKernel() const
350
+ {
351
+ eigen_assert(m_isInitialized && "LU is not initialized.");
352
+ return cols() - rank();
353
+ }
354
+
355
+ /** \returns true if the matrix of which *this is the LU decomposition represents an injective
356
+ * linear map, i.e. has trivial kernel; false otherwise.
357
+ *
358
+ * \note This method has to determine which pivots should be considered nonzero.
359
+ * For that, it uses the threshold value that you can control by calling
360
+ * setThreshold(const RealScalar&).
361
+ */
362
+ inline bool isInjective() const
363
+ {
364
+ eigen_assert(m_isInitialized && "LU is not initialized.");
365
+ return rank() == cols();
366
+ }
367
+
368
+ /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
369
+ * linear map; false otherwise.
370
+ *
371
+ * \note This method has to determine which pivots should be considered nonzero.
372
+ * For that, it uses the threshold value that you can control by calling
373
+ * setThreshold(const RealScalar&).
374
+ */
375
+ inline bool isSurjective() const
376
+ {
377
+ eigen_assert(m_isInitialized && "LU is not initialized.");
378
+ return rank() == rows();
379
+ }
380
+
381
+ /** \returns true if the matrix of which *this is the LU decomposition is invertible.
382
+ *
383
+ * \note This method has to determine which pivots should be considered nonzero.
384
+ * For that, it uses the threshold value that you can control by calling
385
+ * setThreshold(const RealScalar&).
386
+ */
387
+ inline bool isInvertible() const
388
+ {
389
+ eigen_assert(m_isInitialized && "LU is not initialized.");
390
+ return isInjective() && (m_lu.rows() == m_lu.cols());
391
+ }
392
+
393
+ /** \returns the inverse of the matrix of which *this is the LU decomposition.
394
+ *
395
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
396
+ * Use isInvertible() to first determine whether this matrix is invertible.
397
+ *
398
+ * \sa MatrixBase::inverse()
399
+ */
400
+ inline const Inverse<FullPivLU> inverse() const
401
+ {
402
+ eigen_assert(m_isInitialized && "LU is not initialized.");
403
+ eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
404
+ return Inverse<FullPivLU>(*this);
405
+ }
406
+
407
+ MatrixType reconstructedMatrix() const;
408
+
409
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); }
410
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); }
411
+
412
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
413
+ template<typename RhsType, typename DstType>
414
+ EIGEN_DEVICE_FUNC
415
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
416
+
417
+ template<bool Conjugate, typename RhsType, typename DstType>
418
+ EIGEN_DEVICE_FUNC
419
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
420
+ #endif
421
+
422
+ protected:
423
+
424
+ static void check_template_parameters()
425
+ {
426
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
427
+ }
428
+
429
+ void computeInPlace();
430
+
431
+ MatrixType m_lu;
432
+ PermutationPType m_p;
433
+ PermutationQType m_q;
434
+ IntColVectorType m_rowsTranspositions;
435
+ IntRowVectorType m_colsTranspositions;
436
+ Index m_nonzero_pivots;
437
+ RealScalar m_l1_norm;
438
+ RealScalar m_maxpivot, m_prescribedThreshold;
439
+ signed char m_det_pq;
440
+ bool m_isInitialized, m_usePrescribedThreshold;
441
+ };
442
+
443
+ template<typename MatrixType>
444
+ FullPivLU<MatrixType>::FullPivLU()
445
+ : m_isInitialized(false), m_usePrescribedThreshold(false)
446
+ {
447
+ }
448
+
449
+ template<typename MatrixType>
450
+ FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
451
+ : m_lu(rows, cols),
452
+ m_p(rows),
453
+ m_q(cols),
454
+ m_rowsTranspositions(rows),
455
+ m_colsTranspositions(cols),
456
+ m_isInitialized(false),
457
+ m_usePrescribedThreshold(false)
458
+ {
459
+ }
460
+
461
+ template<typename MatrixType>
462
+ template<typename InputType>
463
+ FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
464
+ : m_lu(matrix.rows(), matrix.cols()),
465
+ m_p(matrix.rows()),
466
+ m_q(matrix.cols()),
467
+ m_rowsTranspositions(matrix.rows()),
468
+ m_colsTranspositions(matrix.cols()),
469
+ m_isInitialized(false),
470
+ m_usePrescribedThreshold(false)
471
+ {
472
+ compute(matrix.derived());
473
+ }
474
+
475
+ template<typename MatrixType>
476
+ template<typename InputType>
477
+ FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
478
+ : m_lu(matrix.derived()),
479
+ m_p(matrix.rows()),
480
+ m_q(matrix.cols()),
481
+ m_rowsTranspositions(matrix.rows()),
482
+ m_colsTranspositions(matrix.cols()),
483
+ m_isInitialized(false),
484
+ m_usePrescribedThreshold(false)
485
+ {
486
+ computeInPlace();
487
+ }
488
+
489
+ template<typename MatrixType>
490
+ void FullPivLU<MatrixType>::computeInPlace()
491
+ {
492
+ check_template_parameters();
493
+
494
+ // the permutations are stored as int indices, so just to be sure:
495
+ eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
496
+
497
+ m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
498
+
499
+ const Index size = m_lu.diagonalSize();
500
+ const Index rows = m_lu.rows();
501
+ const Index cols = m_lu.cols();
502
+
503
+ // will store the transpositions, before we accumulate them at the end.
504
+ // can't accumulate on-the-fly because that will be done in reverse order for the rows.
505
+ m_rowsTranspositions.resize(m_lu.rows());
506
+ m_colsTranspositions.resize(m_lu.cols());
507
+ Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
508
+
509
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
510
+ m_maxpivot = RealScalar(0);
511
+
512
+ for(Index k = 0; k < size; ++k)
513
+ {
514
+ // First, we need to find the pivot.
515
+
516
+ // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
517
+ Index row_of_biggest_in_corner, col_of_biggest_in_corner;
518
+ typedef internal::scalar_score_coeff_op<Scalar> Scoring;
519
+ typedef typename Scoring::result_type Score;
520
+ Score biggest_in_corner;
521
+ biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
522
+ .unaryExpr(Scoring())
523
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
524
+ row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
525
+ col_of_biggest_in_corner += k; // need to add k to them.
526
+
527
+ if(biggest_in_corner==Score(0))
528
+ {
529
+ // before exiting, make sure to initialize the still uninitialized transpositions
530
+ // in a sane state without destroying what we already have.
531
+ m_nonzero_pivots = k;
532
+ for(Index i = k; i < size; ++i)
533
+ {
534
+ m_rowsTranspositions.coeffRef(i) = i;
535
+ m_colsTranspositions.coeffRef(i) = i;
536
+ }
537
+ break;
538
+ }
539
+
540
+ RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
541
+ if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
542
+
543
+ // Now that we've found the pivot, we need to apply the row/col swaps to
544
+ // bring it to the location (k,k).
545
+
546
+ m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
547
+ m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
548
+ if(k != row_of_biggest_in_corner) {
549
+ m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
550
+ ++number_of_transpositions;
551
+ }
552
+ if(k != col_of_biggest_in_corner) {
553
+ m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
554
+ ++number_of_transpositions;
555
+ }
556
+
557
+ // Now that the pivot is at the right location, we update the remaining
558
+ // bottom-right corner by Gaussian elimination.
559
+
560
+ if(k<rows-1)
561
+ m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
562
+ if(k<size-1)
563
+ m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
564
+ }
565
+
566
+ // the main loop is over, we still have to accumulate the transpositions to find the
567
+ // permutations P and Q
568
+
569
+ m_p.setIdentity(rows);
570
+ for(Index k = size-1; k >= 0; --k)
571
+ m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
572
+
573
+ m_q.setIdentity(cols);
574
+ for(Index k = 0; k < size; ++k)
575
+ m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
576
+
577
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
578
+
579
+ m_isInitialized = true;
580
+ }
581
+
582
+ template<typename MatrixType>
583
+ typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
584
+ {
585
+ eigen_assert(m_isInitialized && "LU is not initialized.");
586
+ eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
587
+ return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
588
+ }
589
+
590
+ /** \returns the matrix represented by the decomposition,
591
+ * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
592
+ * This function is provided for debug purposes. */
593
+ template<typename MatrixType>
594
+ MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
595
+ {
596
+ eigen_assert(m_isInitialized && "LU is not initialized.");
597
+ const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
598
+ // LU
599
+ MatrixType res(m_lu.rows(),m_lu.cols());
600
+ // FIXME the .toDenseMatrix() should not be needed...
601
+ res = m_lu.leftCols(smalldim)
602
+ .template triangularView<UnitLower>().toDenseMatrix()
603
+ * m_lu.topRows(smalldim)
604
+ .template triangularView<Upper>().toDenseMatrix();
605
+
606
+ // P^{-1}(LU)
607
+ res = m_p.inverse() * res;
608
+
609
+ // (P^{-1}LU)Q^{-1}
610
+ res = res * m_q.inverse();
611
+
612
+ return res;
613
+ }
614
+
615
+ /********* Implementation of kernel() **************************************************/
616
+
617
+ namespace internal {
618
+ template<typename _MatrixType>
619
+ struct kernel_retval<FullPivLU<_MatrixType> >
620
+ : kernel_retval_base<FullPivLU<_MatrixType> >
621
+ {
622
+ EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
623
+
624
+ enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
625
+ MatrixType::MaxColsAtCompileTime,
626
+ MatrixType::MaxRowsAtCompileTime)
627
+ };
628
+
629
+ template<typename Dest> void evalTo(Dest& dst) const
630
+ {
631
+ using std::abs;
632
+ const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
633
+ if(dimker == 0)
634
+ {
635
+ // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
636
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
637
+ // just return a single column vector filled with zeros.
638
+ dst.setZero();
639
+ return;
640
+ }
641
+
642
+ /* Let us use the following lemma:
643
+ *
644
+ * Lemma: If the matrix A has the LU decomposition PAQ = LU,
645
+ * then Ker A = Q(Ker U).
646
+ *
647
+ * Proof: trivial: just keep in mind that P, Q, L are invertible.
648
+ */
649
+
650
+ /* Thus, all we need to do is to compute Ker U, and then apply Q.
651
+ *
652
+ * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
653
+ * Thus, the diagonal of U ends with exactly
654
+ * dimKer zero's. Let us use that to construct dimKer linearly
655
+ * independent vectors in Ker U.
656
+ */
657
+
658
+ Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
659
+ RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
660
+ Index p = 0;
661
+ for(Index i = 0; i < dec().nonzeroPivots(); ++i)
662
+ if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
663
+ pivots.coeffRef(p++) = i;
664
+ eigen_internal_assert(p == rank());
665
+
666
+ // we construct a temporaty trapezoid matrix m, by taking the U matrix and
667
+ // permuting the rows and cols to bring the nonnegligible pivots to the top of
668
+ // the main diagonal. We need that to be able to apply our triangular solvers.
669
+ // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
670
+ Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
671
+ MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
672
+ m(dec().matrixLU().block(0, 0, rank(), cols));
673
+ for(Index i = 0; i < rank(); ++i)
674
+ {
675
+ if(i) m.row(i).head(i).setZero();
676
+ m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
677
+ }
678
+ m.block(0, 0, rank(), rank());
679
+ m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
680
+ for(Index i = 0; i < rank(); ++i)
681
+ m.col(i).swap(m.col(pivots.coeff(i)));
682
+
683
+ // ok, we have our trapezoid matrix, we can apply the triangular solver.
684
+ // notice that the math behind this suggests that we should apply this to the
685
+ // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
686
+ m.topLeftCorner(rank(), rank())
687
+ .template triangularView<Upper>().solveInPlace(
688
+ m.topRightCorner(rank(), dimker)
689
+ );
690
+
691
+ // now we must undo the column permutation that we had applied!
692
+ for(Index i = rank()-1; i >= 0; --i)
693
+ m.col(i).swap(m.col(pivots.coeff(i)));
694
+
695
+ // see the negative sign in the next line, that's what we were talking about above.
696
+ for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
697
+ for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
698
+ for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
699
+ }
700
+ };
701
+
702
+ /***** Implementation of image() *****************************************************/
703
+
704
+ template<typename _MatrixType>
705
+ struct image_retval<FullPivLU<_MatrixType> >
706
+ : image_retval_base<FullPivLU<_MatrixType> >
707
+ {
708
+ EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
709
+
710
+ enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
711
+ MatrixType::MaxColsAtCompileTime,
712
+ MatrixType::MaxRowsAtCompileTime)
713
+ };
714
+
715
+ template<typename Dest> void evalTo(Dest& dst) const
716
+ {
717
+ using std::abs;
718
+ if(rank() == 0)
719
+ {
720
+ // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
721
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
722
+ // just return a single column vector filled with zeros.
723
+ dst.setZero();
724
+ return;
725
+ }
726
+
727
+ Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
728
+ RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
729
+ Index p = 0;
730
+ for(Index i = 0; i < dec().nonzeroPivots(); ++i)
731
+ if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
732
+ pivots.coeffRef(p++) = i;
733
+ eigen_internal_assert(p == rank());
734
+
735
+ for(Index i = 0; i < rank(); ++i)
736
+ dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
737
+ }
738
+ };
739
+
740
+ /***** Implementation of solve() *****************************************************/
741
+
742
+ } // end namespace internal
743
+
744
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
745
+ template<typename _MatrixType>
746
+ template<typename RhsType, typename DstType>
747
+ void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
748
+ {
749
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
750
+ * So we proceed as follows:
751
+ * Step 1: compute c = P * rhs.
752
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
753
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
754
+ * Step 4: result = Q * c;
755
+ */
756
+
757
+ const Index rows = this->rows(),
758
+ cols = this->cols(),
759
+ nonzero_pivots = this->rank();
760
+ eigen_assert(rhs.rows() == rows);
761
+ const Index smalldim = (std::min)(rows, cols);
762
+
763
+ if(nonzero_pivots == 0)
764
+ {
765
+ dst.setZero();
766
+ return;
767
+ }
768
+
769
+ typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
770
+
771
+ // Step 1
772
+ c = permutationP() * rhs;
773
+
774
+ // Step 2
775
+ m_lu.topLeftCorner(smalldim,smalldim)
776
+ .template triangularView<UnitLower>()
777
+ .solveInPlace(c.topRows(smalldim));
778
+ if(rows>cols)
779
+ c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
780
+
781
+ // Step 3
782
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
783
+ .template triangularView<Upper>()
784
+ .solveInPlace(c.topRows(nonzero_pivots));
785
+
786
+ // Step 4
787
+ for(Index i = 0; i < nonzero_pivots; ++i)
788
+ dst.row(permutationQ().indices().coeff(i)) = c.row(i);
789
+ for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
790
+ dst.row(permutationQ().indices().coeff(i)).setZero();
791
+ }
792
+
793
+ template<typename _MatrixType>
794
+ template<bool Conjugate, typename RhsType, typename DstType>
795
+ void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
796
+ {
797
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
798
+ * and since permutations are real and unitary, we can write this
799
+ * as A^T = Q U^T L^T P,
800
+ * So we proceed as follows:
801
+ * Step 1: compute c = Q^T rhs.
802
+ * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
803
+ * Step 3: replace c by the solution x to L^T x = c.
804
+ * Step 4: result = P^T c.
805
+ * If Conjugate is true, replace "^T" by "^*" above.
806
+ */
807
+
808
+ const Index rows = this->rows(), cols = this->cols(),
809
+ nonzero_pivots = this->rank();
810
+ eigen_assert(rhs.rows() == cols);
811
+ const Index smalldim = (std::min)(rows, cols);
812
+
813
+ if(nonzero_pivots == 0)
814
+ {
815
+ dst.setZero();
816
+ return;
817
+ }
818
+
819
+ typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
820
+
821
+ // Step 1
822
+ c = permutationQ().inverse() * rhs;
823
+
824
+ if (Conjugate) {
825
+ // Step 2
826
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
827
+ .template triangularView<Upper>()
828
+ .adjoint()
829
+ .solveInPlace(c.topRows(nonzero_pivots));
830
+ // Step 3
831
+ m_lu.topLeftCorner(smalldim, smalldim)
832
+ .template triangularView<UnitLower>()
833
+ .adjoint()
834
+ .solveInPlace(c.topRows(smalldim));
835
+ } else {
836
+ // Step 2
837
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
838
+ .template triangularView<Upper>()
839
+ .transpose()
840
+ .solveInPlace(c.topRows(nonzero_pivots));
841
+ // Step 3
842
+ m_lu.topLeftCorner(smalldim, smalldim)
843
+ .template triangularView<UnitLower>()
844
+ .transpose()
845
+ .solveInPlace(c.topRows(smalldim));
846
+ }
847
+
848
+ // Step 4
849
+ PermutationPType invp = permutationP().inverse().eval();
850
+ for(Index i = 0; i < smalldim; ++i)
851
+ dst.row(invp.indices().coeff(i)) = c.row(i);
852
+ for(Index i = smalldim; i < rows; ++i)
853
+ dst.row(invp.indices().coeff(i)).setZero();
854
+ }
855
+
856
+ #endif
857
+
858
+ namespace internal {
859
+
860
+
861
+ /***** Implementation of inverse() *****************************************************/
862
+ template<typename DstXprType, typename MatrixType>
863
+ struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
864
+ {
865
+ typedef FullPivLU<MatrixType> LuType;
866
+ typedef Inverse<LuType> SrcXprType;
867
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
868
+ {
869
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
870
+ }
871
+ };
872
+ } // end namespace internal
873
+
874
+ /******* MatrixBase methods *****************************************************************/
875
+
876
+ /** \lu_module
877
+ *
878
+ * \return the full-pivoting LU decomposition of \c *this.
879
+ *
880
+ * \sa class FullPivLU
881
+ */
882
+ template<typename Derived>
883
+ inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
884
+ MatrixBase<Derived>::fullPivLu() const
885
+ {
886
+ return FullPivLU<PlainObject>(eval());
887
+ }
888
+
889
+ } // end namespace Eigen
890
+
891
+ #endif // EIGEN_LU_H