tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,87 @@
|
|
1
|
+
/*
|
2
|
+
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
this list of conditions and the following disclaimer in the documentation
|
11
|
+
and/or other materials provided with the distribution.
|
12
|
+
* Neither the name of Intel Corporation nor the names of its contributors may
|
13
|
+
be used to endorse or promote products derived from this software without
|
14
|
+
specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
20
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
21
|
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
22
|
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
23
|
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
24
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
25
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
|
27
|
+
********************************************************************************
|
28
|
+
* Content : Eigen bindings to LAPACKe
|
29
|
+
* Self-adjoint eigenvalues/eigenvectors.
|
30
|
+
********************************************************************************
|
31
|
+
*/
|
32
|
+
|
33
|
+
#ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H
|
34
|
+
#define EIGEN_SAEIGENSOLVER_LAPACKE_H
|
35
|
+
|
36
|
+
namespace Eigen {
|
37
|
+
|
38
|
+
/** \internal Specialization for the data types supported by LAPACKe */
|
39
|
+
|
40
|
+
#define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \
|
41
|
+
template<> template<typename InputType> inline \
|
42
|
+
SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
|
43
|
+
SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \
|
44
|
+
{ \
|
45
|
+
eigen_assert(matrix.cols() == matrix.rows()); \
|
46
|
+
eigen_assert((options&~(EigVecMask|GenEigMask))==0 \
|
47
|
+
&& (options&EigVecMask)!=EigVecMask \
|
48
|
+
&& "invalid option parameter"); \
|
49
|
+
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
|
50
|
+
lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \
|
51
|
+
m_eivalues.resize(n,1); \
|
52
|
+
m_subdiag.resize(n-1); \
|
53
|
+
m_eivec = matrix; \
|
54
|
+
\
|
55
|
+
if(n==1) \
|
56
|
+
{ \
|
57
|
+
m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \
|
58
|
+
if(computeEigenvectors) m_eivec.setOnes(n,n); \
|
59
|
+
m_info = Success; \
|
60
|
+
m_isInitialized = true; \
|
61
|
+
m_eigenvectorsOk = computeEigenvectors; \
|
62
|
+
return *this; \
|
63
|
+
} \
|
64
|
+
\
|
65
|
+
lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \
|
66
|
+
char jobz, uplo='L'/*, range='A'*/; \
|
67
|
+
jobz = computeEigenvectors ? 'V' : 'N'; \
|
68
|
+
\
|
69
|
+
info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \
|
70
|
+
m_info = (info==0) ? Success : NoConvergence; \
|
71
|
+
m_isInitialized = true; \
|
72
|
+
m_eigenvectorsOk = computeEigenvectors; \
|
73
|
+
return *this; \
|
74
|
+
}
|
75
|
+
|
76
|
+
#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \
|
77
|
+
EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \
|
78
|
+
EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor )
|
79
|
+
|
80
|
+
EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev)
|
81
|
+
EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev)
|
82
|
+
EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev)
|
83
|
+
EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev)
|
84
|
+
|
85
|
+
} // end namespace Eigen
|
86
|
+
|
87
|
+
#endif // EIGEN_SAEIGENSOLVER_H
|
@@ -0,0 +1,556 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_TRIDIAGONALIZATION_H
|
12
|
+
#define EIGEN_TRIDIAGONALIZATION_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
|
18
|
+
template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
|
19
|
+
template<typename MatrixType>
|
20
|
+
struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
|
21
|
+
: public traits<typename MatrixType::PlainObject>
|
22
|
+
{
|
23
|
+
typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
|
24
|
+
enum { Flags = 0 };
|
25
|
+
};
|
26
|
+
|
27
|
+
template<typename MatrixType, typename CoeffVectorType>
|
28
|
+
void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
|
29
|
+
}
|
30
|
+
|
31
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
32
|
+
*
|
33
|
+
*
|
34
|
+
* \class Tridiagonalization
|
35
|
+
*
|
36
|
+
* \brief Tridiagonal decomposition of a selfadjoint matrix
|
37
|
+
*
|
38
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the
|
39
|
+
* tridiagonal decomposition; this is expected to be an instantiation of the
|
40
|
+
* Matrix class template.
|
41
|
+
*
|
42
|
+
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
|
43
|
+
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
|
44
|
+
*
|
45
|
+
* A tridiagonal matrix is a matrix which has nonzero elements only on the
|
46
|
+
* main diagonal and the first diagonal below and above it. The Hessenberg
|
47
|
+
* decomposition of a selfadjoint matrix is in fact a tridiagonal
|
48
|
+
* decomposition. This class is used in SelfAdjointEigenSolver to compute the
|
49
|
+
* eigenvalues and eigenvectors of a selfadjoint matrix.
|
50
|
+
*
|
51
|
+
* Call the function compute() to compute the tridiagonal decomposition of a
|
52
|
+
* given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
|
53
|
+
* constructor which computes the tridiagonal Schur decomposition at
|
54
|
+
* construction time. Once the decomposition is computed, you can use the
|
55
|
+
* matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
|
56
|
+
* decomposition.
|
57
|
+
*
|
58
|
+
* The documentation of Tridiagonalization(const MatrixType&) contains an
|
59
|
+
* example of the typical use of this class.
|
60
|
+
*
|
61
|
+
* \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
|
62
|
+
*/
|
63
|
+
template<typename _MatrixType> class Tridiagonalization
|
64
|
+
{
|
65
|
+
public:
|
66
|
+
|
67
|
+
/** \brief Synonym for the template parameter \p _MatrixType. */
|
68
|
+
typedef _MatrixType MatrixType;
|
69
|
+
|
70
|
+
typedef typename MatrixType::Scalar Scalar;
|
71
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
72
|
+
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
73
|
+
|
74
|
+
enum {
|
75
|
+
Size = MatrixType::RowsAtCompileTime,
|
76
|
+
SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
|
77
|
+
Options = MatrixType::Options,
|
78
|
+
MaxSize = MatrixType::MaxRowsAtCompileTime,
|
79
|
+
MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
|
80
|
+
};
|
81
|
+
|
82
|
+
typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
|
83
|
+
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
|
84
|
+
typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
|
85
|
+
typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
|
86
|
+
typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
|
87
|
+
|
88
|
+
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
89
|
+
typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
|
90
|
+
const Diagonal<const MatrixType>
|
91
|
+
>::type DiagonalReturnType;
|
92
|
+
|
93
|
+
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
94
|
+
typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
|
95
|
+
const Diagonal<const MatrixType, -1>
|
96
|
+
>::type SubDiagonalReturnType;
|
97
|
+
|
98
|
+
/** \brief Return type of matrixQ() */
|
99
|
+
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
|
100
|
+
|
101
|
+
/** \brief Default constructor.
|
102
|
+
*
|
103
|
+
* \param [in] size Positive integer, size of the matrix whose tridiagonal
|
104
|
+
* decomposition will be computed.
|
105
|
+
*
|
106
|
+
* The default constructor is useful in cases in which the user intends to
|
107
|
+
* perform decompositions via compute(). The \p size parameter is only
|
108
|
+
* used as a hint. It is not an error to give a wrong \p size, but it may
|
109
|
+
* impair performance.
|
110
|
+
*
|
111
|
+
* \sa compute() for an example.
|
112
|
+
*/
|
113
|
+
explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
|
114
|
+
: m_matrix(size,size),
|
115
|
+
m_hCoeffs(size > 1 ? size-1 : 1),
|
116
|
+
m_isInitialized(false)
|
117
|
+
{}
|
118
|
+
|
119
|
+
/** \brief Constructor; computes tridiagonal decomposition of given matrix.
|
120
|
+
*
|
121
|
+
* \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
|
122
|
+
* is to be computed.
|
123
|
+
*
|
124
|
+
* This constructor calls compute() to compute the tridiagonal decomposition.
|
125
|
+
*
|
126
|
+
* Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
|
127
|
+
* Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
|
128
|
+
*/
|
129
|
+
template<typename InputType>
|
130
|
+
explicit Tridiagonalization(const EigenBase<InputType>& matrix)
|
131
|
+
: m_matrix(matrix.derived()),
|
132
|
+
m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
|
133
|
+
m_isInitialized(false)
|
134
|
+
{
|
135
|
+
internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
|
136
|
+
m_isInitialized = true;
|
137
|
+
}
|
138
|
+
|
139
|
+
/** \brief Computes tridiagonal decomposition of given matrix.
|
140
|
+
*
|
141
|
+
* \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
|
142
|
+
* is to be computed.
|
143
|
+
* \returns Reference to \c *this
|
144
|
+
*
|
145
|
+
* The tridiagonal decomposition is computed by bringing the columns of
|
146
|
+
* the matrix successively in the required form using Householder
|
147
|
+
* reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
|
148
|
+
* the size of the given matrix.
|
149
|
+
*
|
150
|
+
* This method reuses of the allocated data in the Tridiagonalization
|
151
|
+
* object, if the size of the matrix does not change.
|
152
|
+
*
|
153
|
+
* Example: \include Tridiagonalization_compute.cpp
|
154
|
+
* Output: \verbinclude Tridiagonalization_compute.out
|
155
|
+
*/
|
156
|
+
template<typename InputType>
|
157
|
+
Tridiagonalization& compute(const EigenBase<InputType>& matrix)
|
158
|
+
{
|
159
|
+
m_matrix = matrix.derived();
|
160
|
+
m_hCoeffs.resize(matrix.rows()-1, 1);
|
161
|
+
internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
|
162
|
+
m_isInitialized = true;
|
163
|
+
return *this;
|
164
|
+
}
|
165
|
+
|
166
|
+
/** \brief Returns the Householder coefficients.
|
167
|
+
*
|
168
|
+
* \returns a const reference to the vector of Householder coefficients
|
169
|
+
*
|
170
|
+
* \pre Either the constructor Tridiagonalization(const MatrixType&) or
|
171
|
+
* the member function compute(const MatrixType&) has been called before
|
172
|
+
* to compute the tridiagonal decomposition of a matrix.
|
173
|
+
*
|
174
|
+
* The Householder coefficients allow the reconstruction of the matrix
|
175
|
+
* \f$ Q \f$ in the tridiagonal decomposition from the packed data.
|
176
|
+
*
|
177
|
+
* Example: \include Tridiagonalization_householderCoefficients.cpp
|
178
|
+
* Output: \verbinclude Tridiagonalization_householderCoefficients.out
|
179
|
+
*
|
180
|
+
* \sa packedMatrix(), \ref Householder_Module "Householder module"
|
181
|
+
*/
|
182
|
+
inline CoeffVectorType householderCoefficients() const
|
183
|
+
{
|
184
|
+
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
185
|
+
return m_hCoeffs;
|
186
|
+
}
|
187
|
+
|
188
|
+
/** \brief Returns the internal representation of the decomposition
|
189
|
+
*
|
190
|
+
* \returns a const reference to a matrix with the internal representation
|
191
|
+
* of the decomposition.
|
192
|
+
*
|
193
|
+
* \pre Either the constructor Tridiagonalization(const MatrixType&) or
|
194
|
+
* the member function compute(const MatrixType&) has been called before
|
195
|
+
* to compute the tridiagonal decomposition of a matrix.
|
196
|
+
*
|
197
|
+
* The returned matrix contains the following information:
|
198
|
+
* - the strict upper triangular part is equal to the input matrix A.
|
199
|
+
* - the diagonal and lower sub-diagonal represent the real tridiagonal
|
200
|
+
* symmetric matrix T.
|
201
|
+
* - the rest of the lower part contains the Householder vectors that,
|
202
|
+
* combined with Householder coefficients returned by
|
203
|
+
* householderCoefficients(), allows to reconstruct the matrix Q as
|
204
|
+
* \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
|
205
|
+
* Here, the matrices \f$ H_i \f$ are the Householder transformations
|
206
|
+
* \f$ H_i = (I - h_i v_i v_i^T) \f$
|
207
|
+
* where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
|
208
|
+
* \f$ v_i \f$ is the Householder vector defined by
|
209
|
+
* \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
|
210
|
+
* with M the matrix returned by this function.
|
211
|
+
*
|
212
|
+
* See LAPACK for further details on this packed storage.
|
213
|
+
*
|
214
|
+
* Example: \include Tridiagonalization_packedMatrix.cpp
|
215
|
+
* Output: \verbinclude Tridiagonalization_packedMatrix.out
|
216
|
+
*
|
217
|
+
* \sa householderCoefficients()
|
218
|
+
*/
|
219
|
+
inline const MatrixType& packedMatrix() const
|
220
|
+
{
|
221
|
+
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
222
|
+
return m_matrix;
|
223
|
+
}
|
224
|
+
|
225
|
+
/** \brief Returns the unitary matrix Q in the decomposition
|
226
|
+
*
|
227
|
+
* \returns object representing the matrix Q
|
228
|
+
*
|
229
|
+
* \pre Either the constructor Tridiagonalization(const MatrixType&) or
|
230
|
+
* the member function compute(const MatrixType&) has been called before
|
231
|
+
* to compute the tridiagonal decomposition of a matrix.
|
232
|
+
*
|
233
|
+
* This function returns a light-weight object of template class
|
234
|
+
* HouseholderSequence. You can either apply it directly to a matrix or
|
235
|
+
* you can convert it to a matrix of type #MatrixType.
|
236
|
+
*
|
237
|
+
* \sa Tridiagonalization(const MatrixType&) for an example,
|
238
|
+
* matrixT(), class HouseholderSequence
|
239
|
+
*/
|
240
|
+
HouseholderSequenceType matrixQ() const
|
241
|
+
{
|
242
|
+
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
243
|
+
return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
|
244
|
+
.setLength(m_matrix.rows() - 1)
|
245
|
+
.setShift(1);
|
246
|
+
}
|
247
|
+
|
248
|
+
/** \brief Returns an expression of the tridiagonal matrix T in the decomposition
|
249
|
+
*
|
250
|
+
* \returns expression object representing the matrix T
|
251
|
+
*
|
252
|
+
* \pre Either the constructor Tridiagonalization(const MatrixType&) or
|
253
|
+
* the member function compute(const MatrixType&) has been called before
|
254
|
+
* to compute the tridiagonal decomposition of a matrix.
|
255
|
+
*
|
256
|
+
* Currently, this function can be used to extract the matrix T from internal
|
257
|
+
* data and copy it to a dense matrix object. In most cases, it may be
|
258
|
+
* sufficient to directly use the packed matrix or the vector expressions
|
259
|
+
* returned by diagonal() and subDiagonal() instead of creating a new
|
260
|
+
* dense copy matrix with this function.
|
261
|
+
*
|
262
|
+
* \sa Tridiagonalization(const MatrixType&) for an example,
|
263
|
+
* matrixQ(), packedMatrix(), diagonal(), subDiagonal()
|
264
|
+
*/
|
265
|
+
MatrixTReturnType matrixT() const
|
266
|
+
{
|
267
|
+
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
268
|
+
return MatrixTReturnType(m_matrix.real());
|
269
|
+
}
|
270
|
+
|
271
|
+
/** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
|
272
|
+
*
|
273
|
+
* \returns expression representing the diagonal of T
|
274
|
+
*
|
275
|
+
* \pre Either the constructor Tridiagonalization(const MatrixType&) or
|
276
|
+
* the member function compute(const MatrixType&) has been called before
|
277
|
+
* to compute the tridiagonal decomposition of a matrix.
|
278
|
+
*
|
279
|
+
* Example: \include Tridiagonalization_diagonal.cpp
|
280
|
+
* Output: \verbinclude Tridiagonalization_diagonal.out
|
281
|
+
*
|
282
|
+
* \sa matrixT(), subDiagonal()
|
283
|
+
*/
|
284
|
+
DiagonalReturnType diagonal() const;
|
285
|
+
|
286
|
+
/** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
|
287
|
+
*
|
288
|
+
* \returns expression representing the subdiagonal of T
|
289
|
+
*
|
290
|
+
* \pre Either the constructor Tridiagonalization(const MatrixType&) or
|
291
|
+
* the member function compute(const MatrixType&) has been called before
|
292
|
+
* to compute the tridiagonal decomposition of a matrix.
|
293
|
+
*
|
294
|
+
* \sa diagonal() for an example, matrixT()
|
295
|
+
*/
|
296
|
+
SubDiagonalReturnType subDiagonal() const;
|
297
|
+
|
298
|
+
protected:
|
299
|
+
|
300
|
+
MatrixType m_matrix;
|
301
|
+
CoeffVectorType m_hCoeffs;
|
302
|
+
bool m_isInitialized;
|
303
|
+
};
|
304
|
+
|
305
|
+
template<typename MatrixType>
|
306
|
+
typename Tridiagonalization<MatrixType>::DiagonalReturnType
|
307
|
+
Tridiagonalization<MatrixType>::diagonal() const
|
308
|
+
{
|
309
|
+
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
310
|
+
return m_matrix.diagonal().real();
|
311
|
+
}
|
312
|
+
|
313
|
+
template<typename MatrixType>
|
314
|
+
typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
|
315
|
+
Tridiagonalization<MatrixType>::subDiagonal() const
|
316
|
+
{
|
317
|
+
eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
|
318
|
+
return m_matrix.template diagonal<-1>().real();
|
319
|
+
}
|
320
|
+
|
321
|
+
namespace internal {
|
322
|
+
|
323
|
+
/** \internal
|
324
|
+
* Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
|
325
|
+
*
|
326
|
+
* \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
|
327
|
+
* On output, the strict upper part is left unchanged, and the lower triangular part
|
328
|
+
* represents the T and Q matrices in packed format has detailed below.
|
329
|
+
* \param[out] hCoeffs returned Householder coefficients (see below)
|
330
|
+
*
|
331
|
+
* On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
|
332
|
+
* and lower sub-diagonal of the matrix \a matA.
|
333
|
+
* The unitary matrix Q is represented in a compact way as a product of
|
334
|
+
* Householder reflectors \f$ H_i \f$ such that:
|
335
|
+
* \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
|
336
|
+
* The Householder reflectors are defined as
|
337
|
+
* \f$ H_i = (I - h_i v_i v_i^T) \f$
|
338
|
+
* where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
|
339
|
+
* \f$ v_i \f$ is the Householder vector defined by
|
340
|
+
* \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
|
341
|
+
*
|
342
|
+
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
|
343
|
+
*
|
344
|
+
* \sa Tridiagonalization::packedMatrix()
|
345
|
+
*/
|
346
|
+
template<typename MatrixType, typename CoeffVectorType>
|
347
|
+
void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
|
348
|
+
{
|
349
|
+
using numext::conj;
|
350
|
+
typedef typename MatrixType::Scalar Scalar;
|
351
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
352
|
+
Index n = matA.rows();
|
353
|
+
eigen_assert(n==matA.cols());
|
354
|
+
eigen_assert(n==hCoeffs.size()+1 || n==1);
|
355
|
+
|
356
|
+
for (Index i = 0; i<n-1; ++i)
|
357
|
+
{
|
358
|
+
Index remainingSize = n-i-1;
|
359
|
+
RealScalar beta;
|
360
|
+
Scalar h;
|
361
|
+
matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
|
362
|
+
|
363
|
+
// Apply similarity transformation to remaining columns,
|
364
|
+
// i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
|
365
|
+
matA.col(i).coeffRef(i+1) = 1;
|
366
|
+
|
367
|
+
hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
|
368
|
+
* (conj(h) * matA.col(i).tail(remainingSize)));
|
369
|
+
|
370
|
+
hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
|
371
|
+
|
372
|
+
matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
|
373
|
+
.rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
|
374
|
+
|
375
|
+
matA.col(i).coeffRef(i+1) = beta;
|
376
|
+
hCoeffs.coeffRef(i) = h;
|
377
|
+
}
|
378
|
+
}
|
379
|
+
|
380
|
+
// forward declaration, implementation at the end of this file
|
381
|
+
template<typename MatrixType,
|
382
|
+
int Size=MatrixType::ColsAtCompileTime,
|
383
|
+
bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
|
384
|
+
struct tridiagonalization_inplace_selector;
|
385
|
+
|
386
|
+
/** \brief Performs a full tridiagonalization in place
|
387
|
+
*
|
388
|
+
* \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
|
389
|
+
* decomposition is to be computed. Only the lower triangular part referenced.
|
390
|
+
* The rest is left unchanged. On output, the orthogonal matrix Q
|
391
|
+
* in the decomposition if \p extractQ is true.
|
392
|
+
* \param[out] diag The diagonal of the tridiagonal matrix T in the
|
393
|
+
* decomposition.
|
394
|
+
* \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
|
395
|
+
* the decomposition.
|
396
|
+
* \param[in] extractQ If true, the orthogonal matrix Q in the
|
397
|
+
* decomposition is computed and stored in \p mat.
|
398
|
+
*
|
399
|
+
* Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
|
400
|
+
* such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
|
401
|
+
* symmetric tridiagonal matrix.
|
402
|
+
*
|
403
|
+
* The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
|
404
|
+
* \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
|
405
|
+
* part of the matrix \p mat is destroyed.
|
406
|
+
*
|
407
|
+
* The vectors \p diag and \p subdiag are not resized. The function
|
408
|
+
* assumes that they are already of the correct size. The length of the
|
409
|
+
* vector \p diag should equal the number of rows in \p mat, and the
|
410
|
+
* length of the vector \p subdiag should be one left.
|
411
|
+
*
|
412
|
+
* This implementation contains an optimized path for 3-by-3 matrices
|
413
|
+
* which is especially useful for plane fitting.
|
414
|
+
*
|
415
|
+
* \note Currently, it requires two temporary vectors to hold the intermediate
|
416
|
+
* Householder coefficients, and to reconstruct the matrix Q from the Householder
|
417
|
+
* reflectors.
|
418
|
+
*
|
419
|
+
* Example (this uses the same matrix as the example in
|
420
|
+
* Tridiagonalization::Tridiagonalization(const MatrixType&)):
|
421
|
+
* \include Tridiagonalization_decomposeInPlace.cpp
|
422
|
+
* Output: \verbinclude Tridiagonalization_decomposeInPlace.out
|
423
|
+
*
|
424
|
+
* \sa class Tridiagonalization
|
425
|
+
*/
|
426
|
+
template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
|
427
|
+
void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
428
|
+
{
|
429
|
+
eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
|
430
|
+
tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
|
431
|
+
}
|
432
|
+
|
433
|
+
/** \internal
|
434
|
+
* General full tridiagonalization
|
435
|
+
*/
|
436
|
+
template<typename MatrixType, int Size, bool IsComplex>
|
437
|
+
struct tridiagonalization_inplace_selector
|
438
|
+
{
|
439
|
+
typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
|
440
|
+
typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
|
441
|
+
template<typename DiagonalType, typename SubDiagonalType>
|
442
|
+
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
443
|
+
{
|
444
|
+
CoeffVectorType hCoeffs(mat.cols()-1);
|
445
|
+
tridiagonalization_inplace(mat,hCoeffs);
|
446
|
+
diag = mat.diagonal().real();
|
447
|
+
subdiag = mat.template diagonal<-1>().real();
|
448
|
+
if(extractQ)
|
449
|
+
mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
|
450
|
+
.setLength(mat.rows() - 1)
|
451
|
+
.setShift(1);
|
452
|
+
}
|
453
|
+
};
|
454
|
+
|
455
|
+
/** \internal
|
456
|
+
* Specialization for 3x3 real matrices.
|
457
|
+
* Especially useful for plane fitting.
|
458
|
+
*/
|
459
|
+
template<typename MatrixType>
|
460
|
+
struct tridiagonalization_inplace_selector<MatrixType,3,false>
|
461
|
+
{
|
462
|
+
typedef typename MatrixType::Scalar Scalar;
|
463
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
464
|
+
|
465
|
+
template<typename DiagonalType, typename SubDiagonalType>
|
466
|
+
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
467
|
+
{
|
468
|
+
using std::sqrt;
|
469
|
+
const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
|
470
|
+
diag[0] = mat(0,0);
|
471
|
+
RealScalar v1norm2 = numext::abs2(mat(2,0));
|
472
|
+
if(v1norm2 <= tol)
|
473
|
+
{
|
474
|
+
diag[1] = mat(1,1);
|
475
|
+
diag[2] = mat(2,2);
|
476
|
+
subdiag[0] = mat(1,0);
|
477
|
+
subdiag[1] = mat(2,1);
|
478
|
+
if (extractQ)
|
479
|
+
mat.setIdentity();
|
480
|
+
}
|
481
|
+
else
|
482
|
+
{
|
483
|
+
RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
|
484
|
+
RealScalar invBeta = RealScalar(1)/beta;
|
485
|
+
Scalar m01 = mat(1,0) * invBeta;
|
486
|
+
Scalar m02 = mat(2,0) * invBeta;
|
487
|
+
Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
|
488
|
+
diag[1] = mat(1,1) + m02*q;
|
489
|
+
diag[2] = mat(2,2) - m02*q;
|
490
|
+
subdiag[0] = beta;
|
491
|
+
subdiag[1] = mat(2,1) - m01 * q;
|
492
|
+
if (extractQ)
|
493
|
+
{
|
494
|
+
mat << 1, 0, 0,
|
495
|
+
0, m01, m02,
|
496
|
+
0, m02, -m01;
|
497
|
+
}
|
498
|
+
}
|
499
|
+
}
|
500
|
+
};
|
501
|
+
|
502
|
+
/** \internal
|
503
|
+
* Trivial specialization for 1x1 matrices
|
504
|
+
*/
|
505
|
+
template<typename MatrixType, bool IsComplex>
|
506
|
+
struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
|
507
|
+
{
|
508
|
+
typedef typename MatrixType::Scalar Scalar;
|
509
|
+
|
510
|
+
template<typename DiagonalType, typename SubDiagonalType>
|
511
|
+
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
|
512
|
+
{
|
513
|
+
diag(0,0) = numext::real(mat(0,0));
|
514
|
+
if(extractQ)
|
515
|
+
mat(0,0) = Scalar(1);
|
516
|
+
}
|
517
|
+
};
|
518
|
+
|
519
|
+
/** \internal
|
520
|
+
* \eigenvalues_module \ingroup Eigenvalues_Module
|
521
|
+
*
|
522
|
+
* \brief Expression type for return value of Tridiagonalization::matrixT()
|
523
|
+
*
|
524
|
+
* \tparam MatrixType type of underlying dense matrix
|
525
|
+
*/
|
526
|
+
template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
|
527
|
+
: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
|
528
|
+
{
|
529
|
+
public:
|
530
|
+
/** \brief Constructor.
|
531
|
+
*
|
532
|
+
* \param[in] mat The underlying dense matrix
|
533
|
+
*/
|
534
|
+
TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
|
535
|
+
|
536
|
+
template <typename ResultType>
|
537
|
+
inline void evalTo(ResultType& result) const
|
538
|
+
{
|
539
|
+
result.setZero();
|
540
|
+
result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
|
541
|
+
result.diagonal() = m_matrix.diagonal();
|
542
|
+
result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
|
543
|
+
}
|
544
|
+
|
545
|
+
Index rows() const { return m_matrix.rows(); }
|
546
|
+
Index cols() const { return m_matrix.cols(); }
|
547
|
+
|
548
|
+
protected:
|
549
|
+
typename MatrixType::Nested m_matrix;
|
550
|
+
};
|
551
|
+
|
552
|
+
} // end namespace internal
|
553
|
+
|
554
|
+
} // end namespace Eigen
|
555
|
+
|
556
|
+
#endif // EIGEN_TRIDIAGONALIZATION_H
|