tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,87 @@
1
+ /*
2
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without modification,
5
+ are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+ * Redistributions in binary form must reproduce the above copyright notice,
10
+ this list of conditions and the following disclaimer in the documentation
11
+ and/or other materials provided with the distribution.
12
+ * Neither the name of Intel Corporation nor the names of its contributors may
13
+ be used to endorse or promote products derived from this software without
14
+ specific prior written permission.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
+
27
+ ********************************************************************************
28
+ * Content : Eigen bindings to LAPACKe
29
+ * Self-adjoint eigenvalues/eigenvectors.
30
+ ********************************************************************************
31
+ */
32
+
33
+ #ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H
34
+ #define EIGEN_SAEIGENSOLVER_LAPACKE_H
35
+
36
+ namespace Eigen {
37
+
38
+ /** \internal Specialization for the data types supported by LAPACKe */
39
+
40
+ #define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \
41
+ template<> template<typename InputType> inline \
42
+ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
43
+ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \
44
+ { \
45
+ eigen_assert(matrix.cols() == matrix.rows()); \
46
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0 \
47
+ && (options&EigVecMask)!=EigVecMask \
48
+ && "invalid option parameter"); \
49
+ bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
50
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \
51
+ m_eivalues.resize(n,1); \
52
+ m_subdiag.resize(n-1); \
53
+ m_eivec = matrix; \
54
+ \
55
+ if(n==1) \
56
+ { \
57
+ m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \
58
+ if(computeEigenvectors) m_eivec.setOnes(n,n); \
59
+ m_info = Success; \
60
+ m_isInitialized = true; \
61
+ m_eigenvectorsOk = computeEigenvectors; \
62
+ return *this; \
63
+ } \
64
+ \
65
+ lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \
66
+ char jobz, uplo='L'/*, range='A'*/; \
67
+ jobz = computeEigenvectors ? 'V' : 'N'; \
68
+ \
69
+ info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \
70
+ m_info = (info==0) ? Success : NoConvergence; \
71
+ m_isInitialized = true; \
72
+ m_eigenvectorsOk = computeEigenvectors; \
73
+ return *this; \
74
+ }
75
+
76
+ #define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \
77
+ EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \
78
+ EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor )
79
+
80
+ EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev)
81
+ EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev)
82
+ EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev)
83
+ EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev)
84
+
85
+ } // end namespace Eigen
86
+
87
+ #endif // EIGEN_SAEIGENSOLVER_H
@@ -0,0 +1,556 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_TRIDIAGONALIZATION_H
12
+ #define EIGEN_TRIDIAGONALIZATION_H
13
+
14
+ namespace Eigen {
15
+
16
+ namespace internal {
17
+
18
+ template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19
+ template<typename MatrixType>
20
+ struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
21
+ : public traits<typename MatrixType::PlainObject>
22
+ {
23
+ typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
24
+ enum { Flags = 0 };
25
+ };
26
+
27
+ template<typename MatrixType, typename CoeffVectorType>
28
+ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
29
+ }
30
+
31
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
32
+ *
33
+ *
34
+ * \class Tridiagonalization
35
+ *
36
+ * \brief Tridiagonal decomposition of a selfadjoint matrix
37
+ *
38
+ * \tparam _MatrixType the type of the matrix of which we are computing the
39
+ * tridiagonal decomposition; this is expected to be an instantiation of the
40
+ * Matrix class template.
41
+ *
42
+ * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
43
+ * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
44
+ *
45
+ * A tridiagonal matrix is a matrix which has nonzero elements only on the
46
+ * main diagonal and the first diagonal below and above it. The Hessenberg
47
+ * decomposition of a selfadjoint matrix is in fact a tridiagonal
48
+ * decomposition. This class is used in SelfAdjointEigenSolver to compute the
49
+ * eigenvalues and eigenvectors of a selfadjoint matrix.
50
+ *
51
+ * Call the function compute() to compute the tridiagonal decomposition of a
52
+ * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
53
+ * constructor which computes the tridiagonal Schur decomposition at
54
+ * construction time. Once the decomposition is computed, you can use the
55
+ * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
56
+ * decomposition.
57
+ *
58
+ * The documentation of Tridiagonalization(const MatrixType&) contains an
59
+ * example of the typical use of this class.
60
+ *
61
+ * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
62
+ */
63
+ template<typename _MatrixType> class Tridiagonalization
64
+ {
65
+ public:
66
+
67
+ /** \brief Synonym for the template parameter \p _MatrixType. */
68
+ typedef _MatrixType MatrixType;
69
+
70
+ typedef typename MatrixType::Scalar Scalar;
71
+ typedef typename NumTraits<Scalar>::Real RealScalar;
72
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
73
+
74
+ enum {
75
+ Size = MatrixType::RowsAtCompileTime,
76
+ SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
77
+ Options = MatrixType::Options,
78
+ MaxSize = MatrixType::MaxRowsAtCompileTime,
79
+ MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
80
+ };
81
+
82
+ typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
83
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
84
+ typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
85
+ typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
86
+ typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
87
+
88
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
89
+ typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
90
+ const Diagonal<const MatrixType>
91
+ >::type DiagonalReturnType;
92
+
93
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
94
+ typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
95
+ const Diagonal<const MatrixType, -1>
96
+ >::type SubDiagonalReturnType;
97
+
98
+ /** \brief Return type of matrixQ() */
99
+ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
100
+
101
+ /** \brief Default constructor.
102
+ *
103
+ * \param [in] size Positive integer, size of the matrix whose tridiagonal
104
+ * decomposition will be computed.
105
+ *
106
+ * The default constructor is useful in cases in which the user intends to
107
+ * perform decompositions via compute(). The \p size parameter is only
108
+ * used as a hint. It is not an error to give a wrong \p size, but it may
109
+ * impair performance.
110
+ *
111
+ * \sa compute() for an example.
112
+ */
113
+ explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
114
+ : m_matrix(size,size),
115
+ m_hCoeffs(size > 1 ? size-1 : 1),
116
+ m_isInitialized(false)
117
+ {}
118
+
119
+ /** \brief Constructor; computes tridiagonal decomposition of given matrix.
120
+ *
121
+ * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
122
+ * is to be computed.
123
+ *
124
+ * This constructor calls compute() to compute the tridiagonal decomposition.
125
+ *
126
+ * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
127
+ * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
128
+ */
129
+ template<typename InputType>
130
+ explicit Tridiagonalization(const EigenBase<InputType>& matrix)
131
+ : m_matrix(matrix.derived()),
132
+ m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
133
+ m_isInitialized(false)
134
+ {
135
+ internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
136
+ m_isInitialized = true;
137
+ }
138
+
139
+ /** \brief Computes tridiagonal decomposition of given matrix.
140
+ *
141
+ * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
142
+ * is to be computed.
143
+ * \returns Reference to \c *this
144
+ *
145
+ * The tridiagonal decomposition is computed by bringing the columns of
146
+ * the matrix successively in the required form using Householder
147
+ * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
148
+ * the size of the given matrix.
149
+ *
150
+ * This method reuses of the allocated data in the Tridiagonalization
151
+ * object, if the size of the matrix does not change.
152
+ *
153
+ * Example: \include Tridiagonalization_compute.cpp
154
+ * Output: \verbinclude Tridiagonalization_compute.out
155
+ */
156
+ template<typename InputType>
157
+ Tridiagonalization& compute(const EigenBase<InputType>& matrix)
158
+ {
159
+ m_matrix = matrix.derived();
160
+ m_hCoeffs.resize(matrix.rows()-1, 1);
161
+ internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
162
+ m_isInitialized = true;
163
+ return *this;
164
+ }
165
+
166
+ /** \brief Returns the Householder coefficients.
167
+ *
168
+ * \returns a const reference to the vector of Householder coefficients
169
+ *
170
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
171
+ * the member function compute(const MatrixType&) has been called before
172
+ * to compute the tridiagonal decomposition of a matrix.
173
+ *
174
+ * The Householder coefficients allow the reconstruction of the matrix
175
+ * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
176
+ *
177
+ * Example: \include Tridiagonalization_householderCoefficients.cpp
178
+ * Output: \verbinclude Tridiagonalization_householderCoefficients.out
179
+ *
180
+ * \sa packedMatrix(), \ref Householder_Module "Householder module"
181
+ */
182
+ inline CoeffVectorType householderCoefficients() const
183
+ {
184
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
185
+ return m_hCoeffs;
186
+ }
187
+
188
+ /** \brief Returns the internal representation of the decomposition
189
+ *
190
+ * \returns a const reference to a matrix with the internal representation
191
+ * of the decomposition.
192
+ *
193
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
194
+ * the member function compute(const MatrixType&) has been called before
195
+ * to compute the tridiagonal decomposition of a matrix.
196
+ *
197
+ * The returned matrix contains the following information:
198
+ * - the strict upper triangular part is equal to the input matrix A.
199
+ * - the diagonal and lower sub-diagonal represent the real tridiagonal
200
+ * symmetric matrix T.
201
+ * - the rest of the lower part contains the Householder vectors that,
202
+ * combined with Householder coefficients returned by
203
+ * householderCoefficients(), allows to reconstruct the matrix Q as
204
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
205
+ * Here, the matrices \f$ H_i \f$ are the Householder transformations
206
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
207
+ * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
208
+ * \f$ v_i \f$ is the Householder vector defined by
209
+ * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
210
+ * with M the matrix returned by this function.
211
+ *
212
+ * See LAPACK for further details on this packed storage.
213
+ *
214
+ * Example: \include Tridiagonalization_packedMatrix.cpp
215
+ * Output: \verbinclude Tridiagonalization_packedMatrix.out
216
+ *
217
+ * \sa householderCoefficients()
218
+ */
219
+ inline const MatrixType& packedMatrix() const
220
+ {
221
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
222
+ return m_matrix;
223
+ }
224
+
225
+ /** \brief Returns the unitary matrix Q in the decomposition
226
+ *
227
+ * \returns object representing the matrix Q
228
+ *
229
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
230
+ * the member function compute(const MatrixType&) has been called before
231
+ * to compute the tridiagonal decomposition of a matrix.
232
+ *
233
+ * This function returns a light-weight object of template class
234
+ * HouseholderSequence. You can either apply it directly to a matrix or
235
+ * you can convert it to a matrix of type #MatrixType.
236
+ *
237
+ * \sa Tridiagonalization(const MatrixType&) for an example,
238
+ * matrixT(), class HouseholderSequence
239
+ */
240
+ HouseholderSequenceType matrixQ() const
241
+ {
242
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
243
+ return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
244
+ .setLength(m_matrix.rows() - 1)
245
+ .setShift(1);
246
+ }
247
+
248
+ /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
249
+ *
250
+ * \returns expression object representing the matrix T
251
+ *
252
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
253
+ * the member function compute(const MatrixType&) has been called before
254
+ * to compute the tridiagonal decomposition of a matrix.
255
+ *
256
+ * Currently, this function can be used to extract the matrix T from internal
257
+ * data and copy it to a dense matrix object. In most cases, it may be
258
+ * sufficient to directly use the packed matrix or the vector expressions
259
+ * returned by diagonal() and subDiagonal() instead of creating a new
260
+ * dense copy matrix with this function.
261
+ *
262
+ * \sa Tridiagonalization(const MatrixType&) for an example,
263
+ * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
264
+ */
265
+ MatrixTReturnType matrixT() const
266
+ {
267
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
268
+ return MatrixTReturnType(m_matrix.real());
269
+ }
270
+
271
+ /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
272
+ *
273
+ * \returns expression representing the diagonal of T
274
+ *
275
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
276
+ * the member function compute(const MatrixType&) has been called before
277
+ * to compute the tridiagonal decomposition of a matrix.
278
+ *
279
+ * Example: \include Tridiagonalization_diagonal.cpp
280
+ * Output: \verbinclude Tridiagonalization_diagonal.out
281
+ *
282
+ * \sa matrixT(), subDiagonal()
283
+ */
284
+ DiagonalReturnType diagonal() const;
285
+
286
+ /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
287
+ *
288
+ * \returns expression representing the subdiagonal of T
289
+ *
290
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
291
+ * the member function compute(const MatrixType&) has been called before
292
+ * to compute the tridiagonal decomposition of a matrix.
293
+ *
294
+ * \sa diagonal() for an example, matrixT()
295
+ */
296
+ SubDiagonalReturnType subDiagonal() const;
297
+
298
+ protected:
299
+
300
+ MatrixType m_matrix;
301
+ CoeffVectorType m_hCoeffs;
302
+ bool m_isInitialized;
303
+ };
304
+
305
+ template<typename MatrixType>
306
+ typename Tridiagonalization<MatrixType>::DiagonalReturnType
307
+ Tridiagonalization<MatrixType>::diagonal() const
308
+ {
309
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
310
+ return m_matrix.diagonal().real();
311
+ }
312
+
313
+ template<typename MatrixType>
314
+ typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
315
+ Tridiagonalization<MatrixType>::subDiagonal() const
316
+ {
317
+ eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
318
+ return m_matrix.template diagonal<-1>().real();
319
+ }
320
+
321
+ namespace internal {
322
+
323
+ /** \internal
324
+ * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
325
+ *
326
+ * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
327
+ * On output, the strict upper part is left unchanged, and the lower triangular part
328
+ * represents the T and Q matrices in packed format has detailed below.
329
+ * \param[out] hCoeffs returned Householder coefficients (see below)
330
+ *
331
+ * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
332
+ * and lower sub-diagonal of the matrix \a matA.
333
+ * The unitary matrix Q is represented in a compact way as a product of
334
+ * Householder reflectors \f$ H_i \f$ such that:
335
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
336
+ * The Householder reflectors are defined as
337
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
338
+ * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
339
+ * \f$ v_i \f$ is the Householder vector defined by
340
+ * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
341
+ *
342
+ * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
343
+ *
344
+ * \sa Tridiagonalization::packedMatrix()
345
+ */
346
+ template<typename MatrixType, typename CoeffVectorType>
347
+ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
348
+ {
349
+ using numext::conj;
350
+ typedef typename MatrixType::Scalar Scalar;
351
+ typedef typename MatrixType::RealScalar RealScalar;
352
+ Index n = matA.rows();
353
+ eigen_assert(n==matA.cols());
354
+ eigen_assert(n==hCoeffs.size()+1 || n==1);
355
+
356
+ for (Index i = 0; i<n-1; ++i)
357
+ {
358
+ Index remainingSize = n-i-1;
359
+ RealScalar beta;
360
+ Scalar h;
361
+ matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
362
+
363
+ // Apply similarity transformation to remaining columns,
364
+ // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
365
+ matA.col(i).coeffRef(i+1) = 1;
366
+
367
+ hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
368
+ * (conj(h) * matA.col(i).tail(remainingSize)));
369
+
370
+ hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
371
+
372
+ matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
373
+ .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
374
+
375
+ matA.col(i).coeffRef(i+1) = beta;
376
+ hCoeffs.coeffRef(i) = h;
377
+ }
378
+ }
379
+
380
+ // forward declaration, implementation at the end of this file
381
+ template<typename MatrixType,
382
+ int Size=MatrixType::ColsAtCompileTime,
383
+ bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
384
+ struct tridiagonalization_inplace_selector;
385
+
386
+ /** \brief Performs a full tridiagonalization in place
387
+ *
388
+ * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
389
+ * decomposition is to be computed. Only the lower triangular part referenced.
390
+ * The rest is left unchanged. On output, the orthogonal matrix Q
391
+ * in the decomposition if \p extractQ is true.
392
+ * \param[out] diag The diagonal of the tridiagonal matrix T in the
393
+ * decomposition.
394
+ * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
395
+ * the decomposition.
396
+ * \param[in] extractQ If true, the orthogonal matrix Q in the
397
+ * decomposition is computed and stored in \p mat.
398
+ *
399
+ * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
400
+ * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
401
+ * symmetric tridiagonal matrix.
402
+ *
403
+ * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
404
+ * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
405
+ * part of the matrix \p mat is destroyed.
406
+ *
407
+ * The vectors \p diag and \p subdiag are not resized. The function
408
+ * assumes that they are already of the correct size. The length of the
409
+ * vector \p diag should equal the number of rows in \p mat, and the
410
+ * length of the vector \p subdiag should be one left.
411
+ *
412
+ * This implementation contains an optimized path for 3-by-3 matrices
413
+ * which is especially useful for plane fitting.
414
+ *
415
+ * \note Currently, it requires two temporary vectors to hold the intermediate
416
+ * Householder coefficients, and to reconstruct the matrix Q from the Householder
417
+ * reflectors.
418
+ *
419
+ * Example (this uses the same matrix as the example in
420
+ * Tridiagonalization::Tridiagonalization(const MatrixType&)):
421
+ * \include Tridiagonalization_decomposeInPlace.cpp
422
+ * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
423
+ *
424
+ * \sa class Tridiagonalization
425
+ */
426
+ template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
427
+ void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
428
+ {
429
+ eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
430
+ tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
431
+ }
432
+
433
+ /** \internal
434
+ * General full tridiagonalization
435
+ */
436
+ template<typename MatrixType, int Size, bool IsComplex>
437
+ struct tridiagonalization_inplace_selector
438
+ {
439
+ typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
440
+ typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
441
+ template<typename DiagonalType, typename SubDiagonalType>
442
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
443
+ {
444
+ CoeffVectorType hCoeffs(mat.cols()-1);
445
+ tridiagonalization_inplace(mat,hCoeffs);
446
+ diag = mat.diagonal().real();
447
+ subdiag = mat.template diagonal<-1>().real();
448
+ if(extractQ)
449
+ mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
450
+ .setLength(mat.rows() - 1)
451
+ .setShift(1);
452
+ }
453
+ };
454
+
455
+ /** \internal
456
+ * Specialization for 3x3 real matrices.
457
+ * Especially useful for plane fitting.
458
+ */
459
+ template<typename MatrixType>
460
+ struct tridiagonalization_inplace_selector<MatrixType,3,false>
461
+ {
462
+ typedef typename MatrixType::Scalar Scalar;
463
+ typedef typename MatrixType::RealScalar RealScalar;
464
+
465
+ template<typename DiagonalType, typename SubDiagonalType>
466
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
467
+ {
468
+ using std::sqrt;
469
+ const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
470
+ diag[0] = mat(0,0);
471
+ RealScalar v1norm2 = numext::abs2(mat(2,0));
472
+ if(v1norm2 <= tol)
473
+ {
474
+ diag[1] = mat(1,1);
475
+ diag[2] = mat(2,2);
476
+ subdiag[0] = mat(1,0);
477
+ subdiag[1] = mat(2,1);
478
+ if (extractQ)
479
+ mat.setIdentity();
480
+ }
481
+ else
482
+ {
483
+ RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
484
+ RealScalar invBeta = RealScalar(1)/beta;
485
+ Scalar m01 = mat(1,0) * invBeta;
486
+ Scalar m02 = mat(2,0) * invBeta;
487
+ Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
488
+ diag[1] = mat(1,1) + m02*q;
489
+ diag[2] = mat(2,2) - m02*q;
490
+ subdiag[0] = beta;
491
+ subdiag[1] = mat(2,1) - m01 * q;
492
+ if (extractQ)
493
+ {
494
+ mat << 1, 0, 0,
495
+ 0, m01, m02,
496
+ 0, m02, -m01;
497
+ }
498
+ }
499
+ }
500
+ };
501
+
502
+ /** \internal
503
+ * Trivial specialization for 1x1 matrices
504
+ */
505
+ template<typename MatrixType, bool IsComplex>
506
+ struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
507
+ {
508
+ typedef typename MatrixType::Scalar Scalar;
509
+
510
+ template<typename DiagonalType, typename SubDiagonalType>
511
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
512
+ {
513
+ diag(0,0) = numext::real(mat(0,0));
514
+ if(extractQ)
515
+ mat(0,0) = Scalar(1);
516
+ }
517
+ };
518
+
519
+ /** \internal
520
+ * \eigenvalues_module \ingroup Eigenvalues_Module
521
+ *
522
+ * \brief Expression type for return value of Tridiagonalization::matrixT()
523
+ *
524
+ * \tparam MatrixType type of underlying dense matrix
525
+ */
526
+ template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
527
+ : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
528
+ {
529
+ public:
530
+ /** \brief Constructor.
531
+ *
532
+ * \param[in] mat The underlying dense matrix
533
+ */
534
+ TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
535
+
536
+ template <typename ResultType>
537
+ inline void evalTo(ResultType& result) const
538
+ {
539
+ result.setZero();
540
+ result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
541
+ result.diagonal() = m_matrix.diagonal();
542
+ result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
543
+ }
544
+
545
+ Index rows() const { return m_matrix.rows(); }
546
+ Index cols() const { return m_matrix.cols(); }
547
+
548
+ protected:
549
+ typename MatrixType::Nested m_matrix;
550
+ };
551
+
552
+ } // end namespace internal
553
+
554
+ } // end namespace Eigen
555
+
556
+ #endif // EIGEN_TRIDIAGONALIZATION_H