tomoto 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,2156 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_GENERAL_BLOCK_PANEL_H
11
+ #define EIGEN_GENERAL_BLOCK_PANEL_H
12
+
13
+
14
+ namespace Eigen {
15
+
16
+ namespace internal {
17
+
18
+ template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
19
+ class gebp_traits;
20
+
21
+
22
+ /** \internal \returns b if a<=0, and returns a otherwise. */
23
+ inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
24
+ {
25
+ return a<=0 ? b : a;
26
+ }
27
+
28
+ #if EIGEN_ARCH_i386_OR_x86_64
29
+ const std::ptrdiff_t defaultL1CacheSize = 32*1024;
30
+ const std::ptrdiff_t defaultL2CacheSize = 256*1024;
31
+ const std::ptrdiff_t defaultL3CacheSize = 2*1024*1024;
32
+ #else
33
+ const std::ptrdiff_t defaultL1CacheSize = 16*1024;
34
+ const std::ptrdiff_t defaultL2CacheSize = 512*1024;
35
+ const std::ptrdiff_t defaultL3CacheSize = 512*1024;
36
+ #endif
37
+
38
+ /** \internal */
39
+ struct CacheSizes {
40
+ CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) {
41
+ int l1CacheSize, l2CacheSize, l3CacheSize;
42
+ queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize);
43
+ m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize);
44
+ m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize);
45
+ m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize);
46
+ }
47
+
48
+ std::ptrdiff_t m_l1;
49
+ std::ptrdiff_t m_l2;
50
+ std::ptrdiff_t m_l3;
51
+ };
52
+
53
+
54
+ /** \internal */
55
+ inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3)
56
+ {
57
+ static CacheSizes m_cacheSizes;
58
+
59
+ if(action==SetAction)
60
+ {
61
+ // set the cpu cache size and cache all block sizes from a global cache size in byte
62
+ eigen_internal_assert(l1!=0 && l2!=0);
63
+ m_cacheSizes.m_l1 = *l1;
64
+ m_cacheSizes.m_l2 = *l2;
65
+ m_cacheSizes.m_l3 = *l3;
66
+ }
67
+ else if(action==GetAction)
68
+ {
69
+ eigen_internal_assert(l1!=0 && l2!=0);
70
+ *l1 = m_cacheSizes.m_l1;
71
+ *l2 = m_cacheSizes.m_l2;
72
+ *l3 = m_cacheSizes.m_l3;
73
+ }
74
+ else
75
+ {
76
+ eigen_internal_assert(false);
77
+ }
78
+ }
79
+
80
+ /* Helper for computeProductBlockingSizes.
81
+ *
82
+ * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
83
+ * this function computes the blocking size parameters along the respective dimensions
84
+ * for matrix products and related algorithms. The blocking sizes depends on various
85
+ * parameters:
86
+ * - the L1 and L2 cache sizes,
87
+ * - the register level blocking sizes defined by gebp_traits,
88
+ * - the number of scalars that fit into a packet (when vectorization is enabled).
89
+ *
90
+ * \sa setCpuCacheSizes */
91
+
92
+ template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
93
+ void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1)
94
+ {
95
+ typedef gebp_traits<LhsScalar,RhsScalar> Traits;
96
+
97
+ // Explanations:
98
+ // Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and
99
+ // kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed
100
+ // per mr x kc horizontal small panels where mr is the blocking size along the m dimension
101
+ // at the register level. This small horizontal panel has to stay within L1 cache.
102
+ std::ptrdiff_t l1, l2, l3;
103
+ manage_caching_sizes(GetAction, &l1, &l2, &l3);
104
+
105
+ if (num_threads > 1) {
106
+ typedef typename Traits::ResScalar ResScalar;
107
+ enum {
108
+ kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
109
+ ksub = Traits::mr * Traits::nr * sizeof(ResScalar),
110
+ kr = 8,
111
+ mr = Traits::mr,
112
+ nr = Traits::nr
113
+ };
114
+ // Increasing k gives us more time to prefetch the content of the "C"
115
+ // registers. However once the latency is hidden there is no point in
116
+ // increasing the value of k, so we'll cap it at 320 (value determined
117
+ // experimentally).
118
+ const Index k_cache = (numext::mini<Index>)((l1-ksub)/kdiv, 320);
119
+ if (k_cache < k) {
120
+ k = k_cache - (k_cache % kr);
121
+ eigen_internal_assert(k > 0);
122
+ }
123
+
124
+ const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k);
125
+ const Index n_per_thread = numext::div_ceil(n, num_threads);
126
+ if (n_cache <= n_per_thread) {
127
+ // Don't exceed the capacity of the l2 cache.
128
+ eigen_internal_assert(n_cache >= static_cast<Index>(nr));
129
+ n = n_cache - (n_cache % nr);
130
+ eigen_internal_assert(n > 0);
131
+ } else {
132
+ n = (numext::mini<Index>)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr));
133
+ }
134
+
135
+ if (l3 > l2) {
136
+ // l3 is shared between all cores, so we'll give each thread its own chunk of l3.
137
+ const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads);
138
+ const Index m_per_thread = numext::div_ceil(m, num_threads);
139
+ if(m_cache < m_per_thread && m_cache >= static_cast<Index>(mr)) {
140
+ m = m_cache - (m_cache % mr);
141
+ eigen_internal_assert(m > 0);
142
+ } else {
143
+ m = (numext::mini<Index>)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr));
144
+ }
145
+ }
146
+ }
147
+ else {
148
+ // In unit tests we do not want to use extra large matrices,
149
+ // so we reduce the cache size to check the blocking strategy is not flawed
150
+ #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
151
+ l1 = 9*1024;
152
+ l2 = 32*1024;
153
+ l3 = 512*1024;
154
+ #endif
155
+
156
+ // Early return for small problems because the computation below are time consuming for small problems.
157
+ // Perhaps it would make more sense to consider k*n*m??
158
+ // Note that for very tiny problem, this function should be bypassed anyway
159
+ // because we use the coefficient-based implementation for them.
160
+ if((numext::maxi)(k,(numext::maxi)(m,n))<48)
161
+ return;
162
+
163
+ typedef typename Traits::ResScalar ResScalar;
164
+ enum {
165
+ k_peeling = 8,
166
+ k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
167
+ k_sub = Traits::mr * Traits::nr * sizeof(ResScalar)
168
+ };
169
+
170
+ // ---- 1st level of blocking on L1, yields kc ----
171
+
172
+ // Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel
173
+ // of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache.
174
+ // We also include a register-level block of the result (mx x nr).
175
+ // (In an ideal world only the lhs panel would stay in L1)
176
+ // Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of:
177
+ const Index max_kc = numext::maxi<Index>(((l1-k_sub)/k_div) & (~(k_peeling-1)),1);
178
+ const Index old_k = k;
179
+ if(k>max_kc)
180
+ {
181
+ // We are really blocking on the third dimension:
182
+ // -> reduce blocking size to make sure the last block is as large as possible
183
+ // while keeping the same number of sweeps over the result.
184
+ k = (k%max_kc)==0 ? max_kc
185
+ : max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1)));
186
+
187
+ eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same");
188
+ }
189
+
190
+ // ---- 2nd level of blocking on max(L2,L3), yields nc ----
191
+
192
+ // TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is:
193
+ // actual_l2 = max(l2, l3/nb_core_sharing_l3)
194
+ // The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it)
195
+ // For instance, it corresponds to 6MB of L3 shared among 4 cores.
196
+ #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
197
+ const Index actual_l2 = l3;
198
+ #else
199
+ const Index actual_l2 = 1572864; // == 1.5 MB
200
+ #endif
201
+
202
+ // Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2.
203
+ // The second half is implicitly reserved to access the result and lhs coefficients.
204
+ // When k<max_kc, then nc can arbitrarily growth. In practice, it seems to be fruitful
205
+ // to limit this growth: we bound nc to growth by a factor x1.5.
206
+ // However, if the entire lhs block fit within L1, then we are not going to block on the rows at all,
207
+ // and it becomes fruitful to keep the packed rhs blocks in L1 if there is enough remaining space.
208
+ Index max_nc;
209
+ const Index lhs_bytes = m * k * sizeof(LhsScalar);
210
+ const Index remaining_l1 = l1- k_sub - lhs_bytes;
211
+ if(remaining_l1 >= Index(Traits::nr*sizeof(RhsScalar))*k)
212
+ {
213
+ // L1 blocking
214
+ max_nc = remaining_l1 / (k*sizeof(RhsScalar));
215
+ }
216
+ else
217
+ {
218
+ // L2 blocking
219
+ max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar));
220
+ }
221
+ // WARNING Below, we assume that Traits::nr is a power of two.
222
+ Index nc = numext::mini<Index>(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1));
223
+ if(n>nc)
224
+ {
225
+ // We are really blocking over the columns:
226
+ // -> reduce blocking size to make sure the last block is as large as possible
227
+ // while keeping the same number of sweeps over the packed lhs.
228
+ // Here we allow one more sweep if this gives us a perfect match, thus the commented "-1"
229
+ n = (n%nc)==0 ? nc
230
+ : (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1))));
231
+ }
232
+ else if(old_k==k)
233
+ {
234
+ // So far, no blocking at all, i.e., kc==k, and nc==n.
235
+ // In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2
236
+ // TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete.
237
+ Index problem_size = k*n*sizeof(LhsScalar);
238
+ Index actual_lm = actual_l2;
239
+ Index max_mc = m;
240
+ if(problem_size<=1024)
241
+ {
242
+ // problem is small enough to keep in L1
243
+ // Let's choose m such that lhs's block fit in 1/3 of L1
244
+ actual_lm = l1;
245
+ }
246
+ else if(l3!=0 && problem_size<=32768)
247
+ {
248
+ // we have both L2 and L3, and problem is small enough to be kept in L2
249
+ // Let's choose m such that lhs's block fit in 1/3 of L2
250
+ actual_lm = l2;
251
+ max_mc = (numext::mini<Index>)(576,max_mc);
252
+ }
253
+ Index mc = (numext::mini<Index>)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc);
254
+ if (mc > Traits::mr) mc -= mc % Traits::mr;
255
+ else if (mc==0) return;
256
+ m = (m%mc)==0 ? mc
257
+ : (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1))));
258
+ }
259
+ }
260
+ }
261
+
262
+ template <typename Index>
263
+ inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n)
264
+ {
265
+ #ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES
266
+ if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) {
267
+ k = numext::mini<Index>(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K);
268
+ m = numext::mini<Index>(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M);
269
+ n = numext::mini<Index>(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N);
270
+ return true;
271
+ }
272
+ #else
273
+ EIGEN_UNUSED_VARIABLE(k)
274
+ EIGEN_UNUSED_VARIABLE(m)
275
+ EIGEN_UNUSED_VARIABLE(n)
276
+ #endif
277
+ return false;
278
+ }
279
+
280
+ /** \brief Computes the blocking parameters for a m x k times k x n matrix product
281
+ *
282
+ * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
283
+ * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
284
+ * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
285
+ *
286
+ * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
287
+ * this function computes the blocking size parameters along the respective dimensions
288
+ * for matrix products and related algorithms.
289
+ *
290
+ * The blocking size parameters may be evaluated:
291
+ * - either by a heuristic based on cache sizes;
292
+ * - or using fixed prescribed values (for testing purposes).
293
+ *
294
+ * \sa setCpuCacheSizes */
295
+
296
+ template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
297
+ void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
298
+ {
299
+ if (!useSpecificBlockingSizes(k, m, n)) {
300
+ evaluateProductBlockingSizesHeuristic<LhsScalar, RhsScalar, KcFactor, Index>(k, m, n, num_threads);
301
+ }
302
+ }
303
+
304
+ template<typename LhsScalar, typename RhsScalar, typename Index>
305
+ inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
306
+ {
307
+ computeProductBlockingSizes<LhsScalar,RhsScalar,1,Index>(k, m, n, num_threads);
308
+ }
309
+
310
+ #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
311
+ #define CJMADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
312
+ #else
313
+
314
+ // FIXME (a bit overkill maybe ?)
315
+
316
+ template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
317
+ EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
318
+ {
319
+ c = cj.pmadd(a,b,c);
320
+ }
321
+ };
322
+
323
+ template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
324
+ EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
325
+ {
326
+ t = b; t = cj.pmul(a,t); c = padd(c,t);
327
+ }
328
+ };
329
+
330
+ template<typename CJ, typename A, typename B, typename C, typename T>
331
+ EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
332
+ {
333
+ gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
334
+ }
335
+
336
+ #define CJMADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
337
+ // #define CJMADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
338
+ #endif
339
+
340
+ /* Vectorization logic
341
+ * real*real: unpack rhs to constant packets, ...
342
+ *
343
+ * cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
344
+ * storing each res packet into two packets (2x2),
345
+ * at the end combine them: swap the second and addsub them
346
+ * cf*cf : same but with 2x4 blocks
347
+ * cplx*real : unpack rhs to constant packets, ...
348
+ * real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
349
+ */
350
+ template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
351
+ class gebp_traits
352
+ {
353
+ public:
354
+ typedef _LhsScalar LhsScalar;
355
+ typedef _RhsScalar RhsScalar;
356
+ typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
357
+
358
+ enum {
359
+ ConjLhs = _ConjLhs,
360
+ ConjRhs = _ConjRhs,
361
+ Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
362
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
363
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
364
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
365
+
366
+ NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
367
+
368
+ // register block size along the N direction must be 1 or 4
369
+ nr = 4,
370
+
371
+ // register block size along the M direction (currently, this one cannot be modified)
372
+ default_mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
373
+ #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
374
+ // we assume 16 registers
375
+ // See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined,
376
+ // then using 3*LhsPacketSize triggers non-implemented paths in syrk.
377
+ mr = Vectorizable ? 3*LhsPacketSize : default_mr,
378
+ #else
379
+ mr = default_mr,
380
+ #endif
381
+
382
+ LhsProgress = LhsPacketSize,
383
+ RhsProgress = 1
384
+ };
385
+
386
+ typedef typename packet_traits<LhsScalar>::type _LhsPacket;
387
+ typedef typename packet_traits<RhsScalar>::type _RhsPacket;
388
+ typedef typename packet_traits<ResScalar>::type _ResPacket;
389
+
390
+ typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
391
+ typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
392
+ typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
393
+
394
+ typedef ResPacket AccPacket;
395
+
396
+ EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
397
+ {
398
+ p = pset1<ResPacket>(ResScalar(0));
399
+ }
400
+
401
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
402
+ {
403
+ pbroadcast4(b, b0, b1, b2, b3);
404
+ }
405
+
406
+ // EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
407
+ // {
408
+ // pbroadcast2(b, b0, b1);
409
+ // }
410
+
411
+ template<typename RhsPacketType>
412
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const
413
+ {
414
+ dest = pset1<RhsPacketType>(*b);
415
+ }
416
+
417
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
418
+ {
419
+ dest = ploadquad<RhsPacket>(b);
420
+ }
421
+
422
+ template<typename LhsPacketType>
423
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const
424
+ {
425
+ dest = pload<LhsPacketType>(a);
426
+ }
427
+
428
+ template<typename LhsPacketType>
429
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const
430
+ {
431
+ dest = ploadu<LhsPacketType>(a);
432
+ }
433
+
434
+ template<typename LhsPacketType, typename RhsPacketType, typename AccPacketType>
435
+ EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, AccPacketType& tmp) const
436
+ {
437
+ conj_helper<LhsPacketType,RhsPacketType,ConjLhs,ConjRhs> cj;
438
+ // It would be a lot cleaner to call pmadd all the time. Unfortunately if we
439
+ // let gcc allocate the register in which to store the result of the pmul
440
+ // (in the case where there is no FMA) gcc fails to figure out how to avoid
441
+ // spilling register.
442
+ #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
443
+ EIGEN_UNUSED_VARIABLE(tmp);
444
+ c = cj.pmadd(a,b,c);
445
+ #else
446
+ tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp);
447
+ #endif
448
+ }
449
+
450
+ EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
451
+ {
452
+ r = pmadd(c,alpha,r);
453
+ }
454
+
455
+ template<typename ResPacketHalf>
456
+ EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const
457
+ {
458
+ r = pmadd(c,alpha,r);
459
+ }
460
+
461
+ };
462
+
463
+ template<typename RealScalar, bool _ConjLhs>
464
+ class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
465
+ {
466
+ public:
467
+ typedef std::complex<RealScalar> LhsScalar;
468
+ typedef RealScalar RhsScalar;
469
+ typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
470
+
471
+ enum {
472
+ ConjLhs = _ConjLhs,
473
+ ConjRhs = false,
474
+ Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
475
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
476
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
477
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
478
+
479
+ NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
480
+ nr = 4,
481
+ #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
482
+ // we assume 16 registers
483
+ mr = 3*LhsPacketSize,
484
+ #else
485
+ mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
486
+ #endif
487
+
488
+ LhsProgress = LhsPacketSize,
489
+ RhsProgress = 1
490
+ };
491
+
492
+ typedef typename packet_traits<LhsScalar>::type _LhsPacket;
493
+ typedef typename packet_traits<RhsScalar>::type _RhsPacket;
494
+ typedef typename packet_traits<ResScalar>::type _ResPacket;
495
+
496
+ typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
497
+ typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
498
+ typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
499
+
500
+ typedef ResPacket AccPacket;
501
+
502
+ EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
503
+ {
504
+ p = pset1<ResPacket>(ResScalar(0));
505
+ }
506
+
507
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
508
+ {
509
+ dest = pset1<RhsPacket>(*b);
510
+ }
511
+
512
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
513
+ {
514
+ dest = pset1<RhsPacket>(*b);
515
+ }
516
+
517
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
518
+ {
519
+ dest = pload<LhsPacket>(a);
520
+ }
521
+
522
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
523
+ {
524
+ dest = ploadu<LhsPacket>(a);
525
+ }
526
+
527
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
528
+ {
529
+ pbroadcast4(b, b0, b1, b2, b3);
530
+ }
531
+
532
+ // EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
533
+ // {
534
+ // pbroadcast2(b, b0, b1);
535
+ // }
536
+
537
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
538
+ {
539
+ madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
540
+ }
541
+
542
+ EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
543
+ {
544
+ #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
545
+ EIGEN_UNUSED_VARIABLE(tmp);
546
+ c.v = pmadd(a.v,b,c.v);
547
+ #else
548
+ tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
549
+ #endif
550
+ }
551
+
552
+ EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
553
+ {
554
+ c += a * b;
555
+ }
556
+
557
+ EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
558
+ {
559
+ r = cj.pmadd(c,alpha,r);
560
+ }
561
+
562
+ protected:
563
+ conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
564
+ };
565
+
566
+ template<typename Packet>
567
+ struct DoublePacket
568
+ {
569
+ Packet first;
570
+ Packet second;
571
+ };
572
+
573
+ template<typename Packet>
574
+ DoublePacket<Packet> padd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
575
+ {
576
+ DoublePacket<Packet> res;
577
+ res.first = padd(a.first, b.first);
578
+ res.second = padd(a.second,b.second);
579
+ return res;
580
+ }
581
+
582
+ template<typename Packet>
583
+ const DoublePacket<Packet>& predux_downto4(const DoublePacket<Packet> &a)
584
+ {
585
+ return a;
586
+ }
587
+
588
+ template<typename Packet> struct unpacket_traits<DoublePacket<Packet> > { typedef DoublePacket<Packet> half; };
589
+ // template<typename Packet>
590
+ // DoublePacket<Packet> pmadd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
591
+ // {
592
+ // DoublePacket<Packet> res;
593
+ // res.first = padd(a.first, b.first);
594
+ // res.second = padd(a.second,b.second);
595
+ // return res;
596
+ // }
597
+
598
+ template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
599
+ class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
600
+ {
601
+ public:
602
+ typedef std::complex<RealScalar> Scalar;
603
+ typedef std::complex<RealScalar> LhsScalar;
604
+ typedef std::complex<RealScalar> RhsScalar;
605
+ typedef std::complex<RealScalar> ResScalar;
606
+
607
+ enum {
608
+ ConjLhs = _ConjLhs,
609
+ ConjRhs = _ConjRhs,
610
+ Vectorizable = packet_traits<RealScalar>::Vectorizable
611
+ && packet_traits<Scalar>::Vectorizable,
612
+ RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1,
613
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
614
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
615
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
616
+
617
+ // FIXME: should depend on NumberOfRegisters
618
+ nr = 4,
619
+ mr = ResPacketSize,
620
+
621
+ LhsProgress = ResPacketSize,
622
+ RhsProgress = 1
623
+ };
624
+
625
+ typedef typename packet_traits<RealScalar>::type RealPacket;
626
+ typedef typename packet_traits<Scalar>::type ScalarPacket;
627
+ typedef DoublePacket<RealPacket> DoublePacketType;
628
+
629
+ typedef typename conditional<Vectorizable,RealPacket, Scalar>::type LhsPacket;
630
+ typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type RhsPacket;
631
+ typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
632
+ typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type AccPacket;
633
+
634
+ EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
635
+
636
+ EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p)
637
+ {
638
+ p.first = pset1<RealPacket>(RealScalar(0));
639
+ p.second = pset1<RealPacket>(RealScalar(0));
640
+ }
641
+
642
+ // Scalar path
643
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const
644
+ {
645
+ dest = pset1<ResPacket>(*b);
646
+ }
647
+
648
+ // Vectorized path
649
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacketType& dest) const
650
+ {
651
+ dest.first = pset1<RealPacket>(real(*b));
652
+ dest.second = pset1<RealPacket>(imag(*b));
653
+ }
654
+
655
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const
656
+ {
657
+ loadRhs(b,dest);
658
+ }
659
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const
660
+ {
661
+ eigen_internal_assert(unpacket_traits<ScalarPacket>::size<=4);
662
+ loadRhs(b,dest);
663
+ }
664
+
665
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
666
+ {
667
+ // FIXME not sure that's the best way to implement it!
668
+ loadRhs(b+0, b0);
669
+ loadRhs(b+1, b1);
670
+ loadRhs(b+2, b2);
671
+ loadRhs(b+3, b3);
672
+ }
673
+
674
+ // Vectorized path
675
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacketType& b0, DoublePacketType& b1)
676
+ {
677
+ // FIXME not sure that's the best way to implement it!
678
+ loadRhs(b+0, b0);
679
+ loadRhs(b+1, b1);
680
+ }
681
+
682
+ // Scalar path
683
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1)
684
+ {
685
+ // FIXME not sure that's the best way to implement it!
686
+ loadRhs(b+0, b0);
687
+ loadRhs(b+1, b1);
688
+ }
689
+
690
+ // nothing special here
691
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
692
+ {
693
+ dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
694
+ }
695
+
696
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
697
+ {
698
+ dest = ploadu<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
699
+ }
700
+
701
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacketType& c, RhsPacket& /*tmp*/) const
702
+ {
703
+ c.first = padd(pmul(a,b.first), c.first);
704
+ c.second = padd(pmul(a,b.second),c.second);
705
+ }
706
+
707
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
708
+ {
709
+ c = cj.pmadd(a,b,c);
710
+ }
711
+
712
+ EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
713
+
714
+ EIGEN_STRONG_INLINE void acc(const DoublePacketType& c, const ResPacket& alpha, ResPacket& r) const
715
+ {
716
+ // assemble c
717
+ ResPacket tmp;
718
+ if((!ConjLhs)&&(!ConjRhs))
719
+ {
720
+ tmp = pcplxflip(pconj(ResPacket(c.second)));
721
+ tmp = padd(ResPacket(c.first),tmp);
722
+ }
723
+ else if((!ConjLhs)&&(ConjRhs))
724
+ {
725
+ tmp = pconj(pcplxflip(ResPacket(c.second)));
726
+ tmp = padd(ResPacket(c.first),tmp);
727
+ }
728
+ else if((ConjLhs)&&(!ConjRhs))
729
+ {
730
+ tmp = pcplxflip(ResPacket(c.second));
731
+ tmp = padd(pconj(ResPacket(c.first)),tmp);
732
+ }
733
+ else if((ConjLhs)&&(ConjRhs))
734
+ {
735
+ tmp = pcplxflip(ResPacket(c.second));
736
+ tmp = psub(pconj(ResPacket(c.first)),tmp);
737
+ }
738
+
739
+ r = pmadd(tmp,alpha,r);
740
+ }
741
+
742
+ protected:
743
+ conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
744
+ };
745
+
746
+ template<typename RealScalar, bool _ConjRhs>
747
+ class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
748
+ {
749
+ public:
750
+ typedef std::complex<RealScalar> Scalar;
751
+ typedef RealScalar LhsScalar;
752
+ typedef Scalar RhsScalar;
753
+ typedef Scalar ResScalar;
754
+
755
+ enum {
756
+ ConjLhs = false,
757
+ ConjRhs = _ConjRhs,
758
+ Vectorizable = packet_traits<RealScalar>::Vectorizable
759
+ && packet_traits<Scalar>::Vectorizable,
760
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
761
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
762
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
763
+
764
+ NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
765
+ // FIXME: should depend on NumberOfRegisters
766
+ nr = 4,
767
+ mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*ResPacketSize,
768
+
769
+ LhsProgress = ResPacketSize,
770
+ RhsProgress = 1
771
+ };
772
+
773
+ typedef typename packet_traits<LhsScalar>::type _LhsPacket;
774
+ typedef typename packet_traits<RhsScalar>::type _RhsPacket;
775
+ typedef typename packet_traits<ResScalar>::type _ResPacket;
776
+
777
+ typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
778
+ typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
779
+ typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
780
+
781
+ typedef ResPacket AccPacket;
782
+
783
+ EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
784
+ {
785
+ p = pset1<ResPacket>(ResScalar(0));
786
+ }
787
+
788
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
789
+ {
790
+ dest = pset1<RhsPacket>(*b);
791
+ }
792
+
793
+ void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
794
+ {
795
+ pbroadcast4(b, b0, b1, b2, b3);
796
+ }
797
+
798
+ // EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
799
+ // {
800
+ // // FIXME not sure that's the best way to implement it!
801
+ // b0 = pload1<RhsPacket>(b+0);
802
+ // b1 = pload1<RhsPacket>(b+1);
803
+ // }
804
+
805
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
806
+ {
807
+ dest = ploaddup<LhsPacket>(a);
808
+ }
809
+
810
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
811
+ {
812
+ eigen_internal_assert(unpacket_traits<RhsPacket>::size<=4);
813
+ loadRhs(b,dest);
814
+ }
815
+
816
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
817
+ {
818
+ dest = ploaddup<LhsPacket>(a);
819
+ }
820
+
821
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
822
+ {
823
+ madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
824
+ }
825
+
826
+ EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
827
+ {
828
+ #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
829
+ EIGEN_UNUSED_VARIABLE(tmp);
830
+ c.v = pmadd(a,b.v,c.v);
831
+ #else
832
+ tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
833
+ #endif
834
+
835
+ }
836
+
837
+ EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
838
+ {
839
+ c += a * b;
840
+ }
841
+
842
+ EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
843
+ {
844
+ r = cj.pmadd(alpha,c,r);
845
+ }
846
+
847
+ protected:
848
+ conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
849
+ };
850
+
851
+ /* optimized GEneral packed Block * packed Panel product kernel
852
+ *
853
+ * Mixing type logic: C += A * B
854
+ * | A | B | comments
855
+ * |real |cplx | no vectorization yet, would require to pack A with duplication
856
+ * |cplx |real | easy vectorization
857
+ */
858
+ template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
859
+ struct gebp_kernel
860
+ {
861
+ typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
862
+ typedef typename Traits::ResScalar ResScalar;
863
+ typedef typename Traits::LhsPacket LhsPacket;
864
+ typedef typename Traits::RhsPacket RhsPacket;
865
+ typedef typename Traits::ResPacket ResPacket;
866
+ typedef typename Traits::AccPacket AccPacket;
867
+
868
+ typedef gebp_traits<RhsScalar,LhsScalar,ConjugateRhs,ConjugateLhs> SwappedTraits;
869
+ typedef typename SwappedTraits::ResScalar SResScalar;
870
+ typedef typename SwappedTraits::LhsPacket SLhsPacket;
871
+ typedef typename SwappedTraits::RhsPacket SRhsPacket;
872
+ typedef typename SwappedTraits::ResPacket SResPacket;
873
+ typedef typename SwappedTraits::AccPacket SAccPacket;
874
+
875
+ typedef typename DataMapper::LinearMapper LinearMapper;
876
+
877
+ enum {
878
+ Vectorizable = Traits::Vectorizable,
879
+ LhsProgress = Traits::LhsProgress,
880
+ RhsProgress = Traits::RhsProgress,
881
+ ResPacketSize = Traits::ResPacketSize
882
+ };
883
+
884
+ EIGEN_DONT_INLINE
885
+ void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
886
+ Index rows, Index depth, Index cols, ResScalar alpha,
887
+ Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
888
+ };
889
+
890
+ template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
891
+ EIGEN_DONT_INLINE
892
+ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,ConjugateRhs>
893
+ ::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
894
+ Index rows, Index depth, Index cols, ResScalar alpha,
895
+ Index strideA, Index strideB, Index offsetA, Index offsetB)
896
+ {
897
+ Traits traits;
898
+ SwappedTraits straits;
899
+
900
+ if(strideA==-1) strideA = depth;
901
+ if(strideB==-1) strideB = depth;
902
+ conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
903
+ Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
904
+ const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0;
905
+ const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0;
906
+ const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? (rows/(1*LhsProgress))*(1*LhsProgress) : 0;
907
+ enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell)
908
+ const Index peeled_kc = depth & ~(pk-1);
909
+ const Index prefetch_res_offset = 32/sizeof(ResScalar);
910
+ // const Index depth2 = depth & ~1;
911
+
912
+ //---------- Process 3 * LhsProgress rows at once ----------
913
+ // This corresponds to 3*LhsProgress x nr register blocks.
914
+ // Usually, make sense only with FMA
915
+ if(mr>=3*Traits::LhsProgress)
916
+ {
917
+ // Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth)
918
+ // and on each largest micro vertical panel of the rhs (depth * nr).
919
+ // Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1.
920
+ // However, if depth is too small, we can extend the number of rows of these horizontal panels.
921
+ // This actual number of rows is computed as follow:
922
+ const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
923
+ // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
924
+ // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
925
+ // or because we are testing specific blocking sizes.
926
+ const Index actual_panel_rows = (3*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) ));
927
+ for(Index i1=0; i1<peeled_mc3; i1+=actual_panel_rows)
928
+ {
929
+ const Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc3);
930
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
931
+ {
932
+ for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
933
+ {
934
+
935
+ // We selected a 3*Traits::LhsProgress x nr micro block of res which is entirely
936
+ // stored into 3 x nr registers.
937
+
938
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*LhsProgress)];
939
+ prefetch(&blA[0]);
940
+
941
+ // gets res block as register
942
+ AccPacket C0, C1, C2, C3,
943
+ C4, C5, C6, C7,
944
+ C8, C9, C10, C11;
945
+ traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
946
+ traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
947
+ traits.initAcc(C8); traits.initAcc(C9); traits.initAcc(C10); traits.initAcc(C11);
948
+
949
+ LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
950
+ LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
951
+ LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
952
+ LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
953
+
954
+ r0.prefetch(0);
955
+ r1.prefetch(0);
956
+ r2.prefetch(0);
957
+ r3.prefetch(0);
958
+
959
+ // performs "inner" products
960
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
961
+ prefetch(&blB[0]);
962
+ LhsPacket A0, A1;
963
+
964
+ for(Index k=0; k<peeled_kc; k+=pk)
965
+ {
966
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX4");
967
+ RhsPacket B_0, T0;
968
+ LhsPacket A2;
969
+
970
+ #define EIGEN_GEBP_ONESTEP(K) \
971
+ do { \
972
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX4"); \
973
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
974
+ internal::prefetch(blA+(3*K+16)*LhsProgress); \
975
+ if (EIGEN_ARCH_ARM) { internal::prefetch(blB+(4*K+16)*RhsProgress); } /* Bug 953 */ \
976
+ traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
977
+ traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
978
+ traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
979
+ traits.loadRhs(blB + (0+4*K)*Traits::RhsProgress, B_0); \
980
+ traits.madd(A0, B_0, C0, T0); \
981
+ traits.madd(A1, B_0, C4, T0); \
982
+ traits.madd(A2, B_0, C8, B_0); \
983
+ traits.loadRhs(blB + (1+4*K)*Traits::RhsProgress, B_0); \
984
+ traits.madd(A0, B_0, C1, T0); \
985
+ traits.madd(A1, B_0, C5, T0); \
986
+ traits.madd(A2, B_0, C9, B_0); \
987
+ traits.loadRhs(blB + (2+4*K)*Traits::RhsProgress, B_0); \
988
+ traits.madd(A0, B_0, C2, T0); \
989
+ traits.madd(A1, B_0, C6, T0); \
990
+ traits.madd(A2, B_0, C10, B_0); \
991
+ traits.loadRhs(blB + (3+4*K)*Traits::RhsProgress, B_0); \
992
+ traits.madd(A0, B_0, C3 , T0); \
993
+ traits.madd(A1, B_0, C7, T0); \
994
+ traits.madd(A2, B_0, C11, B_0); \
995
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \
996
+ } while(false)
997
+
998
+ internal::prefetch(blB);
999
+ EIGEN_GEBP_ONESTEP(0);
1000
+ EIGEN_GEBP_ONESTEP(1);
1001
+ EIGEN_GEBP_ONESTEP(2);
1002
+ EIGEN_GEBP_ONESTEP(3);
1003
+ EIGEN_GEBP_ONESTEP(4);
1004
+ EIGEN_GEBP_ONESTEP(5);
1005
+ EIGEN_GEBP_ONESTEP(6);
1006
+ EIGEN_GEBP_ONESTEP(7);
1007
+
1008
+ blB += pk*4*RhsProgress;
1009
+ blA += pk*3*Traits::LhsProgress;
1010
+
1011
+ EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4");
1012
+ }
1013
+ // process remaining peeled loop
1014
+ for(Index k=peeled_kc; k<depth; k++)
1015
+ {
1016
+ RhsPacket B_0, T0;
1017
+ LhsPacket A2;
1018
+ EIGEN_GEBP_ONESTEP(0);
1019
+ blB += 4*RhsProgress;
1020
+ blA += 3*Traits::LhsProgress;
1021
+ }
1022
+
1023
+ #undef EIGEN_GEBP_ONESTEP
1024
+
1025
+ ResPacket R0, R1, R2;
1026
+ ResPacket alphav = pset1<ResPacket>(alpha);
1027
+
1028
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1029
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1030
+ R2 = r0.loadPacket(2 * Traits::ResPacketSize);
1031
+ traits.acc(C0, alphav, R0);
1032
+ traits.acc(C4, alphav, R1);
1033
+ traits.acc(C8, alphav, R2);
1034
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
1035
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
1036
+ r0.storePacket(2 * Traits::ResPacketSize, R2);
1037
+
1038
+ R0 = r1.loadPacket(0 * Traits::ResPacketSize);
1039
+ R1 = r1.loadPacket(1 * Traits::ResPacketSize);
1040
+ R2 = r1.loadPacket(2 * Traits::ResPacketSize);
1041
+ traits.acc(C1, alphav, R0);
1042
+ traits.acc(C5, alphav, R1);
1043
+ traits.acc(C9, alphav, R2);
1044
+ r1.storePacket(0 * Traits::ResPacketSize, R0);
1045
+ r1.storePacket(1 * Traits::ResPacketSize, R1);
1046
+ r1.storePacket(2 * Traits::ResPacketSize, R2);
1047
+
1048
+ R0 = r2.loadPacket(0 * Traits::ResPacketSize);
1049
+ R1 = r2.loadPacket(1 * Traits::ResPacketSize);
1050
+ R2 = r2.loadPacket(2 * Traits::ResPacketSize);
1051
+ traits.acc(C2, alphav, R0);
1052
+ traits.acc(C6, alphav, R1);
1053
+ traits.acc(C10, alphav, R2);
1054
+ r2.storePacket(0 * Traits::ResPacketSize, R0);
1055
+ r2.storePacket(1 * Traits::ResPacketSize, R1);
1056
+ r2.storePacket(2 * Traits::ResPacketSize, R2);
1057
+
1058
+ R0 = r3.loadPacket(0 * Traits::ResPacketSize);
1059
+ R1 = r3.loadPacket(1 * Traits::ResPacketSize);
1060
+ R2 = r3.loadPacket(2 * Traits::ResPacketSize);
1061
+ traits.acc(C3, alphav, R0);
1062
+ traits.acc(C7, alphav, R1);
1063
+ traits.acc(C11, alphav, R2);
1064
+ r3.storePacket(0 * Traits::ResPacketSize, R0);
1065
+ r3.storePacket(1 * Traits::ResPacketSize, R1);
1066
+ r3.storePacket(2 * Traits::ResPacketSize, R2);
1067
+ }
1068
+ }
1069
+
1070
+ // Deal with remaining columns of the rhs
1071
+ for(Index j2=packet_cols4; j2<cols; j2++)
1072
+ {
1073
+ for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
1074
+ {
1075
+ // One column at a time
1076
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*Traits::LhsProgress)];
1077
+ prefetch(&blA[0]);
1078
+
1079
+ // gets res block as register
1080
+ AccPacket C0, C4, C8;
1081
+ traits.initAcc(C0);
1082
+ traits.initAcc(C4);
1083
+ traits.initAcc(C8);
1084
+
1085
+ LinearMapper r0 = res.getLinearMapper(i, j2);
1086
+ r0.prefetch(0);
1087
+
1088
+ // performs "inner" products
1089
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1090
+ LhsPacket A0, A1, A2;
1091
+
1092
+ for(Index k=0; k<peeled_kc; k+=pk)
1093
+ {
1094
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX1");
1095
+ RhsPacket B_0;
1096
+ #define EIGEN_GEBGP_ONESTEP(K) \
1097
+ do { \
1098
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX1"); \
1099
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1100
+ traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
1101
+ traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
1102
+ traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
1103
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
1104
+ traits.madd(A0, B_0, C0, B_0); \
1105
+ traits.madd(A1, B_0, C4, B_0); \
1106
+ traits.madd(A2, B_0, C8, B_0); \
1107
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \
1108
+ } while(false)
1109
+
1110
+ EIGEN_GEBGP_ONESTEP(0);
1111
+ EIGEN_GEBGP_ONESTEP(1);
1112
+ EIGEN_GEBGP_ONESTEP(2);
1113
+ EIGEN_GEBGP_ONESTEP(3);
1114
+ EIGEN_GEBGP_ONESTEP(4);
1115
+ EIGEN_GEBGP_ONESTEP(5);
1116
+ EIGEN_GEBGP_ONESTEP(6);
1117
+ EIGEN_GEBGP_ONESTEP(7);
1118
+
1119
+ blB += pk*RhsProgress;
1120
+ blA += pk*3*Traits::LhsProgress;
1121
+
1122
+ EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1");
1123
+ }
1124
+
1125
+ // process remaining peeled loop
1126
+ for(Index k=peeled_kc; k<depth; k++)
1127
+ {
1128
+ RhsPacket B_0;
1129
+ EIGEN_GEBGP_ONESTEP(0);
1130
+ blB += RhsProgress;
1131
+ blA += 3*Traits::LhsProgress;
1132
+ }
1133
+ #undef EIGEN_GEBGP_ONESTEP
1134
+ ResPacket R0, R1, R2;
1135
+ ResPacket alphav = pset1<ResPacket>(alpha);
1136
+
1137
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1138
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1139
+ R2 = r0.loadPacket(2 * Traits::ResPacketSize);
1140
+ traits.acc(C0, alphav, R0);
1141
+ traits.acc(C4, alphav, R1);
1142
+ traits.acc(C8, alphav, R2);
1143
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
1144
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
1145
+ r0.storePacket(2 * Traits::ResPacketSize, R2);
1146
+ }
1147
+ }
1148
+ }
1149
+ }
1150
+
1151
+ //---------- Process 2 * LhsProgress rows at once ----------
1152
+ if(mr>=2*Traits::LhsProgress)
1153
+ {
1154
+ const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
1155
+ // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
1156
+ // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
1157
+ // or because we are testing specific blocking sizes.
1158
+ Index actual_panel_rows = (2*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) ));
1159
+
1160
+ for(Index i1=peeled_mc3; i1<peeled_mc2; i1+=actual_panel_rows)
1161
+ {
1162
+ Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc2);
1163
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
1164
+ {
1165
+ for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
1166
+ {
1167
+
1168
+ // We selected a 2*Traits::LhsProgress x nr micro block of res which is entirely
1169
+ // stored into 2 x nr registers.
1170
+
1171
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
1172
+ prefetch(&blA[0]);
1173
+
1174
+ // gets res block as register
1175
+ AccPacket C0, C1, C2, C3,
1176
+ C4, C5, C6, C7;
1177
+ traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
1178
+ traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
1179
+
1180
+ LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
1181
+ LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
1182
+ LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
1183
+ LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
1184
+
1185
+ r0.prefetch(prefetch_res_offset);
1186
+ r1.prefetch(prefetch_res_offset);
1187
+ r2.prefetch(prefetch_res_offset);
1188
+ r3.prefetch(prefetch_res_offset);
1189
+
1190
+ // performs "inner" products
1191
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
1192
+ prefetch(&blB[0]);
1193
+ LhsPacket A0, A1;
1194
+
1195
+ for(Index k=0; k<peeled_kc; k+=pk)
1196
+ {
1197
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX4");
1198
+ RhsPacket B_0, B1, B2, B3, T0;
1199
+
1200
+ // NOTE: the begin/end asm comments below work around bug 935!
1201
+ // but they are not enough for gcc>=6 without FMA (bug 1637)
1202
+ #if EIGEN_GNUC_AT_LEAST(6,0) && defined(EIGEN_VECTORIZE_SSE)
1203
+ #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND __asm__ ("" : [a0] "+x,m" (A0),[a1] "+x,m" (A1));
1204
+ #else
1205
+ #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND
1206
+ #endif
1207
+ #define EIGEN_GEBGP_ONESTEP(K) \
1208
+ do { \
1209
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \
1210
+ traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
1211
+ traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
1212
+ traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
1213
+ traits.madd(A0, B_0, C0, T0); \
1214
+ traits.madd(A1, B_0, C4, B_0); \
1215
+ traits.madd(A0, B1, C1, T0); \
1216
+ traits.madd(A1, B1, C5, B1); \
1217
+ traits.madd(A0, B2, C2, T0); \
1218
+ traits.madd(A1, B2, C6, B2); \
1219
+ traits.madd(A0, B3, C3, T0); \
1220
+ traits.madd(A1, B3, C7, B3); \
1221
+ EIGEN_GEBP_2PX4_SPILLING_WORKAROUND \
1222
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \
1223
+ } while(false)
1224
+
1225
+ internal::prefetch(blB+(48+0));
1226
+ EIGEN_GEBGP_ONESTEP(0);
1227
+ EIGEN_GEBGP_ONESTEP(1);
1228
+ EIGEN_GEBGP_ONESTEP(2);
1229
+ EIGEN_GEBGP_ONESTEP(3);
1230
+ internal::prefetch(blB+(48+16));
1231
+ EIGEN_GEBGP_ONESTEP(4);
1232
+ EIGEN_GEBGP_ONESTEP(5);
1233
+ EIGEN_GEBGP_ONESTEP(6);
1234
+ EIGEN_GEBGP_ONESTEP(7);
1235
+
1236
+ blB += pk*4*RhsProgress;
1237
+ blA += pk*(2*Traits::LhsProgress);
1238
+
1239
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4");
1240
+ }
1241
+ // process remaining peeled loop
1242
+ for(Index k=peeled_kc; k<depth; k++)
1243
+ {
1244
+ RhsPacket B_0, B1, B2, B3, T0;
1245
+ EIGEN_GEBGP_ONESTEP(0);
1246
+ blB += 4*RhsProgress;
1247
+ blA += 2*Traits::LhsProgress;
1248
+ }
1249
+ #undef EIGEN_GEBGP_ONESTEP
1250
+
1251
+ ResPacket R0, R1, R2, R3;
1252
+ ResPacket alphav = pset1<ResPacket>(alpha);
1253
+
1254
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1255
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1256
+ R2 = r1.loadPacket(0 * Traits::ResPacketSize);
1257
+ R3 = r1.loadPacket(1 * Traits::ResPacketSize);
1258
+ traits.acc(C0, alphav, R0);
1259
+ traits.acc(C4, alphav, R1);
1260
+ traits.acc(C1, alphav, R2);
1261
+ traits.acc(C5, alphav, R3);
1262
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
1263
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
1264
+ r1.storePacket(0 * Traits::ResPacketSize, R2);
1265
+ r1.storePacket(1 * Traits::ResPacketSize, R3);
1266
+
1267
+ R0 = r2.loadPacket(0 * Traits::ResPacketSize);
1268
+ R1 = r2.loadPacket(1 * Traits::ResPacketSize);
1269
+ R2 = r3.loadPacket(0 * Traits::ResPacketSize);
1270
+ R3 = r3.loadPacket(1 * Traits::ResPacketSize);
1271
+ traits.acc(C2, alphav, R0);
1272
+ traits.acc(C6, alphav, R1);
1273
+ traits.acc(C3, alphav, R2);
1274
+ traits.acc(C7, alphav, R3);
1275
+ r2.storePacket(0 * Traits::ResPacketSize, R0);
1276
+ r2.storePacket(1 * Traits::ResPacketSize, R1);
1277
+ r3.storePacket(0 * Traits::ResPacketSize, R2);
1278
+ r3.storePacket(1 * Traits::ResPacketSize, R3);
1279
+ }
1280
+ }
1281
+
1282
+ // Deal with remaining columns of the rhs
1283
+ for(Index j2=packet_cols4; j2<cols; j2++)
1284
+ {
1285
+ for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
1286
+ {
1287
+ // One column at a time
1288
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
1289
+ prefetch(&blA[0]);
1290
+
1291
+ // gets res block as register
1292
+ AccPacket C0, C4;
1293
+ traits.initAcc(C0);
1294
+ traits.initAcc(C4);
1295
+
1296
+ LinearMapper r0 = res.getLinearMapper(i, j2);
1297
+ r0.prefetch(prefetch_res_offset);
1298
+
1299
+ // performs "inner" products
1300
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1301
+ LhsPacket A0, A1;
1302
+
1303
+ for(Index k=0; k<peeled_kc; k+=pk)
1304
+ {
1305
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1");
1306
+ RhsPacket B_0, B1;
1307
+
1308
+ #define EIGEN_GEBGP_ONESTEP(K) \
1309
+ do { \
1310
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1"); \
1311
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1312
+ traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
1313
+ traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
1314
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
1315
+ traits.madd(A0, B_0, C0, B1); \
1316
+ traits.madd(A1, B_0, C4, B_0); \
1317
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \
1318
+ } while(false)
1319
+
1320
+ EIGEN_GEBGP_ONESTEP(0);
1321
+ EIGEN_GEBGP_ONESTEP(1);
1322
+ EIGEN_GEBGP_ONESTEP(2);
1323
+ EIGEN_GEBGP_ONESTEP(3);
1324
+ EIGEN_GEBGP_ONESTEP(4);
1325
+ EIGEN_GEBGP_ONESTEP(5);
1326
+ EIGEN_GEBGP_ONESTEP(6);
1327
+ EIGEN_GEBGP_ONESTEP(7);
1328
+
1329
+ blB += pk*RhsProgress;
1330
+ blA += pk*2*Traits::LhsProgress;
1331
+
1332
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1");
1333
+ }
1334
+
1335
+ // process remaining peeled loop
1336
+ for(Index k=peeled_kc; k<depth; k++)
1337
+ {
1338
+ RhsPacket B_0, B1;
1339
+ EIGEN_GEBGP_ONESTEP(0);
1340
+ blB += RhsProgress;
1341
+ blA += 2*Traits::LhsProgress;
1342
+ }
1343
+ #undef EIGEN_GEBGP_ONESTEP
1344
+ ResPacket R0, R1;
1345
+ ResPacket alphav = pset1<ResPacket>(alpha);
1346
+
1347
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1348
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
1349
+ traits.acc(C0, alphav, R0);
1350
+ traits.acc(C4, alphav, R1);
1351
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
1352
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
1353
+ }
1354
+ }
1355
+ }
1356
+ }
1357
+ //---------- Process 1 * LhsProgress rows at once ----------
1358
+ if(mr>=1*Traits::LhsProgress)
1359
+ {
1360
+ // loops on each largest micro horizontal panel of lhs (1*LhsProgress x depth)
1361
+ for(Index i=peeled_mc2; i<peeled_mc1; i+=1*LhsProgress)
1362
+ {
1363
+ // loops on each largest micro vertical panel of rhs (depth * nr)
1364
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
1365
+ {
1366
+ // We select a 1*Traits::LhsProgress x nr micro block of res which is entirely
1367
+ // stored into 1 x nr registers.
1368
+
1369
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
1370
+ prefetch(&blA[0]);
1371
+
1372
+ // gets res block as register
1373
+ AccPacket C0, C1, C2, C3;
1374
+ traits.initAcc(C0);
1375
+ traits.initAcc(C1);
1376
+ traits.initAcc(C2);
1377
+ traits.initAcc(C3);
1378
+
1379
+ LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
1380
+ LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
1381
+ LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
1382
+ LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
1383
+
1384
+ r0.prefetch(prefetch_res_offset);
1385
+ r1.prefetch(prefetch_res_offset);
1386
+ r2.prefetch(prefetch_res_offset);
1387
+ r3.prefetch(prefetch_res_offset);
1388
+
1389
+ // performs "inner" products
1390
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
1391
+ prefetch(&blB[0]);
1392
+ LhsPacket A0;
1393
+
1394
+ for(Index k=0; k<peeled_kc; k+=pk)
1395
+ {
1396
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX4");
1397
+ RhsPacket B_0, B1, B2, B3;
1398
+
1399
+ #define EIGEN_GEBGP_ONESTEP(K) \
1400
+ do { \
1401
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX4"); \
1402
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1403
+ traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
1404
+ traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
1405
+ traits.madd(A0, B_0, C0, B_0); \
1406
+ traits.madd(A0, B1, C1, B1); \
1407
+ traits.madd(A0, B2, C2, B2); \
1408
+ traits.madd(A0, B3, C3, B3); \
1409
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX4"); \
1410
+ } while(false)
1411
+
1412
+ internal::prefetch(blB+(48+0));
1413
+ EIGEN_GEBGP_ONESTEP(0);
1414
+ EIGEN_GEBGP_ONESTEP(1);
1415
+ EIGEN_GEBGP_ONESTEP(2);
1416
+ EIGEN_GEBGP_ONESTEP(3);
1417
+ internal::prefetch(blB+(48+16));
1418
+ EIGEN_GEBGP_ONESTEP(4);
1419
+ EIGEN_GEBGP_ONESTEP(5);
1420
+ EIGEN_GEBGP_ONESTEP(6);
1421
+ EIGEN_GEBGP_ONESTEP(7);
1422
+
1423
+ blB += pk*4*RhsProgress;
1424
+ blA += pk*1*LhsProgress;
1425
+
1426
+ EIGEN_ASM_COMMENT("end gebp micro kernel 1pX4");
1427
+ }
1428
+ // process remaining peeled loop
1429
+ for(Index k=peeled_kc; k<depth; k++)
1430
+ {
1431
+ RhsPacket B_0, B1, B2, B3;
1432
+ EIGEN_GEBGP_ONESTEP(0);
1433
+ blB += 4*RhsProgress;
1434
+ blA += 1*LhsProgress;
1435
+ }
1436
+ #undef EIGEN_GEBGP_ONESTEP
1437
+
1438
+ ResPacket R0, R1;
1439
+ ResPacket alphav = pset1<ResPacket>(alpha);
1440
+
1441
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1442
+ R1 = r1.loadPacket(0 * Traits::ResPacketSize);
1443
+ traits.acc(C0, alphav, R0);
1444
+ traits.acc(C1, alphav, R1);
1445
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
1446
+ r1.storePacket(0 * Traits::ResPacketSize, R1);
1447
+
1448
+ R0 = r2.loadPacket(0 * Traits::ResPacketSize);
1449
+ R1 = r3.loadPacket(0 * Traits::ResPacketSize);
1450
+ traits.acc(C2, alphav, R0);
1451
+ traits.acc(C3, alphav, R1);
1452
+ r2.storePacket(0 * Traits::ResPacketSize, R0);
1453
+ r3.storePacket(0 * Traits::ResPacketSize, R1);
1454
+ }
1455
+
1456
+ // Deal with remaining columns of the rhs
1457
+ for(Index j2=packet_cols4; j2<cols; j2++)
1458
+ {
1459
+ // One column at a time
1460
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
1461
+ prefetch(&blA[0]);
1462
+
1463
+ // gets res block as register
1464
+ AccPacket C0;
1465
+ traits.initAcc(C0);
1466
+
1467
+ LinearMapper r0 = res.getLinearMapper(i, j2);
1468
+
1469
+ // performs "inner" products
1470
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1471
+ LhsPacket A0;
1472
+
1473
+ for(Index k=0; k<peeled_kc; k+=pk)
1474
+ {
1475
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX1");
1476
+ RhsPacket B_0;
1477
+
1478
+ #define EIGEN_GEBGP_ONESTEP(K) \
1479
+ do { \
1480
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX1"); \
1481
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
1482
+ traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
1483
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
1484
+ traits.madd(A0, B_0, C0, B_0); \
1485
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX1"); \
1486
+ } while(false);
1487
+
1488
+ EIGEN_GEBGP_ONESTEP(0);
1489
+ EIGEN_GEBGP_ONESTEP(1);
1490
+ EIGEN_GEBGP_ONESTEP(2);
1491
+ EIGEN_GEBGP_ONESTEP(3);
1492
+ EIGEN_GEBGP_ONESTEP(4);
1493
+ EIGEN_GEBGP_ONESTEP(5);
1494
+ EIGEN_GEBGP_ONESTEP(6);
1495
+ EIGEN_GEBGP_ONESTEP(7);
1496
+
1497
+ blB += pk*RhsProgress;
1498
+ blA += pk*1*Traits::LhsProgress;
1499
+
1500
+ EIGEN_ASM_COMMENT("end gebp micro kernel 1pX1");
1501
+ }
1502
+
1503
+ // process remaining peeled loop
1504
+ for(Index k=peeled_kc; k<depth; k++)
1505
+ {
1506
+ RhsPacket B_0;
1507
+ EIGEN_GEBGP_ONESTEP(0);
1508
+ blB += RhsProgress;
1509
+ blA += 1*Traits::LhsProgress;
1510
+ }
1511
+ #undef EIGEN_GEBGP_ONESTEP
1512
+ ResPacket R0;
1513
+ ResPacket alphav = pset1<ResPacket>(alpha);
1514
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
1515
+ traits.acc(C0, alphav, R0);
1516
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
1517
+ }
1518
+ }
1519
+ }
1520
+ //---------- Process remaining rows, 1 at once ----------
1521
+ if(peeled_mc1<rows)
1522
+ {
1523
+ // loop on each panel of the rhs
1524
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
1525
+ {
1526
+ // loop on each row of the lhs (1*LhsProgress x depth)
1527
+ for(Index i=peeled_mc1; i<rows; i+=1)
1528
+ {
1529
+ const LhsScalar* blA = &blockA[i*strideA+offsetA];
1530
+ prefetch(&blA[0]);
1531
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
1532
+
1533
+ // The following piece of code wont work for 512 bit registers
1534
+ // Moreover, if LhsProgress==8 it assumes that there is a half packet of the same size
1535
+ // as nr (which is currently 4) for the return type.
1536
+ const int SResPacketHalfSize = unpacket_traits<typename unpacket_traits<SResPacket>::half>::size;
1537
+ if ((SwappedTraits::LhsProgress % 4) == 0 &&
1538
+ (SwappedTraits::LhsProgress <= 8) &&
1539
+ (SwappedTraits::LhsProgress!=8 || SResPacketHalfSize==nr))
1540
+ {
1541
+ SAccPacket C0, C1, C2, C3;
1542
+ straits.initAcc(C0);
1543
+ straits.initAcc(C1);
1544
+ straits.initAcc(C2);
1545
+ straits.initAcc(C3);
1546
+
1547
+ const Index spk = (std::max)(1,SwappedTraits::LhsProgress/4);
1548
+ const Index endk = (depth/spk)*spk;
1549
+ const Index endk4 = (depth/(spk*4))*(spk*4);
1550
+
1551
+ Index k=0;
1552
+ for(; k<endk4; k+=4*spk)
1553
+ {
1554
+ SLhsPacket A0,A1;
1555
+ SRhsPacket B_0,B_1;
1556
+
1557
+ straits.loadLhsUnaligned(blB+0*SwappedTraits::LhsProgress, A0);
1558
+ straits.loadLhsUnaligned(blB+1*SwappedTraits::LhsProgress, A1);
1559
+
1560
+ straits.loadRhsQuad(blA+0*spk, B_0);
1561
+ straits.loadRhsQuad(blA+1*spk, B_1);
1562
+ straits.madd(A0,B_0,C0,B_0);
1563
+ straits.madd(A1,B_1,C1,B_1);
1564
+
1565
+ straits.loadLhsUnaligned(blB+2*SwappedTraits::LhsProgress, A0);
1566
+ straits.loadLhsUnaligned(blB+3*SwappedTraits::LhsProgress, A1);
1567
+ straits.loadRhsQuad(blA+2*spk, B_0);
1568
+ straits.loadRhsQuad(blA+3*spk, B_1);
1569
+ straits.madd(A0,B_0,C2,B_0);
1570
+ straits.madd(A1,B_1,C3,B_1);
1571
+
1572
+ blB += 4*SwappedTraits::LhsProgress;
1573
+ blA += 4*spk;
1574
+ }
1575
+ C0 = padd(padd(C0,C1),padd(C2,C3));
1576
+ for(; k<endk; k+=spk)
1577
+ {
1578
+ SLhsPacket A0;
1579
+ SRhsPacket B_0;
1580
+
1581
+ straits.loadLhsUnaligned(blB, A0);
1582
+ straits.loadRhsQuad(blA, B_0);
1583
+ straits.madd(A0,B_0,C0,B_0);
1584
+
1585
+ blB += SwappedTraits::LhsProgress;
1586
+ blA += spk;
1587
+ }
1588
+ if(SwappedTraits::LhsProgress==8)
1589
+ {
1590
+ // Special case where we have to first reduce the accumulation register C0
1591
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SResPacket>::half,SResPacket>::type SResPacketHalf;
1592
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SLhsPacket>::type SLhsPacketHalf;
1593
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SRhsPacket>::type SRhsPacketHalf;
1594
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SAccPacket>::half,SAccPacket>::type SAccPacketHalf;
1595
+
1596
+ SResPacketHalf R = res.template gatherPacket<SResPacketHalf>(i, j2);
1597
+ SResPacketHalf alphav = pset1<SResPacketHalf>(alpha);
1598
+
1599
+ if(depth-endk>0)
1600
+ {
1601
+ // We have to handle the last row of the rhs which corresponds to a half-packet
1602
+ SLhsPacketHalf a0;
1603
+ SRhsPacketHalf b0;
1604
+ straits.loadLhsUnaligned(blB, a0);
1605
+ straits.loadRhs(blA, b0);
1606
+ SAccPacketHalf c0 = predux_downto4(C0);
1607
+ straits.madd(a0,b0,c0,b0);
1608
+ straits.acc(c0, alphav, R);
1609
+ }
1610
+ else
1611
+ {
1612
+ straits.acc(predux_downto4(C0), alphav, R);
1613
+ }
1614
+ res.scatterPacket(i, j2, R);
1615
+ }
1616
+ else
1617
+ {
1618
+ SResPacket R = res.template gatherPacket<SResPacket>(i, j2);
1619
+ SResPacket alphav = pset1<SResPacket>(alpha);
1620
+ straits.acc(C0, alphav, R);
1621
+ res.scatterPacket(i, j2, R);
1622
+ }
1623
+ }
1624
+ else // scalar path
1625
+ {
1626
+ // get a 1 x 4 res block as registers
1627
+ ResScalar C0(0), C1(0), C2(0), C3(0);
1628
+
1629
+ for(Index k=0; k<depth; k++)
1630
+ {
1631
+ LhsScalar A0;
1632
+ RhsScalar B_0, B_1;
1633
+
1634
+ A0 = blA[k];
1635
+
1636
+ B_0 = blB[0];
1637
+ B_1 = blB[1];
1638
+ CJMADD(cj,A0,B_0,C0, B_0);
1639
+ CJMADD(cj,A0,B_1,C1, B_1);
1640
+
1641
+ B_0 = blB[2];
1642
+ B_1 = blB[3];
1643
+ CJMADD(cj,A0,B_0,C2, B_0);
1644
+ CJMADD(cj,A0,B_1,C3, B_1);
1645
+
1646
+ blB += 4;
1647
+ }
1648
+ res(i, j2 + 0) += alpha * C0;
1649
+ res(i, j2 + 1) += alpha * C1;
1650
+ res(i, j2 + 2) += alpha * C2;
1651
+ res(i, j2 + 3) += alpha * C3;
1652
+ }
1653
+ }
1654
+ }
1655
+ // remaining columns
1656
+ for(Index j2=packet_cols4; j2<cols; j2++)
1657
+ {
1658
+ // loop on each row of the lhs (1*LhsProgress x depth)
1659
+ for(Index i=peeled_mc1; i<rows; i+=1)
1660
+ {
1661
+ const LhsScalar* blA = &blockA[i*strideA+offsetA];
1662
+ prefetch(&blA[0]);
1663
+ // gets a 1 x 1 res block as registers
1664
+ ResScalar C0(0);
1665
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
1666
+ for(Index k=0; k<depth; k++)
1667
+ {
1668
+ LhsScalar A0 = blA[k];
1669
+ RhsScalar B_0 = blB[k];
1670
+ CJMADD(cj, A0, B_0, C0, B_0);
1671
+ }
1672
+ res(i, j2) += alpha * C0;
1673
+ }
1674
+ }
1675
+ }
1676
+ }
1677
+
1678
+
1679
+ #undef CJMADD
1680
+
1681
+ // pack a block of the lhs
1682
+ // The traversal is as follow (mr==4):
1683
+ // 0 4 8 12 ...
1684
+ // 1 5 9 13 ...
1685
+ // 2 6 10 14 ...
1686
+ // 3 7 11 15 ...
1687
+ //
1688
+ // 16 20 24 28 ...
1689
+ // 17 21 25 29 ...
1690
+ // 18 22 26 30 ...
1691
+ // 19 23 27 31 ...
1692
+ //
1693
+ // 32 33 34 35 ...
1694
+ // 36 36 38 39 ...
1695
+ template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1696
+ struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
1697
+ {
1698
+ typedef typename DataMapper::LinearMapper LinearMapper;
1699
+ EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
1700
+ };
1701
+
1702
+ template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1703
+ EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
1704
+ ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
1705
+ {
1706
+ typedef typename packet_traits<Scalar>::type Packet;
1707
+ enum { PacketSize = packet_traits<Scalar>::size };
1708
+
1709
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
1710
+ EIGEN_UNUSED_VARIABLE(stride);
1711
+ EIGEN_UNUSED_VARIABLE(offset);
1712
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
1713
+ eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) );
1714
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
1715
+ Index count = 0;
1716
+
1717
+ const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
1718
+ const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
1719
+ const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
1720
+ const Index peeled_mc0 = Pack2>=1*PacketSize ? peeled_mc1
1721
+ : Pack2>1 ? (rows/Pack2)*Pack2 : 0;
1722
+
1723
+ Index i=0;
1724
+
1725
+ // Pack 3 packets
1726
+ if(Pack1>=3*PacketSize)
1727
+ {
1728
+ for(; i<peeled_mc3; i+=3*PacketSize)
1729
+ {
1730
+ if(PanelMode) count += (3*PacketSize) * offset;
1731
+
1732
+ for(Index k=0; k<depth; k++)
1733
+ {
1734
+ Packet A, B, C;
1735
+ A = lhs.loadPacket(i+0*PacketSize, k);
1736
+ B = lhs.loadPacket(i+1*PacketSize, k);
1737
+ C = lhs.loadPacket(i+2*PacketSize, k);
1738
+ pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
1739
+ pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
1740
+ pstore(blockA+count, cj.pconj(C)); count+=PacketSize;
1741
+ }
1742
+ if(PanelMode) count += (3*PacketSize) * (stride-offset-depth);
1743
+ }
1744
+ }
1745
+ // Pack 2 packets
1746
+ if(Pack1>=2*PacketSize)
1747
+ {
1748
+ for(; i<peeled_mc2; i+=2*PacketSize)
1749
+ {
1750
+ if(PanelMode) count += (2*PacketSize) * offset;
1751
+
1752
+ for(Index k=0; k<depth; k++)
1753
+ {
1754
+ Packet A, B;
1755
+ A = lhs.loadPacket(i+0*PacketSize, k);
1756
+ B = lhs.loadPacket(i+1*PacketSize, k);
1757
+ pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
1758
+ pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
1759
+ }
1760
+ if(PanelMode) count += (2*PacketSize) * (stride-offset-depth);
1761
+ }
1762
+ }
1763
+ // Pack 1 packets
1764
+ if(Pack1>=1*PacketSize)
1765
+ {
1766
+ for(; i<peeled_mc1; i+=1*PacketSize)
1767
+ {
1768
+ if(PanelMode) count += (1*PacketSize) * offset;
1769
+
1770
+ for(Index k=0; k<depth; k++)
1771
+ {
1772
+ Packet A;
1773
+ A = lhs.loadPacket(i+0*PacketSize, k);
1774
+ pstore(blockA+count, cj.pconj(A));
1775
+ count+=PacketSize;
1776
+ }
1777
+ if(PanelMode) count += (1*PacketSize) * (stride-offset-depth);
1778
+ }
1779
+ }
1780
+ // Pack scalars
1781
+ if(Pack2<PacketSize && Pack2>1)
1782
+ {
1783
+ for(; i<peeled_mc0; i+=Pack2)
1784
+ {
1785
+ if(PanelMode) count += Pack2 * offset;
1786
+
1787
+ for(Index k=0; k<depth; k++)
1788
+ for(Index w=0; w<Pack2; w++)
1789
+ blockA[count++] = cj(lhs(i+w, k));
1790
+
1791
+ if(PanelMode) count += Pack2 * (stride-offset-depth);
1792
+ }
1793
+ }
1794
+ for(; i<rows; i++)
1795
+ {
1796
+ if(PanelMode) count += offset;
1797
+ for(Index k=0; k<depth; k++)
1798
+ blockA[count++] = cj(lhs(i, k));
1799
+ if(PanelMode) count += (stride-offset-depth);
1800
+ }
1801
+ }
1802
+
1803
+ template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1804
+ struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
1805
+ {
1806
+ typedef typename DataMapper::LinearMapper LinearMapper;
1807
+ EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
1808
+ };
1809
+
1810
+ template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
1811
+ EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
1812
+ ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
1813
+ {
1814
+ typedef typename packet_traits<Scalar>::type Packet;
1815
+ enum { PacketSize = packet_traits<Scalar>::size };
1816
+
1817
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
1818
+ EIGEN_UNUSED_VARIABLE(stride);
1819
+ EIGEN_UNUSED_VARIABLE(offset);
1820
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
1821
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
1822
+ Index count = 0;
1823
+
1824
+ // const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
1825
+ // const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
1826
+ // const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
1827
+
1828
+ int pack = Pack1;
1829
+ Index i = 0;
1830
+ while(pack>0)
1831
+ {
1832
+ Index remaining_rows = rows-i;
1833
+ Index peeled_mc = i+(remaining_rows/pack)*pack;
1834
+ for(; i<peeled_mc; i+=pack)
1835
+ {
1836
+ if(PanelMode) count += pack * offset;
1837
+
1838
+ const Index peeled_k = (depth/PacketSize)*PacketSize;
1839
+ Index k=0;
1840
+ if(pack>=PacketSize)
1841
+ {
1842
+ for(; k<peeled_k; k+=PacketSize)
1843
+ {
1844
+ for (Index m = 0; m < pack; m += PacketSize)
1845
+ {
1846
+ PacketBlock<Packet> kernel;
1847
+ for (int p = 0; p < PacketSize; ++p) kernel.packet[p] = lhs.loadPacket(i+p+m, k);
1848
+ ptranspose(kernel);
1849
+ for (int p = 0; p < PacketSize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p]));
1850
+ }
1851
+ count += PacketSize*pack;
1852
+ }
1853
+ }
1854
+ for(; k<depth; k++)
1855
+ {
1856
+ Index w=0;
1857
+ for(; w<pack-3; w+=4)
1858
+ {
1859
+ Scalar a(cj(lhs(i+w+0, k))),
1860
+ b(cj(lhs(i+w+1, k))),
1861
+ c(cj(lhs(i+w+2, k))),
1862
+ d(cj(lhs(i+w+3, k)));
1863
+ blockA[count++] = a;
1864
+ blockA[count++] = b;
1865
+ blockA[count++] = c;
1866
+ blockA[count++] = d;
1867
+ }
1868
+ if(pack%4)
1869
+ for(;w<pack;++w)
1870
+ blockA[count++] = cj(lhs(i+w, k));
1871
+ }
1872
+
1873
+ if(PanelMode) count += pack * (stride-offset-depth);
1874
+ }
1875
+
1876
+ pack -= PacketSize;
1877
+ if(pack<Pack2 && (pack+PacketSize)!=Pack2)
1878
+ pack = Pack2;
1879
+ }
1880
+
1881
+ for(; i<rows; i++)
1882
+ {
1883
+ if(PanelMode) count += offset;
1884
+ for(Index k=0; k<depth; k++)
1885
+ blockA[count++] = cj(lhs(i, k));
1886
+ if(PanelMode) count += (stride-offset-depth);
1887
+ }
1888
+ }
1889
+
1890
+ // copy a complete panel of the rhs
1891
+ // this version is optimized for column major matrices
1892
+ // The traversal order is as follow: (nr==4):
1893
+ // 0 1 2 3 12 13 14 15 24 27
1894
+ // 4 5 6 7 16 17 18 19 25 28
1895
+ // 8 9 10 11 20 21 22 23 26 29
1896
+ // . . . . . . . . . .
1897
+ template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
1898
+ struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
1899
+ {
1900
+ typedef typename packet_traits<Scalar>::type Packet;
1901
+ typedef typename DataMapper::LinearMapper LinearMapper;
1902
+ enum { PacketSize = packet_traits<Scalar>::size };
1903
+ EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
1904
+ };
1905
+
1906
+ template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
1907
+ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
1908
+ ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
1909
+ {
1910
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
1911
+ EIGEN_UNUSED_VARIABLE(stride);
1912
+ EIGEN_UNUSED_VARIABLE(offset);
1913
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
1914
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
1915
+ Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
1916
+ Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
1917
+ Index count = 0;
1918
+ const Index peeled_k = (depth/PacketSize)*PacketSize;
1919
+ // if(nr>=8)
1920
+ // {
1921
+ // for(Index j2=0; j2<packet_cols8; j2+=8)
1922
+ // {
1923
+ // // skip what we have before
1924
+ // if(PanelMode) count += 8 * offset;
1925
+ // const Scalar* b0 = &rhs[(j2+0)*rhsStride];
1926
+ // const Scalar* b1 = &rhs[(j2+1)*rhsStride];
1927
+ // const Scalar* b2 = &rhs[(j2+2)*rhsStride];
1928
+ // const Scalar* b3 = &rhs[(j2+3)*rhsStride];
1929
+ // const Scalar* b4 = &rhs[(j2+4)*rhsStride];
1930
+ // const Scalar* b5 = &rhs[(j2+5)*rhsStride];
1931
+ // const Scalar* b6 = &rhs[(j2+6)*rhsStride];
1932
+ // const Scalar* b7 = &rhs[(j2+7)*rhsStride];
1933
+ // Index k=0;
1934
+ // if(PacketSize==8) // TODO enbale vectorized transposition for PacketSize==4
1935
+ // {
1936
+ // for(; k<peeled_k; k+=PacketSize) {
1937
+ // PacketBlock<Packet> kernel;
1938
+ // for (int p = 0; p < PacketSize; ++p) {
1939
+ // kernel.packet[p] = ploadu<Packet>(&rhs[(j2+p)*rhsStride+k]);
1940
+ // }
1941
+ // ptranspose(kernel);
1942
+ // for (int p = 0; p < PacketSize; ++p) {
1943
+ // pstoreu(blockB+count, cj.pconj(kernel.packet[p]));
1944
+ // count+=PacketSize;
1945
+ // }
1946
+ // }
1947
+ // }
1948
+ // for(; k<depth; k++)
1949
+ // {
1950
+ // blockB[count+0] = cj(b0[k]);
1951
+ // blockB[count+1] = cj(b1[k]);
1952
+ // blockB[count+2] = cj(b2[k]);
1953
+ // blockB[count+3] = cj(b3[k]);
1954
+ // blockB[count+4] = cj(b4[k]);
1955
+ // blockB[count+5] = cj(b5[k]);
1956
+ // blockB[count+6] = cj(b6[k]);
1957
+ // blockB[count+7] = cj(b7[k]);
1958
+ // count += 8;
1959
+ // }
1960
+ // // skip what we have after
1961
+ // if(PanelMode) count += 8 * (stride-offset-depth);
1962
+ // }
1963
+ // }
1964
+
1965
+ if(nr>=4)
1966
+ {
1967
+ for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
1968
+ {
1969
+ // skip what we have before
1970
+ if(PanelMode) count += 4 * offset;
1971
+ const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
1972
+ const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
1973
+ const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
1974
+ const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
1975
+
1976
+ Index k=0;
1977
+ if((PacketSize%4)==0) // TODO enable vectorized transposition for PacketSize==2 ??
1978
+ {
1979
+ for(; k<peeled_k; k+=PacketSize) {
1980
+ PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize> kernel;
1981
+ kernel.packet[0] = dm0.loadPacket(k);
1982
+ kernel.packet[1%PacketSize] = dm1.loadPacket(k);
1983
+ kernel.packet[2%PacketSize] = dm2.loadPacket(k);
1984
+ kernel.packet[3%PacketSize] = dm3.loadPacket(k);
1985
+ ptranspose(kernel);
1986
+ pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0]));
1987
+ pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize]));
1988
+ pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize]));
1989
+ pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize]));
1990
+ count+=4*PacketSize;
1991
+ }
1992
+ }
1993
+ for(; k<depth; k++)
1994
+ {
1995
+ blockB[count+0] = cj(dm0(k));
1996
+ blockB[count+1] = cj(dm1(k));
1997
+ blockB[count+2] = cj(dm2(k));
1998
+ blockB[count+3] = cj(dm3(k));
1999
+ count += 4;
2000
+ }
2001
+ // skip what we have after
2002
+ if(PanelMode) count += 4 * (stride-offset-depth);
2003
+ }
2004
+ }
2005
+
2006
+ // copy the remaining columns one at a time (nr==1)
2007
+ for(Index j2=packet_cols4; j2<cols; ++j2)
2008
+ {
2009
+ if(PanelMode) count += offset;
2010
+ const LinearMapper dm0 = rhs.getLinearMapper(0, j2);
2011
+ for(Index k=0; k<depth; k++)
2012
+ {
2013
+ blockB[count] = cj(dm0(k));
2014
+ count += 1;
2015
+ }
2016
+ if(PanelMode) count += (stride-offset-depth);
2017
+ }
2018
+ }
2019
+
2020
+ // this version is optimized for row major matrices
2021
+ template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
2022
+ struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
2023
+ {
2024
+ typedef typename packet_traits<Scalar>::type Packet;
2025
+ typedef typename DataMapper::LinearMapper LinearMapper;
2026
+ enum { PacketSize = packet_traits<Scalar>::size };
2027
+ EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
2028
+ };
2029
+
2030
+ template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
2031
+ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
2032
+ ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
2033
+ {
2034
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
2035
+ EIGEN_UNUSED_VARIABLE(stride);
2036
+ EIGEN_UNUSED_VARIABLE(offset);
2037
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
2038
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
2039
+ Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
2040
+ Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
2041
+ Index count = 0;
2042
+
2043
+ // if(nr>=8)
2044
+ // {
2045
+ // for(Index j2=0; j2<packet_cols8; j2+=8)
2046
+ // {
2047
+ // // skip what we have before
2048
+ // if(PanelMode) count += 8 * offset;
2049
+ // for(Index k=0; k<depth; k++)
2050
+ // {
2051
+ // if (PacketSize==8) {
2052
+ // Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
2053
+ // pstoreu(blockB+count, cj.pconj(A));
2054
+ // } else if (PacketSize==4) {
2055
+ // Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
2056
+ // Packet B = ploadu<Packet>(&rhs[k*rhsStride + j2 + PacketSize]);
2057
+ // pstoreu(blockB+count, cj.pconj(A));
2058
+ // pstoreu(blockB+count+PacketSize, cj.pconj(B));
2059
+ // } else {
2060
+ // const Scalar* b0 = &rhs[k*rhsStride + j2];
2061
+ // blockB[count+0] = cj(b0[0]);
2062
+ // blockB[count+1] = cj(b0[1]);
2063
+ // blockB[count+2] = cj(b0[2]);
2064
+ // blockB[count+3] = cj(b0[3]);
2065
+ // blockB[count+4] = cj(b0[4]);
2066
+ // blockB[count+5] = cj(b0[5]);
2067
+ // blockB[count+6] = cj(b0[6]);
2068
+ // blockB[count+7] = cj(b0[7]);
2069
+ // }
2070
+ // count += 8;
2071
+ // }
2072
+ // // skip what we have after
2073
+ // if(PanelMode) count += 8 * (stride-offset-depth);
2074
+ // }
2075
+ // }
2076
+ if(nr>=4)
2077
+ {
2078
+ for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
2079
+ {
2080
+ // skip what we have before
2081
+ if(PanelMode) count += 4 * offset;
2082
+ for(Index k=0; k<depth; k++)
2083
+ {
2084
+ if (PacketSize==4) {
2085
+ Packet A = rhs.loadPacket(k, j2);
2086
+ pstoreu(blockB+count, cj.pconj(A));
2087
+ count += PacketSize;
2088
+ } else {
2089
+ const LinearMapper dm0 = rhs.getLinearMapper(k, j2);
2090
+ blockB[count+0] = cj(dm0(0));
2091
+ blockB[count+1] = cj(dm0(1));
2092
+ blockB[count+2] = cj(dm0(2));
2093
+ blockB[count+3] = cj(dm0(3));
2094
+ count += 4;
2095
+ }
2096
+ }
2097
+ // skip what we have after
2098
+ if(PanelMode) count += 4 * (stride-offset-depth);
2099
+ }
2100
+ }
2101
+ // copy the remaining columns one at a time (nr==1)
2102
+ for(Index j2=packet_cols4; j2<cols; ++j2)
2103
+ {
2104
+ if(PanelMode) count += offset;
2105
+ for(Index k=0; k<depth; k++)
2106
+ {
2107
+ blockB[count] = cj(rhs(k, j2));
2108
+ count += 1;
2109
+ }
2110
+ if(PanelMode) count += stride-offset-depth;
2111
+ }
2112
+ }
2113
+
2114
+ } // end namespace internal
2115
+
2116
+ /** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
2117
+ * \sa setCpuCacheSize */
2118
+ inline std::ptrdiff_t l1CacheSize()
2119
+ {
2120
+ std::ptrdiff_t l1, l2, l3;
2121
+ internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
2122
+ return l1;
2123
+ }
2124
+
2125
+ /** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
2126
+ * \sa setCpuCacheSize */
2127
+ inline std::ptrdiff_t l2CacheSize()
2128
+ {
2129
+ std::ptrdiff_t l1, l2, l3;
2130
+ internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
2131
+ return l2;
2132
+ }
2133
+
2134
+ /** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\
2135
+ rs.
2136
+ * \sa setCpuCacheSize */
2137
+ inline std::ptrdiff_t l3CacheSize()
2138
+ {
2139
+ std::ptrdiff_t l1, l2, l3;
2140
+ internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
2141
+ return l3;
2142
+ }
2143
+
2144
+ /** Set the cpu L1 and L2 cache sizes (in bytes).
2145
+ * These values are use to adjust the size of the blocks
2146
+ * for the algorithms working per blocks.
2147
+ *
2148
+ * \sa computeProductBlockingSizes */
2149
+ inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
2150
+ {
2151
+ internal::manage_caching_sizes(SetAction, &l1, &l2, &l3);
2152
+ }
2153
+
2154
+ } // end namespace Eigen
2155
+
2156
+ #endif // EIGEN_GENERAL_BLOCK_PANEL_H