tomoto 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,2156 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_GENERAL_BLOCK_PANEL_H
|
11
|
+
#define EIGEN_GENERAL_BLOCK_PANEL_H
|
12
|
+
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
|
18
|
+
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
|
19
|
+
class gebp_traits;
|
20
|
+
|
21
|
+
|
22
|
+
/** \internal \returns b if a<=0, and returns a otherwise. */
|
23
|
+
inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
|
24
|
+
{
|
25
|
+
return a<=0 ? b : a;
|
26
|
+
}
|
27
|
+
|
28
|
+
#if EIGEN_ARCH_i386_OR_x86_64
|
29
|
+
const std::ptrdiff_t defaultL1CacheSize = 32*1024;
|
30
|
+
const std::ptrdiff_t defaultL2CacheSize = 256*1024;
|
31
|
+
const std::ptrdiff_t defaultL3CacheSize = 2*1024*1024;
|
32
|
+
#else
|
33
|
+
const std::ptrdiff_t defaultL1CacheSize = 16*1024;
|
34
|
+
const std::ptrdiff_t defaultL2CacheSize = 512*1024;
|
35
|
+
const std::ptrdiff_t defaultL3CacheSize = 512*1024;
|
36
|
+
#endif
|
37
|
+
|
38
|
+
/** \internal */
|
39
|
+
struct CacheSizes {
|
40
|
+
CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) {
|
41
|
+
int l1CacheSize, l2CacheSize, l3CacheSize;
|
42
|
+
queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize);
|
43
|
+
m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize);
|
44
|
+
m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize);
|
45
|
+
m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize);
|
46
|
+
}
|
47
|
+
|
48
|
+
std::ptrdiff_t m_l1;
|
49
|
+
std::ptrdiff_t m_l2;
|
50
|
+
std::ptrdiff_t m_l3;
|
51
|
+
};
|
52
|
+
|
53
|
+
|
54
|
+
/** \internal */
|
55
|
+
inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3)
|
56
|
+
{
|
57
|
+
static CacheSizes m_cacheSizes;
|
58
|
+
|
59
|
+
if(action==SetAction)
|
60
|
+
{
|
61
|
+
// set the cpu cache size and cache all block sizes from a global cache size in byte
|
62
|
+
eigen_internal_assert(l1!=0 && l2!=0);
|
63
|
+
m_cacheSizes.m_l1 = *l1;
|
64
|
+
m_cacheSizes.m_l2 = *l2;
|
65
|
+
m_cacheSizes.m_l3 = *l3;
|
66
|
+
}
|
67
|
+
else if(action==GetAction)
|
68
|
+
{
|
69
|
+
eigen_internal_assert(l1!=0 && l2!=0);
|
70
|
+
*l1 = m_cacheSizes.m_l1;
|
71
|
+
*l2 = m_cacheSizes.m_l2;
|
72
|
+
*l3 = m_cacheSizes.m_l3;
|
73
|
+
}
|
74
|
+
else
|
75
|
+
{
|
76
|
+
eigen_internal_assert(false);
|
77
|
+
}
|
78
|
+
}
|
79
|
+
|
80
|
+
/* Helper for computeProductBlockingSizes.
|
81
|
+
*
|
82
|
+
* Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
|
83
|
+
* this function computes the blocking size parameters along the respective dimensions
|
84
|
+
* for matrix products and related algorithms. The blocking sizes depends on various
|
85
|
+
* parameters:
|
86
|
+
* - the L1 and L2 cache sizes,
|
87
|
+
* - the register level blocking sizes defined by gebp_traits,
|
88
|
+
* - the number of scalars that fit into a packet (when vectorization is enabled).
|
89
|
+
*
|
90
|
+
* \sa setCpuCacheSizes */
|
91
|
+
|
92
|
+
template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
|
93
|
+
void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1)
|
94
|
+
{
|
95
|
+
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
|
96
|
+
|
97
|
+
// Explanations:
|
98
|
+
// Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and
|
99
|
+
// kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed
|
100
|
+
// per mr x kc horizontal small panels where mr is the blocking size along the m dimension
|
101
|
+
// at the register level. This small horizontal panel has to stay within L1 cache.
|
102
|
+
std::ptrdiff_t l1, l2, l3;
|
103
|
+
manage_caching_sizes(GetAction, &l1, &l2, &l3);
|
104
|
+
|
105
|
+
if (num_threads > 1) {
|
106
|
+
typedef typename Traits::ResScalar ResScalar;
|
107
|
+
enum {
|
108
|
+
kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
|
109
|
+
ksub = Traits::mr * Traits::nr * sizeof(ResScalar),
|
110
|
+
kr = 8,
|
111
|
+
mr = Traits::mr,
|
112
|
+
nr = Traits::nr
|
113
|
+
};
|
114
|
+
// Increasing k gives us more time to prefetch the content of the "C"
|
115
|
+
// registers. However once the latency is hidden there is no point in
|
116
|
+
// increasing the value of k, so we'll cap it at 320 (value determined
|
117
|
+
// experimentally).
|
118
|
+
const Index k_cache = (numext::mini<Index>)((l1-ksub)/kdiv, 320);
|
119
|
+
if (k_cache < k) {
|
120
|
+
k = k_cache - (k_cache % kr);
|
121
|
+
eigen_internal_assert(k > 0);
|
122
|
+
}
|
123
|
+
|
124
|
+
const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k);
|
125
|
+
const Index n_per_thread = numext::div_ceil(n, num_threads);
|
126
|
+
if (n_cache <= n_per_thread) {
|
127
|
+
// Don't exceed the capacity of the l2 cache.
|
128
|
+
eigen_internal_assert(n_cache >= static_cast<Index>(nr));
|
129
|
+
n = n_cache - (n_cache % nr);
|
130
|
+
eigen_internal_assert(n > 0);
|
131
|
+
} else {
|
132
|
+
n = (numext::mini<Index>)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr));
|
133
|
+
}
|
134
|
+
|
135
|
+
if (l3 > l2) {
|
136
|
+
// l3 is shared between all cores, so we'll give each thread its own chunk of l3.
|
137
|
+
const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads);
|
138
|
+
const Index m_per_thread = numext::div_ceil(m, num_threads);
|
139
|
+
if(m_cache < m_per_thread && m_cache >= static_cast<Index>(mr)) {
|
140
|
+
m = m_cache - (m_cache % mr);
|
141
|
+
eigen_internal_assert(m > 0);
|
142
|
+
} else {
|
143
|
+
m = (numext::mini<Index>)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr));
|
144
|
+
}
|
145
|
+
}
|
146
|
+
}
|
147
|
+
else {
|
148
|
+
// In unit tests we do not want to use extra large matrices,
|
149
|
+
// so we reduce the cache size to check the blocking strategy is not flawed
|
150
|
+
#ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
|
151
|
+
l1 = 9*1024;
|
152
|
+
l2 = 32*1024;
|
153
|
+
l3 = 512*1024;
|
154
|
+
#endif
|
155
|
+
|
156
|
+
// Early return for small problems because the computation below are time consuming for small problems.
|
157
|
+
// Perhaps it would make more sense to consider k*n*m??
|
158
|
+
// Note that for very tiny problem, this function should be bypassed anyway
|
159
|
+
// because we use the coefficient-based implementation for them.
|
160
|
+
if((numext::maxi)(k,(numext::maxi)(m,n))<48)
|
161
|
+
return;
|
162
|
+
|
163
|
+
typedef typename Traits::ResScalar ResScalar;
|
164
|
+
enum {
|
165
|
+
k_peeling = 8,
|
166
|
+
k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
|
167
|
+
k_sub = Traits::mr * Traits::nr * sizeof(ResScalar)
|
168
|
+
};
|
169
|
+
|
170
|
+
// ---- 1st level of blocking on L1, yields kc ----
|
171
|
+
|
172
|
+
// Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel
|
173
|
+
// of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache.
|
174
|
+
// We also include a register-level block of the result (mx x nr).
|
175
|
+
// (In an ideal world only the lhs panel would stay in L1)
|
176
|
+
// Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of:
|
177
|
+
const Index max_kc = numext::maxi<Index>(((l1-k_sub)/k_div) & (~(k_peeling-1)),1);
|
178
|
+
const Index old_k = k;
|
179
|
+
if(k>max_kc)
|
180
|
+
{
|
181
|
+
// We are really blocking on the third dimension:
|
182
|
+
// -> reduce blocking size to make sure the last block is as large as possible
|
183
|
+
// while keeping the same number of sweeps over the result.
|
184
|
+
k = (k%max_kc)==0 ? max_kc
|
185
|
+
: max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1)));
|
186
|
+
|
187
|
+
eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same");
|
188
|
+
}
|
189
|
+
|
190
|
+
// ---- 2nd level of blocking on max(L2,L3), yields nc ----
|
191
|
+
|
192
|
+
// TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is:
|
193
|
+
// actual_l2 = max(l2, l3/nb_core_sharing_l3)
|
194
|
+
// The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it)
|
195
|
+
// For instance, it corresponds to 6MB of L3 shared among 4 cores.
|
196
|
+
#ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
|
197
|
+
const Index actual_l2 = l3;
|
198
|
+
#else
|
199
|
+
const Index actual_l2 = 1572864; // == 1.5 MB
|
200
|
+
#endif
|
201
|
+
|
202
|
+
// Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2.
|
203
|
+
// The second half is implicitly reserved to access the result and lhs coefficients.
|
204
|
+
// When k<max_kc, then nc can arbitrarily growth. In practice, it seems to be fruitful
|
205
|
+
// to limit this growth: we bound nc to growth by a factor x1.5.
|
206
|
+
// However, if the entire lhs block fit within L1, then we are not going to block on the rows at all,
|
207
|
+
// and it becomes fruitful to keep the packed rhs blocks in L1 if there is enough remaining space.
|
208
|
+
Index max_nc;
|
209
|
+
const Index lhs_bytes = m * k * sizeof(LhsScalar);
|
210
|
+
const Index remaining_l1 = l1- k_sub - lhs_bytes;
|
211
|
+
if(remaining_l1 >= Index(Traits::nr*sizeof(RhsScalar))*k)
|
212
|
+
{
|
213
|
+
// L1 blocking
|
214
|
+
max_nc = remaining_l1 / (k*sizeof(RhsScalar));
|
215
|
+
}
|
216
|
+
else
|
217
|
+
{
|
218
|
+
// L2 blocking
|
219
|
+
max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar));
|
220
|
+
}
|
221
|
+
// WARNING Below, we assume that Traits::nr is a power of two.
|
222
|
+
Index nc = numext::mini<Index>(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1));
|
223
|
+
if(n>nc)
|
224
|
+
{
|
225
|
+
// We are really blocking over the columns:
|
226
|
+
// -> reduce blocking size to make sure the last block is as large as possible
|
227
|
+
// while keeping the same number of sweeps over the packed lhs.
|
228
|
+
// Here we allow one more sweep if this gives us a perfect match, thus the commented "-1"
|
229
|
+
n = (n%nc)==0 ? nc
|
230
|
+
: (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1))));
|
231
|
+
}
|
232
|
+
else if(old_k==k)
|
233
|
+
{
|
234
|
+
// So far, no blocking at all, i.e., kc==k, and nc==n.
|
235
|
+
// In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2
|
236
|
+
// TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete.
|
237
|
+
Index problem_size = k*n*sizeof(LhsScalar);
|
238
|
+
Index actual_lm = actual_l2;
|
239
|
+
Index max_mc = m;
|
240
|
+
if(problem_size<=1024)
|
241
|
+
{
|
242
|
+
// problem is small enough to keep in L1
|
243
|
+
// Let's choose m such that lhs's block fit in 1/3 of L1
|
244
|
+
actual_lm = l1;
|
245
|
+
}
|
246
|
+
else if(l3!=0 && problem_size<=32768)
|
247
|
+
{
|
248
|
+
// we have both L2 and L3, and problem is small enough to be kept in L2
|
249
|
+
// Let's choose m such that lhs's block fit in 1/3 of L2
|
250
|
+
actual_lm = l2;
|
251
|
+
max_mc = (numext::mini<Index>)(576,max_mc);
|
252
|
+
}
|
253
|
+
Index mc = (numext::mini<Index>)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc);
|
254
|
+
if (mc > Traits::mr) mc -= mc % Traits::mr;
|
255
|
+
else if (mc==0) return;
|
256
|
+
m = (m%mc)==0 ? mc
|
257
|
+
: (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1))));
|
258
|
+
}
|
259
|
+
}
|
260
|
+
}
|
261
|
+
|
262
|
+
template <typename Index>
|
263
|
+
inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n)
|
264
|
+
{
|
265
|
+
#ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES
|
266
|
+
if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) {
|
267
|
+
k = numext::mini<Index>(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K);
|
268
|
+
m = numext::mini<Index>(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M);
|
269
|
+
n = numext::mini<Index>(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N);
|
270
|
+
return true;
|
271
|
+
}
|
272
|
+
#else
|
273
|
+
EIGEN_UNUSED_VARIABLE(k)
|
274
|
+
EIGEN_UNUSED_VARIABLE(m)
|
275
|
+
EIGEN_UNUSED_VARIABLE(n)
|
276
|
+
#endif
|
277
|
+
return false;
|
278
|
+
}
|
279
|
+
|
280
|
+
/** \brief Computes the blocking parameters for a m x k times k x n matrix product
|
281
|
+
*
|
282
|
+
* \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
|
283
|
+
* \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
|
284
|
+
* \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
|
285
|
+
*
|
286
|
+
* Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
|
287
|
+
* this function computes the blocking size parameters along the respective dimensions
|
288
|
+
* for matrix products and related algorithms.
|
289
|
+
*
|
290
|
+
* The blocking size parameters may be evaluated:
|
291
|
+
* - either by a heuristic based on cache sizes;
|
292
|
+
* - or using fixed prescribed values (for testing purposes).
|
293
|
+
*
|
294
|
+
* \sa setCpuCacheSizes */
|
295
|
+
|
296
|
+
template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
|
297
|
+
void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
|
298
|
+
{
|
299
|
+
if (!useSpecificBlockingSizes(k, m, n)) {
|
300
|
+
evaluateProductBlockingSizesHeuristic<LhsScalar, RhsScalar, KcFactor, Index>(k, m, n, num_threads);
|
301
|
+
}
|
302
|
+
}
|
303
|
+
|
304
|
+
template<typename LhsScalar, typename RhsScalar, typename Index>
|
305
|
+
inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
|
306
|
+
{
|
307
|
+
computeProductBlockingSizes<LhsScalar,RhsScalar,1,Index>(k, m, n, num_threads);
|
308
|
+
}
|
309
|
+
|
310
|
+
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
|
311
|
+
#define CJMADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
|
312
|
+
#else
|
313
|
+
|
314
|
+
// FIXME (a bit overkill maybe ?)
|
315
|
+
|
316
|
+
template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
|
317
|
+
EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
|
318
|
+
{
|
319
|
+
c = cj.pmadd(a,b,c);
|
320
|
+
}
|
321
|
+
};
|
322
|
+
|
323
|
+
template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
|
324
|
+
EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
|
325
|
+
{
|
326
|
+
t = b; t = cj.pmul(a,t); c = padd(c,t);
|
327
|
+
}
|
328
|
+
};
|
329
|
+
|
330
|
+
template<typename CJ, typename A, typename B, typename C, typename T>
|
331
|
+
EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
|
332
|
+
{
|
333
|
+
gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
|
334
|
+
}
|
335
|
+
|
336
|
+
#define CJMADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
|
337
|
+
// #define CJMADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
|
338
|
+
#endif
|
339
|
+
|
340
|
+
/* Vectorization logic
|
341
|
+
* real*real: unpack rhs to constant packets, ...
|
342
|
+
*
|
343
|
+
* cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
|
344
|
+
* storing each res packet into two packets (2x2),
|
345
|
+
* at the end combine them: swap the second and addsub them
|
346
|
+
* cf*cf : same but with 2x4 blocks
|
347
|
+
* cplx*real : unpack rhs to constant packets, ...
|
348
|
+
* real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
|
349
|
+
*/
|
350
|
+
template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
|
351
|
+
class gebp_traits
|
352
|
+
{
|
353
|
+
public:
|
354
|
+
typedef _LhsScalar LhsScalar;
|
355
|
+
typedef _RhsScalar RhsScalar;
|
356
|
+
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
357
|
+
|
358
|
+
enum {
|
359
|
+
ConjLhs = _ConjLhs,
|
360
|
+
ConjRhs = _ConjRhs,
|
361
|
+
Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
|
362
|
+
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
|
363
|
+
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
|
364
|
+
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
|
365
|
+
|
366
|
+
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
|
367
|
+
|
368
|
+
// register block size along the N direction must be 1 or 4
|
369
|
+
nr = 4,
|
370
|
+
|
371
|
+
// register block size along the M direction (currently, this one cannot be modified)
|
372
|
+
default_mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
|
373
|
+
#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
|
374
|
+
// we assume 16 registers
|
375
|
+
// See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined,
|
376
|
+
// then using 3*LhsPacketSize triggers non-implemented paths in syrk.
|
377
|
+
mr = Vectorizable ? 3*LhsPacketSize : default_mr,
|
378
|
+
#else
|
379
|
+
mr = default_mr,
|
380
|
+
#endif
|
381
|
+
|
382
|
+
LhsProgress = LhsPacketSize,
|
383
|
+
RhsProgress = 1
|
384
|
+
};
|
385
|
+
|
386
|
+
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
|
387
|
+
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
|
388
|
+
typedef typename packet_traits<ResScalar>::type _ResPacket;
|
389
|
+
|
390
|
+
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
|
391
|
+
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
|
392
|
+
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
|
393
|
+
|
394
|
+
typedef ResPacket AccPacket;
|
395
|
+
|
396
|
+
EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
|
397
|
+
{
|
398
|
+
p = pset1<ResPacket>(ResScalar(0));
|
399
|
+
}
|
400
|
+
|
401
|
+
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
|
402
|
+
{
|
403
|
+
pbroadcast4(b, b0, b1, b2, b3);
|
404
|
+
}
|
405
|
+
|
406
|
+
// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
|
407
|
+
// {
|
408
|
+
// pbroadcast2(b, b0, b1);
|
409
|
+
// }
|
410
|
+
|
411
|
+
template<typename RhsPacketType>
|
412
|
+
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const
|
413
|
+
{
|
414
|
+
dest = pset1<RhsPacketType>(*b);
|
415
|
+
}
|
416
|
+
|
417
|
+
EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
|
418
|
+
{
|
419
|
+
dest = ploadquad<RhsPacket>(b);
|
420
|
+
}
|
421
|
+
|
422
|
+
template<typename LhsPacketType>
|
423
|
+
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const
|
424
|
+
{
|
425
|
+
dest = pload<LhsPacketType>(a);
|
426
|
+
}
|
427
|
+
|
428
|
+
template<typename LhsPacketType>
|
429
|
+
EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const
|
430
|
+
{
|
431
|
+
dest = ploadu<LhsPacketType>(a);
|
432
|
+
}
|
433
|
+
|
434
|
+
template<typename LhsPacketType, typename RhsPacketType, typename AccPacketType>
|
435
|
+
EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, AccPacketType& tmp) const
|
436
|
+
{
|
437
|
+
conj_helper<LhsPacketType,RhsPacketType,ConjLhs,ConjRhs> cj;
|
438
|
+
// It would be a lot cleaner to call pmadd all the time. Unfortunately if we
|
439
|
+
// let gcc allocate the register in which to store the result of the pmul
|
440
|
+
// (in the case where there is no FMA) gcc fails to figure out how to avoid
|
441
|
+
// spilling register.
|
442
|
+
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
443
|
+
EIGEN_UNUSED_VARIABLE(tmp);
|
444
|
+
c = cj.pmadd(a,b,c);
|
445
|
+
#else
|
446
|
+
tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp);
|
447
|
+
#endif
|
448
|
+
}
|
449
|
+
|
450
|
+
EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
|
451
|
+
{
|
452
|
+
r = pmadd(c,alpha,r);
|
453
|
+
}
|
454
|
+
|
455
|
+
template<typename ResPacketHalf>
|
456
|
+
EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const
|
457
|
+
{
|
458
|
+
r = pmadd(c,alpha,r);
|
459
|
+
}
|
460
|
+
|
461
|
+
};
|
462
|
+
|
463
|
+
template<typename RealScalar, bool _ConjLhs>
|
464
|
+
class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
|
465
|
+
{
|
466
|
+
public:
|
467
|
+
typedef std::complex<RealScalar> LhsScalar;
|
468
|
+
typedef RealScalar RhsScalar;
|
469
|
+
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
470
|
+
|
471
|
+
enum {
|
472
|
+
ConjLhs = _ConjLhs,
|
473
|
+
ConjRhs = false,
|
474
|
+
Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
|
475
|
+
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
|
476
|
+
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
|
477
|
+
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
|
478
|
+
|
479
|
+
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
|
480
|
+
nr = 4,
|
481
|
+
#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
|
482
|
+
// we assume 16 registers
|
483
|
+
mr = 3*LhsPacketSize,
|
484
|
+
#else
|
485
|
+
mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
|
486
|
+
#endif
|
487
|
+
|
488
|
+
LhsProgress = LhsPacketSize,
|
489
|
+
RhsProgress = 1
|
490
|
+
};
|
491
|
+
|
492
|
+
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
|
493
|
+
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
|
494
|
+
typedef typename packet_traits<ResScalar>::type _ResPacket;
|
495
|
+
|
496
|
+
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
|
497
|
+
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
|
498
|
+
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
|
499
|
+
|
500
|
+
typedef ResPacket AccPacket;
|
501
|
+
|
502
|
+
EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
|
503
|
+
{
|
504
|
+
p = pset1<ResPacket>(ResScalar(0));
|
505
|
+
}
|
506
|
+
|
507
|
+
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
|
508
|
+
{
|
509
|
+
dest = pset1<RhsPacket>(*b);
|
510
|
+
}
|
511
|
+
|
512
|
+
EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
|
513
|
+
{
|
514
|
+
dest = pset1<RhsPacket>(*b);
|
515
|
+
}
|
516
|
+
|
517
|
+
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
|
518
|
+
{
|
519
|
+
dest = pload<LhsPacket>(a);
|
520
|
+
}
|
521
|
+
|
522
|
+
EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
|
523
|
+
{
|
524
|
+
dest = ploadu<LhsPacket>(a);
|
525
|
+
}
|
526
|
+
|
527
|
+
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
|
528
|
+
{
|
529
|
+
pbroadcast4(b, b0, b1, b2, b3);
|
530
|
+
}
|
531
|
+
|
532
|
+
// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
|
533
|
+
// {
|
534
|
+
// pbroadcast2(b, b0, b1);
|
535
|
+
// }
|
536
|
+
|
537
|
+
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
|
538
|
+
{
|
539
|
+
madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
|
540
|
+
}
|
541
|
+
|
542
|
+
EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
|
543
|
+
{
|
544
|
+
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
545
|
+
EIGEN_UNUSED_VARIABLE(tmp);
|
546
|
+
c.v = pmadd(a.v,b,c.v);
|
547
|
+
#else
|
548
|
+
tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
|
549
|
+
#endif
|
550
|
+
}
|
551
|
+
|
552
|
+
EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
|
553
|
+
{
|
554
|
+
c += a * b;
|
555
|
+
}
|
556
|
+
|
557
|
+
EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
|
558
|
+
{
|
559
|
+
r = cj.pmadd(c,alpha,r);
|
560
|
+
}
|
561
|
+
|
562
|
+
protected:
|
563
|
+
conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
|
564
|
+
};
|
565
|
+
|
566
|
+
template<typename Packet>
|
567
|
+
struct DoublePacket
|
568
|
+
{
|
569
|
+
Packet first;
|
570
|
+
Packet second;
|
571
|
+
};
|
572
|
+
|
573
|
+
template<typename Packet>
|
574
|
+
DoublePacket<Packet> padd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
|
575
|
+
{
|
576
|
+
DoublePacket<Packet> res;
|
577
|
+
res.first = padd(a.first, b.first);
|
578
|
+
res.second = padd(a.second,b.second);
|
579
|
+
return res;
|
580
|
+
}
|
581
|
+
|
582
|
+
template<typename Packet>
|
583
|
+
const DoublePacket<Packet>& predux_downto4(const DoublePacket<Packet> &a)
|
584
|
+
{
|
585
|
+
return a;
|
586
|
+
}
|
587
|
+
|
588
|
+
template<typename Packet> struct unpacket_traits<DoublePacket<Packet> > { typedef DoublePacket<Packet> half; };
|
589
|
+
// template<typename Packet>
|
590
|
+
// DoublePacket<Packet> pmadd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
|
591
|
+
// {
|
592
|
+
// DoublePacket<Packet> res;
|
593
|
+
// res.first = padd(a.first, b.first);
|
594
|
+
// res.second = padd(a.second,b.second);
|
595
|
+
// return res;
|
596
|
+
// }
|
597
|
+
|
598
|
+
template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
|
599
|
+
class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
|
600
|
+
{
|
601
|
+
public:
|
602
|
+
typedef std::complex<RealScalar> Scalar;
|
603
|
+
typedef std::complex<RealScalar> LhsScalar;
|
604
|
+
typedef std::complex<RealScalar> RhsScalar;
|
605
|
+
typedef std::complex<RealScalar> ResScalar;
|
606
|
+
|
607
|
+
enum {
|
608
|
+
ConjLhs = _ConjLhs,
|
609
|
+
ConjRhs = _ConjRhs,
|
610
|
+
Vectorizable = packet_traits<RealScalar>::Vectorizable
|
611
|
+
&& packet_traits<Scalar>::Vectorizable,
|
612
|
+
RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1,
|
613
|
+
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
|
614
|
+
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
|
615
|
+
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
|
616
|
+
|
617
|
+
// FIXME: should depend on NumberOfRegisters
|
618
|
+
nr = 4,
|
619
|
+
mr = ResPacketSize,
|
620
|
+
|
621
|
+
LhsProgress = ResPacketSize,
|
622
|
+
RhsProgress = 1
|
623
|
+
};
|
624
|
+
|
625
|
+
typedef typename packet_traits<RealScalar>::type RealPacket;
|
626
|
+
typedef typename packet_traits<Scalar>::type ScalarPacket;
|
627
|
+
typedef DoublePacket<RealPacket> DoublePacketType;
|
628
|
+
|
629
|
+
typedef typename conditional<Vectorizable,RealPacket, Scalar>::type LhsPacket;
|
630
|
+
typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type RhsPacket;
|
631
|
+
typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
|
632
|
+
typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type AccPacket;
|
633
|
+
|
634
|
+
EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
|
635
|
+
|
636
|
+
EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p)
|
637
|
+
{
|
638
|
+
p.first = pset1<RealPacket>(RealScalar(0));
|
639
|
+
p.second = pset1<RealPacket>(RealScalar(0));
|
640
|
+
}
|
641
|
+
|
642
|
+
// Scalar path
|
643
|
+
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const
|
644
|
+
{
|
645
|
+
dest = pset1<ResPacket>(*b);
|
646
|
+
}
|
647
|
+
|
648
|
+
// Vectorized path
|
649
|
+
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacketType& dest) const
|
650
|
+
{
|
651
|
+
dest.first = pset1<RealPacket>(real(*b));
|
652
|
+
dest.second = pset1<RealPacket>(imag(*b));
|
653
|
+
}
|
654
|
+
|
655
|
+
EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const
|
656
|
+
{
|
657
|
+
loadRhs(b,dest);
|
658
|
+
}
|
659
|
+
EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const
|
660
|
+
{
|
661
|
+
eigen_internal_assert(unpacket_traits<ScalarPacket>::size<=4);
|
662
|
+
loadRhs(b,dest);
|
663
|
+
}
|
664
|
+
|
665
|
+
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
|
666
|
+
{
|
667
|
+
// FIXME not sure that's the best way to implement it!
|
668
|
+
loadRhs(b+0, b0);
|
669
|
+
loadRhs(b+1, b1);
|
670
|
+
loadRhs(b+2, b2);
|
671
|
+
loadRhs(b+3, b3);
|
672
|
+
}
|
673
|
+
|
674
|
+
// Vectorized path
|
675
|
+
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacketType& b0, DoublePacketType& b1)
|
676
|
+
{
|
677
|
+
// FIXME not sure that's the best way to implement it!
|
678
|
+
loadRhs(b+0, b0);
|
679
|
+
loadRhs(b+1, b1);
|
680
|
+
}
|
681
|
+
|
682
|
+
// Scalar path
|
683
|
+
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1)
|
684
|
+
{
|
685
|
+
// FIXME not sure that's the best way to implement it!
|
686
|
+
loadRhs(b+0, b0);
|
687
|
+
loadRhs(b+1, b1);
|
688
|
+
}
|
689
|
+
|
690
|
+
// nothing special here
|
691
|
+
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
|
692
|
+
{
|
693
|
+
dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
|
694
|
+
}
|
695
|
+
|
696
|
+
EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
|
697
|
+
{
|
698
|
+
dest = ploadu<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
|
699
|
+
}
|
700
|
+
|
701
|
+
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacketType& c, RhsPacket& /*tmp*/) const
|
702
|
+
{
|
703
|
+
c.first = padd(pmul(a,b.first), c.first);
|
704
|
+
c.second = padd(pmul(a,b.second),c.second);
|
705
|
+
}
|
706
|
+
|
707
|
+
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
|
708
|
+
{
|
709
|
+
c = cj.pmadd(a,b,c);
|
710
|
+
}
|
711
|
+
|
712
|
+
EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
|
713
|
+
|
714
|
+
EIGEN_STRONG_INLINE void acc(const DoublePacketType& c, const ResPacket& alpha, ResPacket& r) const
|
715
|
+
{
|
716
|
+
// assemble c
|
717
|
+
ResPacket tmp;
|
718
|
+
if((!ConjLhs)&&(!ConjRhs))
|
719
|
+
{
|
720
|
+
tmp = pcplxflip(pconj(ResPacket(c.second)));
|
721
|
+
tmp = padd(ResPacket(c.first),tmp);
|
722
|
+
}
|
723
|
+
else if((!ConjLhs)&&(ConjRhs))
|
724
|
+
{
|
725
|
+
tmp = pconj(pcplxflip(ResPacket(c.second)));
|
726
|
+
tmp = padd(ResPacket(c.first),tmp);
|
727
|
+
}
|
728
|
+
else if((ConjLhs)&&(!ConjRhs))
|
729
|
+
{
|
730
|
+
tmp = pcplxflip(ResPacket(c.second));
|
731
|
+
tmp = padd(pconj(ResPacket(c.first)),tmp);
|
732
|
+
}
|
733
|
+
else if((ConjLhs)&&(ConjRhs))
|
734
|
+
{
|
735
|
+
tmp = pcplxflip(ResPacket(c.second));
|
736
|
+
tmp = psub(pconj(ResPacket(c.first)),tmp);
|
737
|
+
}
|
738
|
+
|
739
|
+
r = pmadd(tmp,alpha,r);
|
740
|
+
}
|
741
|
+
|
742
|
+
protected:
|
743
|
+
conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
|
744
|
+
};
|
745
|
+
|
746
|
+
template<typename RealScalar, bool _ConjRhs>
|
747
|
+
class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
|
748
|
+
{
|
749
|
+
public:
|
750
|
+
typedef std::complex<RealScalar> Scalar;
|
751
|
+
typedef RealScalar LhsScalar;
|
752
|
+
typedef Scalar RhsScalar;
|
753
|
+
typedef Scalar ResScalar;
|
754
|
+
|
755
|
+
enum {
|
756
|
+
ConjLhs = false,
|
757
|
+
ConjRhs = _ConjRhs,
|
758
|
+
Vectorizable = packet_traits<RealScalar>::Vectorizable
|
759
|
+
&& packet_traits<Scalar>::Vectorizable,
|
760
|
+
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
|
761
|
+
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
|
762
|
+
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
|
763
|
+
|
764
|
+
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
|
765
|
+
// FIXME: should depend on NumberOfRegisters
|
766
|
+
nr = 4,
|
767
|
+
mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*ResPacketSize,
|
768
|
+
|
769
|
+
LhsProgress = ResPacketSize,
|
770
|
+
RhsProgress = 1
|
771
|
+
};
|
772
|
+
|
773
|
+
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
|
774
|
+
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
|
775
|
+
typedef typename packet_traits<ResScalar>::type _ResPacket;
|
776
|
+
|
777
|
+
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
|
778
|
+
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
|
779
|
+
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
|
780
|
+
|
781
|
+
typedef ResPacket AccPacket;
|
782
|
+
|
783
|
+
EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
|
784
|
+
{
|
785
|
+
p = pset1<ResPacket>(ResScalar(0));
|
786
|
+
}
|
787
|
+
|
788
|
+
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
|
789
|
+
{
|
790
|
+
dest = pset1<RhsPacket>(*b);
|
791
|
+
}
|
792
|
+
|
793
|
+
void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
|
794
|
+
{
|
795
|
+
pbroadcast4(b, b0, b1, b2, b3);
|
796
|
+
}
|
797
|
+
|
798
|
+
// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
|
799
|
+
// {
|
800
|
+
// // FIXME not sure that's the best way to implement it!
|
801
|
+
// b0 = pload1<RhsPacket>(b+0);
|
802
|
+
// b1 = pload1<RhsPacket>(b+1);
|
803
|
+
// }
|
804
|
+
|
805
|
+
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
|
806
|
+
{
|
807
|
+
dest = ploaddup<LhsPacket>(a);
|
808
|
+
}
|
809
|
+
|
810
|
+
EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
|
811
|
+
{
|
812
|
+
eigen_internal_assert(unpacket_traits<RhsPacket>::size<=4);
|
813
|
+
loadRhs(b,dest);
|
814
|
+
}
|
815
|
+
|
816
|
+
EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
|
817
|
+
{
|
818
|
+
dest = ploaddup<LhsPacket>(a);
|
819
|
+
}
|
820
|
+
|
821
|
+
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
|
822
|
+
{
|
823
|
+
madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
|
824
|
+
}
|
825
|
+
|
826
|
+
EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
|
827
|
+
{
|
828
|
+
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
829
|
+
EIGEN_UNUSED_VARIABLE(tmp);
|
830
|
+
c.v = pmadd(a,b.v,c.v);
|
831
|
+
#else
|
832
|
+
tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
|
833
|
+
#endif
|
834
|
+
|
835
|
+
}
|
836
|
+
|
837
|
+
EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
|
838
|
+
{
|
839
|
+
c += a * b;
|
840
|
+
}
|
841
|
+
|
842
|
+
EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
|
843
|
+
{
|
844
|
+
r = cj.pmadd(alpha,c,r);
|
845
|
+
}
|
846
|
+
|
847
|
+
protected:
|
848
|
+
conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
|
849
|
+
};
|
850
|
+
|
851
|
+
/* optimized GEneral packed Block * packed Panel product kernel
|
852
|
+
*
|
853
|
+
* Mixing type logic: C += A * B
|
854
|
+
* | A | B | comments
|
855
|
+
* |real |cplx | no vectorization yet, would require to pack A with duplication
|
856
|
+
* |cplx |real | easy vectorization
|
857
|
+
*/
|
858
|
+
template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
|
859
|
+
struct gebp_kernel
|
860
|
+
{
|
861
|
+
typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
|
862
|
+
typedef typename Traits::ResScalar ResScalar;
|
863
|
+
typedef typename Traits::LhsPacket LhsPacket;
|
864
|
+
typedef typename Traits::RhsPacket RhsPacket;
|
865
|
+
typedef typename Traits::ResPacket ResPacket;
|
866
|
+
typedef typename Traits::AccPacket AccPacket;
|
867
|
+
|
868
|
+
typedef gebp_traits<RhsScalar,LhsScalar,ConjugateRhs,ConjugateLhs> SwappedTraits;
|
869
|
+
typedef typename SwappedTraits::ResScalar SResScalar;
|
870
|
+
typedef typename SwappedTraits::LhsPacket SLhsPacket;
|
871
|
+
typedef typename SwappedTraits::RhsPacket SRhsPacket;
|
872
|
+
typedef typename SwappedTraits::ResPacket SResPacket;
|
873
|
+
typedef typename SwappedTraits::AccPacket SAccPacket;
|
874
|
+
|
875
|
+
typedef typename DataMapper::LinearMapper LinearMapper;
|
876
|
+
|
877
|
+
enum {
|
878
|
+
Vectorizable = Traits::Vectorizable,
|
879
|
+
LhsProgress = Traits::LhsProgress,
|
880
|
+
RhsProgress = Traits::RhsProgress,
|
881
|
+
ResPacketSize = Traits::ResPacketSize
|
882
|
+
};
|
883
|
+
|
884
|
+
EIGEN_DONT_INLINE
|
885
|
+
void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
|
886
|
+
Index rows, Index depth, Index cols, ResScalar alpha,
|
887
|
+
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
|
888
|
+
};
|
889
|
+
|
890
|
+
template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
|
891
|
+
EIGEN_DONT_INLINE
|
892
|
+
void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,ConjugateRhs>
|
893
|
+
::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
|
894
|
+
Index rows, Index depth, Index cols, ResScalar alpha,
|
895
|
+
Index strideA, Index strideB, Index offsetA, Index offsetB)
|
896
|
+
{
|
897
|
+
Traits traits;
|
898
|
+
SwappedTraits straits;
|
899
|
+
|
900
|
+
if(strideA==-1) strideA = depth;
|
901
|
+
if(strideB==-1) strideB = depth;
|
902
|
+
conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
|
903
|
+
Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
|
904
|
+
const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0;
|
905
|
+
const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0;
|
906
|
+
const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? (rows/(1*LhsProgress))*(1*LhsProgress) : 0;
|
907
|
+
enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell)
|
908
|
+
const Index peeled_kc = depth & ~(pk-1);
|
909
|
+
const Index prefetch_res_offset = 32/sizeof(ResScalar);
|
910
|
+
// const Index depth2 = depth & ~1;
|
911
|
+
|
912
|
+
//---------- Process 3 * LhsProgress rows at once ----------
|
913
|
+
// This corresponds to 3*LhsProgress x nr register blocks.
|
914
|
+
// Usually, make sense only with FMA
|
915
|
+
if(mr>=3*Traits::LhsProgress)
|
916
|
+
{
|
917
|
+
// Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth)
|
918
|
+
// and on each largest micro vertical panel of the rhs (depth * nr).
|
919
|
+
// Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1.
|
920
|
+
// However, if depth is too small, we can extend the number of rows of these horizontal panels.
|
921
|
+
// This actual number of rows is computed as follow:
|
922
|
+
const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
|
923
|
+
// The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
|
924
|
+
// suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
|
925
|
+
// or because we are testing specific blocking sizes.
|
926
|
+
const Index actual_panel_rows = (3*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) ));
|
927
|
+
for(Index i1=0; i1<peeled_mc3; i1+=actual_panel_rows)
|
928
|
+
{
|
929
|
+
const Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc3);
|
930
|
+
for(Index j2=0; j2<packet_cols4; j2+=nr)
|
931
|
+
{
|
932
|
+
for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
|
933
|
+
{
|
934
|
+
|
935
|
+
// We selected a 3*Traits::LhsProgress x nr micro block of res which is entirely
|
936
|
+
// stored into 3 x nr registers.
|
937
|
+
|
938
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*LhsProgress)];
|
939
|
+
prefetch(&blA[0]);
|
940
|
+
|
941
|
+
// gets res block as register
|
942
|
+
AccPacket C0, C1, C2, C3,
|
943
|
+
C4, C5, C6, C7,
|
944
|
+
C8, C9, C10, C11;
|
945
|
+
traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
|
946
|
+
traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
|
947
|
+
traits.initAcc(C8); traits.initAcc(C9); traits.initAcc(C10); traits.initAcc(C11);
|
948
|
+
|
949
|
+
LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
|
950
|
+
LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
|
951
|
+
LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
|
952
|
+
LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
|
953
|
+
|
954
|
+
r0.prefetch(0);
|
955
|
+
r1.prefetch(0);
|
956
|
+
r2.prefetch(0);
|
957
|
+
r3.prefetch(0);
|
958
|
+
|
959
|
+
// performs "inner" products
|
960
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
|
961
|
+
prefetch(&blB[0]);
|
962
|
+
LhsPacket A0, A1;
|
963
|
+
|
964
|
+
for(Index k=0; k<peeled_kc; k+=pk)
|
965
|
+
{
|
966
|
+
EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX4");
|
967
|
+
RhsPacket B_0, T0;
|
968
|
+
LhsPacket A2;
|
969
|
+
|
970
|
+
#define EIGEN_GEBP_ONESTEP(K) \
|
971
|
+
do { \
|
972
|
+
EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX4"); \
|
973
|
+
EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
|
974
|
+
internal::prefetch(blA+(3*K+16)*LhsProgress); \
|
975
|
+
if (EIGEN_ARCH_ARM) { internal::prefetch(blB+(4*K+16)*RhsProgress); } /* Bug 953 */ \
|
976
|
+
traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
|
977
|
+
traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
|
978
|
+
traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
|
979
|
+
traits.loadRhs(blB + (0+4*K)*Traits::RhsProgress, B_0); \
|
980
|
+
traits.madd(A0, B_0, C0, T0); \
|
981
|
+
traits.madd(A1, B_0, C4, T0); \
|
982
|
+
traits.madd(A2, B_0, C8, B_0); \
|
983
|
+
traits.loadRhs(blB + (1+4*K)*Traits::RhsProgress, B_0); \
|
984
|
+
traits.madd(A0, B_0, C1, T0); \
|
985
|
+
traits.madd(A1, B_0, C5, T0); \
|
986
|
+
traits.madd(A2, B_0, C9, B_0); \
|
987
|
+
traits.loadRhs(blB + (2+4*K)*Traits::RhsProgress, B_0); \
|
988
|
+
traits.madd(A0, B_0, C2, T0); \
|
989
|
+
traits.madd(A1, B_0, C6, T0); \
|
990
|
+
traits.madd(A2, B_0, C10, B_0); \
|
991
|
+
traits.loadRhs(blB + (3+4*K)*Traits::RhsProgress, B_0); \
|
992
|
+
traits.madd(A0, B_0, C3 , T0); \
|
993
|
+
traits.madd(A1, B_0, C7, T0); \
|
994
|
+
traits.madd(A2, B_0, C11, B_0); \
|
995
|
+
EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \
|
996
|
+
} while(false)
|
997
|
+
|
998
|
+
internal::prefetch(blB);
|
999
|
+
EIGEN_GEBP_ONESTEP(0);
|
1000
|
+
EIGEN_GEBP_ONESTEP(1);
|
1001
|
+
EIGEN_GEBP_ONESTEP(2);
|
1002
|
+
EIGEN_GEBP_ONESTEP(3);
|
1003
|
+
EIGEN_GEBP_ONESTEP(4);
|
1004
|
+
EIGEN_GEBP_ONESTEP(5);
|
1005
|
+
EIGEN_GEBP_ONESTEP(6);
|
1006
|
+
EIGEN_GEBP_ONESTEP(7);
|
1007
|
+
|
1008
|
+
blB += pk*4*RhsProgress;
|
1009
|
+
blA += pk*3*Traits::LhsProgress;
|
1010
|
+
|
1011
|
+
EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4");
|
1012
|
+
}
|
1013
|
+
// process remaining peeled loop
|
1014
|
+
for(Index k=peeled_kc; k<depth; k++)
|
1015
|
+
{
|
1016
|
+
RhsPacket B_0, T0;
|
1017
|
+
LhsPacket A2;
|
1018
|
+
EIGEN_GEBP_ONESTEP(0);
|
1019
|
+
blB += 4*RhsProgress;
|
1020
|
+
blA += 3*Traits::LhsProgress;
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
#undef EIGEN_GEBP_ONESTEP
|
1024
|
+
|
1025
|
+
ResPacket R0, R1, R2;
|
1026
|
+
ResPacket alphav = pset1<ResPacket>(alpha);
|
1027
|
+
|
1028
|
+
R0 = r0.loadPacket(0 * Traits::ResPacketSize);
|
1029
|
+
R1 = r0.loadPacket(1 * Traits::ResPacketSize);
|
1030
|
+
R2 = r0.loadPacket(2 * Traits::ResPacketSize);
|
1031
|
+
traits.acc(C0, alphav, R0);
|
1032
|
+
traits.acc(C4, alphav, R1);
|
1033
|
+
traits.acc(C8, alphav, R2);
|
1034
|
+
r0.storePacket(0 * Traits::ResPacketSize, R0);
|
1035
|
+
r0.storePacket(1 * Traits::ResPacketSize, R1);
|
1036
|
+
r0.storePacket(2 * Traits::ResPacketSize, R2);
|
1037
|
+
|
1038
|
+
R0 = r1.loadPacket(0 * Traits::ResPacketSize);
|
1039
|
+
R1 = r1.loadPacket(1 * Traits::ResPacketSize);
|
1040
|
+
R2 = r1.loadPacket(2 * Traits::ResPacketSize);
|
1041
|
+
traits.acc(C1, alphav, R0);
|
1042
|
+
traits.acc(C5, alphav, R1);
|
1043
|
+
traits.acc(C9, alphav, R2);
|
1044
|
+
r1.storePacket(0 * Traits::ResPacketSize, R0);
|
1045
|
+
r1.storePacket(1 * Traits::ResPacketSize, R1);
|
1046
|
+
r1.storePacket(2 * Traits::ResPacketSize, R2);
|
1047
|
+
|
1048
|
+
R0 = r2.loadPacket(0 * Traits::ResPacketSize);
|
1049
|
+
R1 = r2.loadPacket(1 * Traits::ResPacketSize);
|
1050
|
+
R2 = r2.loadPacket(2 * Traits::ResPacketSize);
|
1051
|
+
traits.acc(C2, alphav, R0);
|
1052
|
+
traits.acc(C6, alphav, R1);
|
1053
|
+
traits.acc(C10, alphav, R2);
|
1054
|
+
r2.storePacket(0 * Traits::ResPacketSize, R0);
|
1055
|
+
r2.storePacket(1 * Traits::ResPacketSize, R1);
|
1056
|
+
r2.storePacket(2 * Traits::ResPacketSize, R2);
|
1057
|
+
|
1058
|
+
R0 = r3.loadPacket(0 * Traits::ResPacketSize);
|
1059
|
+
R1 = r3.loadPacket(1 * Traits::ResPacketSize);
|
1060
|
+
R2 = r3.loadPacket(2 * Traits::ResPacketSize);
|
1061
|
+
traits.acc(C3, alphav, R0);
|
1062
|
+
traits.acc(C7, alphav, R1);
|
1063
|
+
traits.acc(C11, alphav, R2);
|
1064
|
+
r3.storePacket(0 * Traits::ResPacketSize, R0);
|
1065
|
+
r3.storePacket(1 * Traits::ResPacketSize, R1);
|
1066
|
+
r3.storePacket(2 * Traits::ResPacketSize, R2);
|
1067
|
+
}
|
1068
|
+
}
|
1069
|
+
|
1070
|
+
// Deal with remaining columns of the rhs
|
1071
|
+
for(Index j2=packet_cols4; j2<cols; j2++)
|
1072
|
+
{
|
1073
|
+
for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
|
1074
|
+
{
|
1075
|
+
// One column at a time
|
1076
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*Traits::LhsProgress)];
|
1077
|
+
prefetch(&blA[0]);
|
1078
|
+
|
1079
|
+
// gets res block as register
|
1080
|
+
AccPacket C0, C4, C8;
|
1081
|
+
traits.initAcc(C0);
|
1082
|
+
traits.initAcc(C4);
|
1083
|
+
traits.initAcc(C8);
|
1084
|
+
|
1085
|
+
LinearMapper r0 = res.getLinearMapper(i, j2);
|
1086
|
+
r0.prefetch(0);
|
1087
|
+
|
1088
|
+
// performs "inner" products
|
1089
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB];
|
1090
|
+
LhsPacket A0, A1, A2;
|
1091
|
+
|
1092
|
+
for(Index k=0; k<peeled_kc; k+=pk)
|
1093
|
+
{
|
1094
|
+
EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX1");
|
1095
|
+
RhsPacket B_0;
|
1096
|
+
#define EIGEN_GEBGP_ONESTEP(K) \
|
1097
|
+
do { \
|
1098
|
+
EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX1"); \
|
1099
|
+
EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
|
1100
|
+
traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
|
1101
|
+
traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
|
1102
|
+
traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
|
1103
|
+
traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
|
1104
|
+
traits.madd(A0, B_0, C0, B_0); \
|
1105
|
+
traits.madd(A1, B_0, C4, B_0); \
|
1106
|
+
traits.madd(A2, B_0, C8, B_0); \
|
1107
|
+
EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \
|
1108
|
+
} while(false)
|
1109
|
+
|
1110
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1111
|
+
EIGEN_GEBGP_ONESTEP(1);
|
1112
|
+
EIGEN_GEBGP_ONESTEP(2);
|
1113
|
+
EIGEN_GEBGP_ONESTEP(3);
|
1114
|
+
EIGEN_GEBGP_ONESTEP(4);
|
1115
|
+
EIGEN_GEBGP_ONESTEP(5);
|
1116
|
+
EIGEN_GEBGP_ONESTEP(6);
|
1117
|
+
EIGEN_GEBGP_ONESTEP(7);
|
1118
|
+
|
1119
|
+
blB += pk*RhsProgress;
|
1120
|
+
blA += pk*3*Traits::LhsProgress;
|
1121
|
+
|
1122
|
+
EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1");
|
1123
|
+
}
|
1124
|
+
|
1125
|
+
// process remaining peeled loop
|
1126
|
+
for(Index k=peeled_kc; k<depth; k++)
|
1127
|
+
{
|
1128
|
+
RhsPacket B_0;
|
1129
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1130
|
+
blB += RhsProgress;
|
1131
|
+
blA += 3*Traits::LhsProgress;
|
1132
|
+
}
|
1133
|
+
#undef EIGEN_GEBGP_ONESTEP
|
1134
|
+
ResPacket R0, R1, R2;
|
1135
|
+
ResPacket alphav = pset1<ResPacket>(alpha);
|
1136
|
+
|
1137
|
+
R0 = r0.loadPacket(0 * Traits::ResPacketSize);
|
1138
|
+
R1 = r0.loadPacket(1 * Traits::ResPacketSize);
|
1139
|
+
R2 = r0.loadPacket(2 * Traits::ResPacketSize);
|
1140
|
+
traits.acc(C0, alphav, R0);
|
1141
|
+
traits.acc(C4, alphav, R1);
|
1142
|
+
traits.acc(C8, alphav, R2);
|
1143
|
+
r0.storePacket(0 * Traits::ResPacketSize, R0);
|
1144
|
+
r0.storePacket(1 * Traits::ResPacketSize, R1);
|
1145
|
+
r0.storePacket(2 * Traits::ResPacketSize, R2);
|
1146
|
+
}
|
1147
|
+
}
|
1148
|
+
}
|
1149
|
+
}
|
1150
|
+
|
1151
|
+
//---------- Process 2 * LhsProgress rows at once ----------
|
1152
|
+
if(mr>=2*Traits::LhsProgress)
|
1153
|
+
{
|
1154
|
+
const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
|
1155
|
+
// The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
|
1156
|
+
// suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
|
1157
|
+
// or because we are testing specific blocking sizes.
|
1158
|
+
Index actual_panel_rows = (2*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) ));
|
1159
|
+
|
1160
|
+
for(Index i1=peeled_mc3; i1<peeled_mc2; i1+=actual_panel_rows)
|
1161
|
+
{
|
1162
|
+
Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc2);
|
1163
|
+
for(Index j2=0; j2<packet_cols4; j2+=nr)
|
1164
|
+
{
|
1165
|
+
for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
|
1166
|
+
{
|
1167
|
+
|
1168
|
+
// We selected a 2*Traits::LhsProgress x nr micro block of res which is entirely
|
1169
|
+
// stored into 2 x nr registers.
|
1170
|
+
|
1171
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
|
1172
|
+
prefetch(&blA[0]);
|
1173
|
+
|
1174
|
+
// gets res block as register
|
1175
|
+
AccPacket C0, C1, C2, C3,
|
1176
|
+
C4, C5, C6, C7;
|
1177
|
+
traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
|
1178
|
+
traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
|
1179
|
+
|
1180
|
+
LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
|
1181
|
+
LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
|
1182
|
+
LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
|
1183
|
+
LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
|
1184
|
+
|
1185
|
+
r0.prefetch(prefetch_res_offset);
|
1186
|
+
r1.prefetch(prefetch_res_offset);
|
1187
|
+
r2.prefetch(prefetch_res_offset);
|
1188
|
+
r3.prefetch(prefetch_res_offset);
|
1189
|
+
|
1190
|
+
// performs "inner" products
|
1191
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
|
1192
|
+
prefetch(&blB[0]);
|
1193
|
+
LhsPacket A0, A1;
|
1194
|
+
|
1195
|
+
for(Index k=0; k<peeled_kc; k+=pk)
|
1196
|
+
{
|
1197
|
+
EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX4");
|
1198
|
+
RhsPacket B_0, B1, B2, B3, T0;
|
1199
|
+
|
1200
|
+
// NOTE: the begin/end asm comments below work around bug 935!
|
1201
|
+
// but they are not enough for gcc>=6 without FMA (bug 1637)
|
1202
|
+
#if EIGEN_GNUC_AT_LEAST(6,0) && defined(EIGEN_VECTORIZE_SSE)
|
1203
|
+
#define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND __asm__ ("" : [a0] "+x,m" (A0),[a1] "+x,m" (A1));
|
1204
|
+
#else
|
1205
|
+
#define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND
|
1206
|
+
#endif
|
1207
|
+
#define EIGEN_GEBGP_ONESTEP(K) \
|
1208
|
+
do { \
|
1209
|
+
EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \
|
1210
|
+
traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
|
1211
|
+
traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
|
1212
|
+
traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
|
1213
|
+
traits.madd(A0, B_0, C0, T0); \
|
1214
|
+
traits.madd(A1, B_0, C4, B_0); \
|
1215
|
+
traits.madd(A0, B1, C1, T0); \
|
1216
|
+
traits.madd(A1, B1, C5, B1); \
|
1217
|
+
traits.madd(A0, B2, C2, T0); \
|
1218
|
+
traits.madd(A1, B2, C6, B2); \
|
1219
|
+
traits.madd(A0, B3, C3, T0); \
|
1220
|
+
traits.madd(A1, B3, C7, B3); \
|
1221
|
+
EIGEN_GEBP_2PX4_SPILLING_WORKAROUND \
|
1222
|
+
EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \
|
1223
|
+
} while(false)
|
1224
|
+
|
1225
|
+
internal::prefetch(blB+(48+0));
|
1226
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1227
|
+
EIGEN_GEBGP_ONESTEP(1);
|
1228
|
+
EIGEN_GEBGP_ONESTEP(2);
|
1229
|
+
EIGEN_GEBGP_ONESTEP(3);
|
1230
|
+
internal::prefetch(blB+(48+16));
|
1231
|
+
EIGEN_GEBGP_ONESTEP(4);
|
1232
|
+
EIGEN_GEBGP_ONESTEP(5);
|
1233
|
+
EIGEN_GEBGP_ONESTEP(6);
|
1234
|
+
EIGEN_GEBGP_ONESTEP(7);
|
1235
|
+
|
1236
|
+
blB += pk*4*RhsProgress;
|
1237
|
+
blA += pk*(2*Traits::LhsProgress);
|
1238
|
+
|
1239
|
+
EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4");
|
1240
|
+
}
|
1241
|
+
// process remaining peeled loop
|
1242
|
+
for(Index k=peeled_kc; k<depth; k++)
|
1243
|
+
{
|
1244
|
+
RhsPacket B_0, B1, B2, B3, T0;
|
1245
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1246
|
+
blB += 4*RhsProgress;
|
1247
|
+
blA += 2*Traits::LhsProgress;
|
1248
|
+
}
|
1249
|
+
#undef EIGEN_GEBGP_ONESTEP
|
1250
|
+
|
1251
|
+
ResPacket R0, R1, R2, R3;
|
1252
|
+
ResPacket alphav = pset1<ResPacket>(alpha);
|
1253
|
+
|
1254
|
+
R0 = r0.loadPacket(0 * Traits::ResPacketSize);
|
1255
|
+
R1 = r0.loadPacket(1 * Traits::ResPacketSize);
|
1256
|
+
R2 = r1.loadPacket(0 * Traits::ResPacketSize);
|
1257
|
+
R3 = r1.loadPacket(1 * Traits::ResPacketSize);
|
1258
|
+
traits.acc(C0, alphav, R0);
|
1259
|
+
traits.acc(C4, alphav, R1);
|
1260
|
+
traits.acc(C1, alphav, R2);
|
1261
|
+
traits.acc(C5, alphav, R3);
|
1262
|
+
r0.storePacket(0 * Traits::ResPacketSize, R0);
|
1263
|
+
r0.storePacket(1 * Traits::ResPacketSize, R1);
|
1264
|
+
r1.storePacket(0 * Traits::ResPacketSize, R2);
|
1265
|
+
r1.storePacket(1 * Traits::ResPacketSize, R3);
|
1266
|
+
|
1267
|
+
R0 = r2.loadPacket(0 * Traits::ResPacketSize);
|
1268
|
+
R1 = r2.loadPacket(1 * Traits::ResPacketSize);
|
1269
|
+
R2 = r3.loadPacket(0 * Traits::ResPacketSize);
|
1270
|
+
R3 = r3.loadPacket(1 * Traits::ResPacketSize);
|
1271
|
+
traits.acc(C2, alphav, R0);
|
1272
|
+
traits.acc(C6, alphav, R1);
|
1273
|
+
traits.acc(C3, alphav, R2);
|
1274
|
+
traits.acc(C7, alphav, R3);
|
1275
|
+
r2.storePacket(0 * Traits::ResPacketSize, R0);
|
1276
|
+
r2.storePacket(1 * Traits::ResPacketSize, R1);
|
1277
|
+
r3.storePacket(0 * Traits::ResPacketSize, R2);
|
1278
|
+
r3.storePacket(1 * Traits::ResPacketSize, R3);
|
1279
|
+
}
|
1280
|
+
}
|
1281
|
+
|
1282
|
+
// Deal with remaining columns of the rhs
|
1283
|
+
for(Index j2=packet_cols4; j2<cols; j2++)
|
1284
|
+
{
|
1285
|
+
for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
|
1286
|
+
{
|
1287
|
+
// One column at a time
|
1288
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
|
1289
|
+
prefetch(&blA[0]);
|
1290
|
+
|
1291
|
+
// gets res block as register
|
1292
|
+
AccPacket C0, C4;
|
1293
|
+
traits.initAcc(C0);
|
1294
|
+
traits.initAcc(C4);
|
1295
|
+
|
1296
|
+
LinearMapper r0 = res.getLinearMapper(i, j2);
|
1297
|
+
r0.prefetch(prefetch_res_offset);
|
1298
|
+
|
1299
|
+
// performs "inner" products
|
1300
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB];
|
1301
|
+
LhsPacket A0, A1;
|
1302
|
+
|
1303
|
+
for(Index k=0; k<peeled_kc; k+=pk)
|
1304
|
+
{
|
1305
|
+
EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1");
|
1306
|
+
RhsPacket B_0, B1;
|
1307
|
+
|
1308
|
+
#define EIGEN_GEBGP_ONESTEP(K) \
|
1309
|
+
do { \
|
1310
|
+
EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1"); \
|
1311
|
+
EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
|
1312
|
+
traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
|
1313
|
+
traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
|
1314
|
+
traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
|
1315
|
+
traits.madd(A0, B_0, C0, B1); \
|
1316
|
+
traits.madd(A1, B_0, C4, B_0); \
|
1317
|
+
EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \
|
1318
|
+
} while(false)
|
1319
|
+
|
1320
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1321
|
+
EIGEN_GEBGP_ONESTEP(1);
|
1322
|
+
EIGEN_GEBGP_ONESTEP(2);
|
1323
|
+
EIGEN_GEBGP_ONESTEP(3);
|
1324
|
+
EIGEN_GEBGP_ONESTEP(4);
|
1325
|
+
EIGEN_GEBGP_ONESTEP(5);
|
1326
|
+
EIGEN_GEBGP_ONESTEP(6);
|
1327
|
+
EIGEN_GEBGP_ONESTEP(7);
|
1328
|
+
|
1329
|
+
blB += pk*RhsProgress;
|
1330
|
+
blA += pk*2*Traits::LhsProgress;
|
1331
|
+
|
1332
|
+
EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1");
|
1333
|
+
}
|
1334
|
+
|
1335
|
+
// process remaining peeled loop
|
1336
|
+
for(Index k=peeled_kc; k<depth; k++)
|
1337
|
+
{
|
1338
|
+
RhsPacket B_0, B1;
|
1339
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1340
|
+
blB += RhsProgress;
|
1341
|
+
blA += 2*Traits::LhsProgress;
|
1342
|
+
}
|
1343
|
+
#undef EIGEN_GEBGP_ONESTEP
|
1344
|
+
ResPacket R0, R1;
|
1345
|
+
ResPacket alphav = pset1<ResPacket>(alpha);
|
1346
|
+
|
1347
|
+
R0 = r0.loadPacket(0 * Traits::ResPacketSize);
|
1348
|
+
R1 = r0.loadPacket(1 * Traits::ResPacketSize);
|
1349
|
+
traits.acc(C0, alphav, R0);
|
1350
|
+
traits.acc(C4, alphav, R1);
|
1351
|
+
r0.storePacket(0 * Traits::ResPacketSize, R0);
|
1352
|
+
r0.storePacket(1 * Traits::ResPacketSize, R1);
|
1353
|
+
}
|
1354
|
+
}
|
1355
|
+
}
|
1356
|
+
}
|
1357
|
+
//---------- Process 1 * LhsProgress rows at once ----------
|
1358
|
+
if(mr>=1*Traits::LhsProgress)
|
1359
|
+
{
|
1360
|
+
// loops on each largest micro horizontal panel of lhs (1*LhsProgress x depth)
|
1361
|
+
for(Index i=peeled_mc2; i<peeled_mc1; i+=1*LhsProgress)
|
1362
|
+
{
|
1363
|
+
// loops on each largest micro vertical panel of rhs (depth * nr)
|
1364
|
+
for(Index j2=0; j2<packet_cols4; j2+=nr)
|
1365
|
+
{
|
1366
|
+
// We select a 1*Traits::LhsProgress x nr micro block of res which is entirely
|
1367
|
+
// stored into 1 x nr registers.
|
1368
|
+
|
1369
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
|
1370
|
+
prefetch(&blA[0]);
|
1371
|
+
|
1372
|
+
// gets res block as register
|
1373
|
+
AccPacket C0, C1, C2, C3;
|
1374
|
+
traits.initAcc(C0);
|
1375
|
+
traits.initAcc(C1);
|
1376
|
+
traits.initAcc(C2);
|
1377
|
+
traits.initAcc(C3);
|
1378
|
+
|
1379
|
+
LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
|
1380
|
+
LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
|
1381
|
+
LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
|
1382
|
+
LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
|
1383
|
+
|
1384
|
+
r0.prefetch(prefetch_res_offset);
|
1385
|
+
r1.prefetch(prefetch_res_offset);
|
1386
|
+
r2.prefetch(prefetch_res_offset);
|
1387
|
+
r3.prefetch(prefetch_res_offset);
|
1388
|
+
|
1389
|
+
// performs "inner" products
|
1390
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
|
1391
|
+
prefetch(&blB[0]);
|
1392
|
+
LhsPacket A0;
|
1393
|
+
|
1394
|
+
for(Index k=0; k<peeled_kc; k+=pk)
|
1395
|
+
{
|
1396
|
+
EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX4");
|
1397
|
+
RhsPacket B_0, B1, B2, B3;
|
1398
|
+
|
1399
|
+
#define EIGEN_GEBGP_ONESTEP(K) \
|
1400
|
+
do { \
|
1401
|
+
EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX4"); \
|
1402
|
+
EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
|
1403
|
+
traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
|
1404
|
+
traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
|
1405
|
+
traits.madd(A0, B_0, C0, B_0); \
|
1406
|
+
traits.madd(A0, B1, C1, B1); \
|
1407
|
+
traits.madd(A0, B2, C2, B2); \
|
1408
|
+
traits.madd(A0, B3, C3, B3); \
|
1409
|
+
EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX4"); \
|
1410
|
+
} while(false)
|
1411
|
+
|
1412
|
+
internal::prefetch(blB+(48+0));
|
1413
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1414
|
+
EIGEN_GEBGP_ONESTEP(1);
|
1415
|
+
EIGEN_GEBGP_ONESTEP(2);
|
1416
|
+
EIGEN_GEBGP_ONESTEP(3);
|
1417
|
+
internal::prefetch(blB+(48+16));
|
1418
|
+
EIGEN_GEBGP_ONESTEP(4);
|
1419
|
+
EIGEN_GEBGP_ONESTEP(5);
|
1420
|
+
EIGEN_GEBGP_ONESTEP(6);
|
1421
|
+
EIGEN_GEBGP_ONESTEP(7);
|
1422
|
+
|
1423
|
+
blB += pk*4*RhsProgress;
|
1424
|
+
blA += pk*1*LhsProgress;
|
1425
|
+
|
1426
|
+
EIGEN_ASM_COMMENT("end gebp micro kernel 1pX4");
|
1427
|
+
}
|
1428
|
+
// process remaining peeled loop
|
1429
|
+
for(Index k=peeled_kc; k<depth; k++)
|
1430
|
+
{
|
1431
|
+
RhsPacket B_0, B1, B2, B3;
|
1432
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1433
|
+
blB += 4*RhsProgress;
|
1434
|
+
blA += 1*LhsProgress;
|
1435
|
+
}
|
1436
|
+
#undef EIGEN_GEBGP_ONESTEP
|
1437
|
+
|
1438
|
+
ResPacket R0, R1;
|
1439
|
+
ResPacket alphav = pset1<ResPacket>(alpha);
|
1440
|
+
|
1441
|
+
R0 = r0.loadPacket(0 * Traits::ResPacketSize);
|
1442
|
+
R1 = r1.loadPacket(0 * Traits::ResPacketSize);
|
1443
|
+
traits.acc(C0, alphav, R0);
|
1444
|
+
traits.acc(C1, alphav, R1);
|
1445
|
+
r0.storePacket(0 * Traits::ResPacketSize, R0);
|
1446
|
+
r1.storePacket(0 * Traits::ResPacketSize, R1);
|
1447
|
+
|
1448
|
+
R0 = r2.loadPacket(0 * Traits::ResPacketSize);
|
1449
|
+
R1 = r3.loadPacket(0 * Traits::ResPacketSize);
|
1450
|
+
traits.acc(C2, alphav, R0);
|
1451
|
+
traits.acc(C3, alphav, R1);
|
1452
|
+
r2.storePacket(0 * Traits::ResPacketSize, R0);
|
1453
|
+
r3.storePacket(0 * Traits::ResPacketSize, R1);
|
1454
|
+
}
|
1455
|
+
|
1456
|
+
// Deal with remaining columns of the rhs
|
1457
|
+
for(Index j2=packet_cols4; j2<cols; j2++)
|
1458
|
+
{
|
1459
|
+
// One column at a time
|
1460
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
|
1461
|
+
prefetch(&blA[0]);
|
1462
|
+
|
1463
|
+
// gets res block as register
|
1464
|
+
AccPacket C0;
|
1465
|
+
traits.initAcc(C0);
|
1466
|
+
|
1467
|
+
LinearMapper r0 = res.getLinearMapper(i, j2);
|
1468
|
+
|
1469
|
+
// performs "inner" products
|
1470
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB];
|
1471
|
+
LhsPacket A0;
|
1472
|
+
|
1473
|
+
for(Index k=0; k<peeled_kc; k+=pk)
|
1474
|
+
{
|
1475
|
+
EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX1");
|
1476
|
+
RhsPacket B_0;
|
1477
|
+
|
1478
|
+
#define EIGEN_GEBGP_ONESTEP(K) \
|
1479
|
+
do { \
|
1480
|
+
EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX1"); \
|
1481
|
+
EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
|
1482
|
+
traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
|
1483
|
+
traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
|
1484
|
+
traits.madd(A0, B_0, C0, B_0); \
|
1485
|
+
EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX1"); \
|
1486
|
+
} while(false);
|
1487
|
+
|
1488
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1489
|
+
EIGEN_GEBGP_ONESTEP(1);
|
1490
|
+
EIGEN_GEBGP_ONESTEP(2);
|
1491
|
+
EIGEN_GEBGP_ONESTEP(3);
|
1492
|
+
EIGEN_GEBGP_ONESTEP(4);
|
1493
|
+
EIGEN_GEBGP_ONESTEP(5);
|
1494
|
+
EIGEN_GEBGP_ONESTEP(6);
|
1495
|
+
EIGEN_GEBGP_ONESTEP(7);
|
1496
|
+
|
1497
|
+
blB += pk*RhsProgress;
|
1498
|
+
blA += pk*1*Traits::LhsProgress;
|
1499
|
+
|
1500
|
+
EIGEN_ASM_COMMENT("end gebp micro kernel 1pX1");
|
1501
|
+
}
|
1502
|
+
|
1503
|
+
// process remaining peeled loop
|
1504
|
+
for(Index k=peeled_kc; k<depth; k++)
|
1505
|
+
{
|
1506
|
+
RhsPacket B_0;
|
1507
|
+
EIGEN_GEBGP_ONESTEP(0);
|
1508
|
+
blB += RhsProgress;
|
1509
|
+
blA += 1*Traits::LhsProgress;
|
1510
|
+
}
|
1511
|
+
#undef EIGEN_GEBGP_ONESTEP
|
1512
|
+
ResPacket R0;
|
1513
|
+
ResPacket alphav = pset1<ResPacket>(alpha);
|
1514
|
+
R0 = r0.loadPacket(0 * Traits::ResPacketSize);
|
1515
|
+
traits.acc(C0, alphav, R0);
|
1516
|
+
r0.storePacket(0 * Traits::ResPacketSize, R0);
|
1517
|
+
}
|
1518
|
+
}
|
1519
|
+
}
|
1520
|
+
//---------- Process remaining rows, 1 at once ----------
|
1521
|
+
if(peeled_mc1<rows)
|
1522
|
+
{
|
1523
|
+
// loop on each panel of the rhs
|
1524
|
+
for(Index j2=0; j2<packet_cols4; j2+=nr)
|
1525
|
+
{
|
1526
|
+
// loop on each row of the lhs (1*LhsProgress x depth)
|
1527
|
+
for(Index i=peeled_mc1; i<rows; i+=1)
|
1528
|
+
{
|
1529
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA];
|
1530
|
+
prefetch(&blA[0]);
|
1531
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
|
1532
|
+
|
1533
|
+
// The following piece of code wont work for 512 bit registers
|
1534
|
+
// Moreover, if LhsProgress==8 it assumes that there is a half packet of the same size
|
1535
|
+
// as nr (which is currently 4) for the return type.
|
1536
|
+
const int SResPacketHalfSize = unpacket_traits<typename unpacket_traits<SResPacket>::half>::size;
|
1537
|
+
if ((SwappedTraits::LhsProgress % 4) == 0 &&
|
1538
|
+
(SwappedTraits::LhsProgress <= 8) &&
|
1539
|
+
(SwappedTraits::LhsProgress!=8 || SResPacketHalfSize==nr))
|
1540
|
+
{
|
1541
|
+
SAccPacket C0, C1, C2, C3;
|
1542
|
+
straits.initAcc(C0);
|
1543
|
+
straits.initAcc(C1);
|
1544
|
+
straits.initAcc(C2);
|
1545
|
+
straits.initAcc(C3);
|
1546
|
+
|
1547
|
+
const Index spk = (std::max)(1,SwappedTraits::LhsProgress/4);
|
1548
|
+
const Index endk = (depth/spk)*spk;
|
1549
|
+
const Index endk4 = (depth/(spk*4))*(spk*4);
|
1550
|
+
|
1551
|
+
Index k=0;
|
1552
|
+
for(; k<endk4; k+=4*spk)
|
1553
|
+
{
|
1554
|
+
SLhsPacket A0,A1;
|
1555
|
+
SRhsPacket B_0,B_1;
|
1556
|
+
|
1557
|
+
straits.loadLhsUnaligned(blB+0*SwappedTraits::LhsProgress, A0);
|
1558
|
+
straits.loadLhsUnaligned(blB+1*SwappedTraits::LhsProgress, A1);
|
1559
|
+
|
1560
|
+
straits.loadRhsQuad(blA+0*spk, B_0);
|
1561
|
+
straits.loadRhsQuad(blA+1*spk, B_1);
|
1562
|
+
straits.madd(A0,B_0,C0,B_0);
|
1563
|
+
straits.madd(A1,B_1,C1,B_1);
|
1564
|
+
|
1565
|
+
straits.loadLhsUnaligned(blB+2*SwappedTraits::LhsProgress, A0);
|
1566
|
+
straits.loadLhsUnaligned(blB+3*SwappedTraits::LhsProgress, A1);
|
1567
|
+
straits.loadRhsQuad(blA+2*spk, B_0);
|
1568
|
+
straits.loadRhsQuad(blA+3*spk, B_1);
|
1569
|
+
straits.madd(A0,B_0,C2,B_0);
|
1570
|
+
straits.madd(A1,B_1,C3,B_1);
|
1571
|
+
|
1572
|
+
blB += 4*SwappedTraits::LhsProgress;
|
1573
|
+
blA += 4*spk;
|
1574
|
+
}
|
1575
|
+
C0 = padd(padd(C0,C1),padd(C2,C3));
|
1576
|
+
for(; k<endk; k+=spk)
|
1577
|
+
{
|
1578
|
+
SLhsPacket A0;
|
1579
|
+
SRhsPacket B_0;
|
1580
|
+
|
1581
|
+
straits.loadLhsUnaligned(blB, A0);
|
1582
|
+
straits.loadRhsQuad(blA, B_0);
|
1583
|
+
straits.madd(A0,B_0,C0,B_0);
|
1584
|
+
|
1585
|
+
blB += SwappedTraits::LhsProgress;
|
1586
|
+
blA += spk;
|
1587
|
+
}
|
1588
|
+
if(SwappedTraits::LhsProgress==8)
|
1589
|
+
{
|
1590
|
+
// Special case where we have to first reduce the accumulation register C0
|
1591
|
+
typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SResPacket>::half,SResPacket>::type SResPacketHalf;
|
1592
|
+
typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SLhsPacket>::type SLhsPacketHalf;
|
1593
|
+
typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SRhsPacket>::type SRhsPacketHalf;
|
1594
|
+
typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SAccPacket>::half,SAccPacket>::type SAccPacketHalf;
|
1595
|
+
|
1596
|
+
SResPacketHalf R = res.template gatherPacket<SResPacketHalf>(i, j2);
|
1597
|
+
SResPacketHalf alphav = pset1<SResPacketHalf>(alpha);
|
1598
|
+
|
1599
|
+
if(depth-endk>0)
|
1600
|
+
{
|
1601
|
+
// We have to handle the last row of the rhs which corresponds to a half-packet
|
1602
|
+
SLhsPacketHalf a0;
|
1603
|
+
SRhsPacketHalf b0;
|
1604
|
+
straits.loadLhsUnaligned(blB, a0);
|
1605
|
+
straits.loadRhs(blA, b0);
|
1606
|
+
SAccPacketHalf c0 = predux_downto4(C0);
|
1607
|
+
straits.madd(a0,b0,c0,b0);
|
1608
|
+
straits.acc(c0, alphav, R);
|
1609
|
+
}
|
1610
|
+
else
|
1611
|
+
{
|
1612
|
+
straits.acc(predux_downto4(C0), alphav, R);
|
1613
|
+
}
|
1614
|
+
res.scatterPacket(i, j2, R);
|
1615
|
+
}
|
1616
|
+
else
|
1617
|
+
{
|
1618
|
+
SResPacket R = res.template gatherPacket<SResPacket>(i, j2);
|
1619
|
+
SResPacket alphav = pset1<SResPacket>(alpha);
|
1620
|
+
straits.acc(C0, alphav, R);
|
1621
|
+
res.scatterPacket(i, j2, R);
|
1622
|
+
}
|
1623
|
+
}
|
1624
|
+
else // scalar path
|
1625
|
+
{
|
1626
|
+
// get a 1 x 4 res block as registers
|
1627
|
+
ResScalar C0(0), C1(0), C2(0), C3(0);
|
1628
|
+
|
1629
|
+
for(Index k=0; k<depth; k++)
|
1630
|
+
{
|
1631
|
+
LhsScalar A0;
|
1632
|
+
RhsScalar B_0, B_1;
|
1633
|
+
|
1634
|
+
A0 = blA[k];
|
1635
|
+
|
1636
|
+
B_0 = blB[0];
|
1637
|
+
B_1 = blB[1];
|
1638
|
+
CJMADD(cj,A0,B_0,C0, B_0);
|
1639
|
+
CJMADD(cj,A0,B_1,C1, B_1);
|
1640
|
+
|
1641
|
+
B_0 = blB[2];
|
1642
|
+
B_1 = blB[3];
|
1643
|
+
CJMADD(cj,A0,B_0,C2, B_0);
|
1644
|
+
CJMADD(cj,A0,B_1,C3, B_1);
|
1645
|
+
|
1646
|
+
blB += 4;
|
1647
|
+
}
|
1648
|
+
res(i, j2 + 0) += alpha * C0;
|
1649
|
+
res(i, j2 + 1) += alpha * C1;
|
1650
|
+
res(i, j2 + 2) += alpha * C2;
|
1651
|
+
res(i, j2 + 3) += alpha * C3;
|
1652
|
+
}
|
1653
|
+
}
|
1654
|
+
}
|
1655
|
+
// remaining columns
|
1656
|
+
for(Index j2=packet_cols4; j2<cols; j2++)
|
1657
|
+
{
|
1658
|
+
// loop on each row of the lhs (1*LhsProgress x depth)
|
1659
|
+
for(Index i=peeled_mc1; i<rows; i+=1)
|
1660
|
+
{
|
1661
|
+
const LhsScalar* blA = &blockA[i*strideA+offsetA];
|
1662
|
+
prefetch(&blA[0]);
|
1663
|
+
// gets a 1 x 1 res block as registers
|
1664
|
+
ResScalar C0(0);
|
1665
|
+
const RhsScalar* blB = &blockB[j2*strideB+offsetB];
|
1666
|
+
for(Index k=0; k<depth; k++)
|
1667
|
+
{
|
1668
|
+
LhsScalar A0 = blA[k];
|
1669
|
+
RhsScalar B_0 = blB[k];
|
1670
|
+
CJMADD(cj, A0, B_0, C0, B_0);
|
1671
|
+
}
|
1672
|
+
res(i, j2) += alpha * C0;
|
1673
|
+
}
|
1674
|
+
}
|
1675
|
+
}
|
1676
|
+
}
|
1677
|
+
|
1678
|
+
|
1679
|
+
#undef CJMADD
|
1680
|
+
|
1681
|
+
// pack a block of the lhs
|
1682
|
+
// The traversal is as follow (mr==4):
|
1683
|
+
// 0 4 8 12 ...
|
1684
|
+
// 1 5 9 13 ...
|
1685
|
+
// 2 6 10 14 ...
|
1686
|
+
// 3 7 11 15 ...
|
1687
|
+
//
|
1688
|
+
// 16 20 24 28 ...
|
1689
|
+
// 17 21 25 29 ...
|
1690
|
+
// 18 22 26 30 ...
|
1691
|
+
// 19 23 27 31 ...
|
1692
|
+
//
|
1693
|
+
// 32 33 34 35 ...
|
1694
|
+
// 36 36 38 39 ...
|
1695
|
+
template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
|
1696
|
+
struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
|
1697
|
+
{
|
1698
|
+
typedef typename DataMapper::LinearMapper LinearMapper;
|
1699
|
+
EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
|
1700
|
+
};
|
1701
|
+
|
1702
|
+
template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
|
1703
|
+
EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
|
1704
|
+
::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
|
1705
|
+
{
|
1706
|
+
typedef typename packet_traits<Scalar>::type Packet;
|
1707
|
+
enum { PacketSize = packet_traits<Scalar>::size };
|
1708
|
+
|
1709
|
+
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
|
1710
|
+
EIGEN_UNUSED_VARIABLE(stride);
|
1711
|
+
EIGEN_UNUSED_VARIABLE(offset);
|
1712
|
+
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
1713
|
+
eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) );
|
1714
|
+
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
1715
|
+
Index count = 0;
|
1716
|
+
|
1717
|
+
const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
|
1718
|
+
const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
|
1719
|
+
const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
|
1720
|
+
const Index peeled_mc0 = Pack2>=1*PacketSize ? peeled_mc1
|
1721
|
+
: Pack2>1 ? (rows/Pack2)*Pack2 : 0;
|
1722
|
+
|
1723
|
+
Index i=0;
|
1724
|
+
|
1725
|
+
// Pack 3 packets
|
1726
|
+
if(Pack1>=3*PacketSize)
|
1727
|
+
{
|
1728
|
+
for(; i<peeled_mc3; i+=3*PacketSize)
|
1729
|
+
{
|
1730
|
+
if(PanelMode) count += (3*PacketSize) * offset;
|
1731
|
+
|
1732
|
+
for(Index k=0; k<depth; k++)
|
1733
|
+
{
|
1734
|
+
Packet A, B, C;
|
1735
|
+
A = lhs.loadPacket(i+0*PacketSize, k);
|
1736
|
+
B = lhs.loadPacket(i+1*PacketSize, k);
|
1737
|
+
C = lhs.loadPacket(i+2*PacketSize, k);
|
1738
|
+
pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
|
1739
|
+
pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
|
1740
|
+
pstore(blockA+count, cj.pconj(C)); count+=PacketSize;
|
1741
|
+
}
|
1742
|
+
if(PanelMode) count += (3*PacketSize) * (stride-offset-depth);
|
1743
|
+
}
|
1744
|
+
}
|
1745
|
+
// Pack 2 packets
|
1746
|
+
if(Pack1>=2*PacketSize)
|
1747
|
+
{
|
1748
|
+
for(; i<peeled_mc2; i+=2*PacketSize)
|
1749
|
+
{
|
1750
|
+
if(PanelMode) count += (2*PacketSize) * offset;
|
1751
|
+
|
1752
|
+
for(Index k=0; k<depth; k++)
|
1753
|
+
{
|
1754
|
+
Packet A, B;
|
1755
|
+
A = lhs.loadPacket(i+0*PacketSize, k);
|
1756
|
+
B = lhs.loadPacket(i+1*PacketSize, k);
|
1757
|
+
pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
|
1758
|
+
pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
|
1759
|
+
}
|
1760
|
+
if(PanelMode) count += (2*PacketSize) * (stride-offset-depth);
|
1761
|
+
}
|
1762
|
+
}
|
1763
|
+
// Pack 1 packets
|
1764
|
+
if(Pack1>=1*PacketSize)
|
1765
|
+
{
|
1766
|
+
for(; i<peeled_mc1; i+=1*PacketSize)
|
1767
|
+
{
|
1768
|
+
if(PanelMode) count += (1*PacketSize) * offset;
|
1769
|
+
|
1770
|
+
for(Index k=0; k<depth; k++)
|
1771
|
+
{
|
1772
|
+
Packet A;
|
1773
|
+
A = lhs.loadPacket(i+0*PacketSize, k);
|
1774
|
+
pstore(blockA+count, cj.pconj(A));
|
1775
|
+
count+=PacketSize;
|
1776
|
+
}
|
1777
|
+
if(PanelMode) count += (1*PacketSize) * (stride-offset-depth);
|
1778
|
+
}
|
1779
|
+
}
|
1780
|
+
// Pack scalars
|
1781
|
+
if(Pack2<PacketSize && Pack2>1)
|
1782
|
+
{
|
1783
|
+
for(; i<peeled_mc0; i+=Pack2)
|
1784
|
+
{
|
1785
|
+
if(PanelMode) count += Pack2 * offset;
|
1786
|
+
|
1787
|
+
for(Index k=0; k<depth; k++)
|
1788
|
+
for(Index w=0; w<Pack2; w++)
|
1789
|
+
blockA[count++] = cj(lhs(i+w, k));
|
1790
|
+
|
1791
|
+
if(PanelMode) count += Pack2 * (stride-offset-depth);
|
1792
|
+
}
|
1793
|
+
}
|
1794
|
+
for(; i<rows; i++)
|
1795
|
+
{
|
1796
|
+
if(PanelMode) count += offset;
|
1797
|
+
for(Index k=0; k<depth; k++)
|
1798
|
+
blockA[count++] = cj(lhs(i, k));
|
1799
|
+
if(PanelMode) count += (stride-offset-depth);
|
1800
|
+
}
|
1801
|
+
}
|
1802
|
+
|
1803
|
+
template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
|
1804
|
+
struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
|
1805
|
+
{
|
1806
|
+
typedef typename DataMapper::LinearMapper LinearMapper;
|
1807
|
+
EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
|
1808
|
+
};
|
1809
|
+
|
1810
|
+
template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
|
1811
|
+
EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
|
1812
|
+
::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
|
1813
|
+
{
|
1814
|
+
typedef typename packet_traits<Scalar>::type Packet;
|
1815
|
+
enum { PacketSize = packet_traits<Scalar>::size };
|
1816
|
+
|
1817
|
+
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
|
1818
|
+
EIGEN_UNUSED_VARIABLE(stride);
|
1819
|
+
EIGEN_UNUSED_VARIABLE(offset);
|
1820
|
+
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
1821
|
+
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
1822
|
+
Index count = 0;
|
1823
|
+
|
1824
|
+
// const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
|
1825
|
+
// const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
|
1826
|
+
// const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
|
1827
|
+
|
1828
|
+
int pack = Pack1;
|
1829
|
+
Index i = 0;
|
1830
|
+
while(pack>0)
|
1831
|
+
{
|
1832
|
+
Index remaining_rows = rows-i;
|
1833
|
+
Index peeled_mc = i+(remaining_rows/pack)*pack;
|
1834
|
+
for(; i<peeled_mc; i+=pack)
|
1835
|
+
{
|
1836
|
+
if(PanelMode) count += pack * offset;
|
1837
|
+
|
1838
|
+
const Index peeled_k = (depth/PacketSize)*PacketSize;
|
1839
|
+
Index k=0;
|
1840
|
+
if(pack>=PacketSize)
|
1841
|
+
{
|
1842
|
+
for(; k<peeled_k; k+=PacketSize)
|
1843
|
+
{
|
1844
|
+
for (Index m = 0; m < pack; m += PacketSize)
|
1845
|
+
{
|
1846
|
+
PacketBlock<Packet> kernel;
|
1847
|
+
for (int p = 0; p < PacketSize; ++p) kernel.packet[p] = lhs.loadPacket(i+p+m, k);
|
1848
|
+
ptranspose(kernel);
|
1849
|
+
for (int p = 0; p < PacketSize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p]));
|
1850
|
+
}
|
1851
|
+
count += PacketSize*pack;
|
1852
|
+
}
|
1853
|
+
}
|
1854
|
+
for(; k<depth; k++)
|
1855
|
+
{
|
1856
|
+
Index w=0;
|
1857
|
+
for(; w<pack-3; w+=4)
|
1858
|
+
{
|
1859
|
+
Scalar a(cj(lhs(i+w+0, k))),
|
1860
|
+
b(cj(lhs(i+w+1, k))),
|
1861
|
+
c(cj(lhs(i+w+2, k))),
|
1862
|
+
d(cj(lhs(i+w+3, k)));
|
1863
|
+
blockA[count++] = a;
|
1864
|
+
blockA[count++] = b;
|
1865
|
+
blockA[count++] = c;
|
1866
|
+
blockA[count++] = d;
|
1867
|
+
}
|
1868
|
+
if(pack%4)
|
1869
|
+
for(;w<pack;++w)
|
1870
|
+
blockA[count++] = cj(lhs(i+w, k));
|
1871
|
+
}
|
1872
|
+
|
1873
|
+
if(PanelMode) count += pack * (stride-offset-depth);
|
1874
|
+
}
|
1875
|
+
|
1876
|
+
pack -= PacketSize;
|
1877
|
+
if(pack<Pack2 && (pack+PacketSize)!=Pack2)
|
1878
|
+
pack = Pack2;
|
1879
|
+
}
|
1880
|
+
|
1881
|
+
for(; i<rows; i++)
|
1882
|
+
{
|
1883
|
+
if(PanelMode) count += offset;
|
1884
|
+
for(Index k=0; k<depth; k++)
|
1885
|
+
blockA[count++] = cj(lhs(i, k));
|
1886
|
+
if(PanelMode) count += (stride-offset-depth);
|
1887
|
+
}
|
1888
|
+
}
|
1889
|
+
|
1890
|
+
// copy a complete panel of the rhs
|
1891
|
+
// this version is optimized for column major matrices
|
1892
|
+
// The traversal order is as follow: (nr==4):
|
1893
|
+
// 0 1 2 3 12 13 14 15 24 27
|
1894
|
+
// 4 5 6 7 16 17 18 19 25 28
|
1895
|
+
// 8 9 10 11 20 21 22 23 26 29
|
1896
|
+
// . . . . . . . . . .
|
1897
|
+
template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
|
1898
|
+
struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
|
1899
|
+
{
|
1900
|
+
typedef typename packet_traits<Scalar>::type Packet;
|
1901
|
+
typedef typename DataMapper::LinearMapper LinearMapper;
|
1902
|
+
enum { PacketSize = packet_traits<Scalar>::size };
|
1903
|
+
EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
|
1904
|
+
};
|
1905
|
+
|
1906
|
+
template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
|
1907
|
+
EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
|
1908
|
+
::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
|
1909
|
+
{
|
1910
|
+
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
|
1911
|
+
EIGEN_UNUSED_VARIABLE(stride);
|
1912
|
+
EIGEN_UNUSED_VARIABLE(offset);
|
1913
|
+
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
1914
|
+
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
1915
|
+
Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
|
1916
|
+
Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
|
1917
|
+
Index count = 0;
|
1918
|
+
const Index peeled_k = (depth/PacketSize)*PacketSize;
|
1919
|
+
// if(nr>=8)
|
1920
|
+
// {
|
1921
|
+
// for(Index j2=0; j2<packet_cols8; j2+=8)
|
1922
|
+
// {
|
1923
|
+
// // skip what we have before
|
1924
|
+
// if(PanelMode) count += 8 * offset;
|
1925
|
+
// const Scalar* b0 = &rhs[(j2+0)*rhsStride];
|
1926
|
+
// const Scalar* b1 = &rhs[(j2+1)*rhsStride];
|
1927
|
+
// const Scalar* b2 = &rhs[(j2+2)*rhsStride];
|
1928
|
+
// const Scalar* b3 = &rhs[(j2+3)*rhsStride];
|
1929
|
+
// const Scalar* b4 = &rhs[(j2+4)*rhsStride];
|
1930
|
+
// const Scalar* b5 = &rhs[(j2+5)*rhsStride];
|
1931
|
+
// const Scalar* b6 = &rhs[(j2+6)*rhsStride];
|
1932
|
+
// const Scalar* b7 = &rhs[(j2+7)*rhsStride];
|
1933
|
+
// Index k=0;
|
1934
|
+
// if(PacketSize==8) // TODO enbale vectorized transposition for PacketSize==4
|
1935
|
+
// {
|
1936
|
+
// for(; k<peeled_k; k+=PacketSize) {
|
1937
|
+
// PacketBlock<Packet> kernel;
|
1938
|
+
// for (int p = 0; p < PacketSize; ++p) {
|
1939
|
+
// kernel.packet[p] = ploadu<Packet>(&rhs[(j2+p)*rhsStride+k]);
|
1940
|
+
// }
|
1941
|
+
// ptranspose(kernel);
|
1942
|
+
// for (int p = 0; p < PacketSize; ++p) {
|
1943
|
+
// pstoreu(blockB+count, cj.pconj(kernel.packet[p]));
|
1944
|
+
// count+=PacketSize;
|
1945
|
+
// }
|
1946
|
+
// }
|
1947
|
+
// }
|
1948
|
+
// for(; k<depth; k++)
|
1949
|
+
// {
|
1950
|
+
// blockB[count+0] = cj(b0[k]);
|
1951
|
+
// blockB[count+1] = cj(b1[k]);
|
1952
|
+
// blockB[count+2] = cj(b2[k]);
|
1953
|
+
// blockB[count+3] = cj(b3[k]);
|
1954
|
+
// blockB[count+4] = cj(b4[k]);
|
1955
|
+
// blockB[count+5] = cj(b5[k]);
|
1956
|
+
// blockB[count+6] = cj(b6[k]);
|
1957
|
+
// blockB[count+7] = cj(b7[k]);
|
1958
|
+
// count += 8;
|
1959
|
+
// }
|
1960
|
+
// // skip what we have after
|
1961
|
+
// if(PanelMode) count += 8 * (stride-offset-depth);
|
1962
|
+
// }
|
1963
|
+
// }
|
1964
|
+
|
1965
|
+
if(nr>=4)
|
1966
|
+
{
|
1967
|
+
for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
|
1968
|
+
{
|
1969
|
+
// skip what we have before
|
1970
|
+
if(PanelMode) count += 4 * offset;
|
1971
|
+
const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
|
1972
|
+
const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
|
1973
|
+
const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
|
1974
|
+
const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
|
1975
|
+
|
1976
|
+
Index k=0;
|
1977
|
+
if((PacketSize%4)==0) // TODO enable vectorized transposition for PacketSize==2 ??
|
1978
|
+
{
|
1979
|
+
for(; k<peeled_k; k+=PacketSize) {
|
1980
|
+
PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize> kernel;
|
1981
|
+
kernel.packet[0] = dm0.loadPacket(k);
|
1982
|
+
kernel.packet[1%PacketSize] = dm1.loadPacket(k);
|
1983
|
+
kernel.packet[2%PacketSize] = dm2.loadPacket(k);
|
1984
|
+
kernel.packet[3%PacketSize] = dm3.loadPacket(k);
|
1985
|
+
ptranspose(kernel);
|
1986
|
+
pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0]));
|
1987
|
+
pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize]));
|
1988
|
+
pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize]));
|
1989
|
+
pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize]));
|
1990
|
+
count+=4*PacketSize;
|
1991
|
+
}
|
1992
|
+
}
|
1993
|
+
for(; k<depth; k++)
|
1994
|
+
{
|
1995
|
+
blockB[count+0] = cj(dm0(k));
|
1996
|
+
blockB[count+1] = cj(dm1(k));
|
1997
|
+
blockB[count+2] = cj(dm2(k));
|
1998
|
+
blockB[count+3] = cj(dm3(k));
|
1999
|
+
count += 4;
|
2000
|
+
}
|
2001
|
+
// skip what we have after
|
2002
|
+
if(PanelMode) count += 4 * (stride-offset-depth);
|
2003
|
+
}
|
2004
|
+
}
|
2005
|
+
|
2006
|
+
// copy the remaining columns one at a time (nr==1)
|
2007
|
+
for(Index j2=packet_cols4; j2<cols; ++j2)
|
2008
|
+
{
|
2009
|
+
if(PanelMode) count += offset;
|
2010
|
+
const LinearMapper dm0 = rhs.getLinearMapper(0, j2);
|
2011
|
+
for(Index k=0; k<depth; k++)
|
2012
|
+
{
|
2013
|
+
blockB[count] = cj(dm0(k));
|
2014
|
+
count += 1;
|
2015
|
+
}
|
2016
|
+
if(PanelMode) count += (stride-offset-depth);
|
2017
|
+
}
|
2018
|
+
}
|
2019
|
+
|
2020
|
+
// this version is optimized for row major matrices
|
2021
|
+
template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
|
2022
|
+
struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
|
2023
|
+
{
|
2024
|
+
typedef typename packet_traits<Scalar>::type Packet;
|
2025
|
+
typedef typename DataMapper::LinearMapper LinearMapper;
|
2026
|
+
enum { PacketSize = packet_traits<Scalar>::size };
|
2027
|
+
EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
|
2028
|
+
};
|
2029
|
+
|
2030
|
+
template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
|
2031
|
+
EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
|
2032
|
+
::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
|
2033
|
+
{
|
2034
|
+
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
|
2035
|
+
EIGEN_UNUSED_VARIABLE(stride);
|
2036
|
+
EIGEN_UNUSED_VARIABLE(offset);
|
2037
|
+
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
2038
|
+
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
2039
|
+
Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
|
2040
|
+
Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
|
2041
|
+
Index count = 0;
|
2042
|
+
|
2043
|
+
// if(nr>=8)
|
2044
|
+
// {
|
2045
|
+
// for(Index j2=0; j2<packet_cols8; j2+=8)
|
2046
|
+
// {
|
2047
|
+
// // skip what we have before
|
2048
|
+
// if(PanelMode) count += 8 * offset;
|
2049
|
+
// for(Index k=0; k<depth; k++)
|
2050
|
+
// {
|
2051
|
+
// if (PacketSize==8) {
|
2052
|
+
// Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
|
2053
|
+
// pstoreu(blockB+count, cj.pconj(A));
|
2054
|
+
// } else if (PacketSize==4) {
|
2055
|
+
// Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
|
2056
|
+
// Packet B = ploadu<Packet>(&rhs[k*rhsStride + j2 + PacketSize]);
|
2057
|
+
// pstoreu(blockB+count, cj.pconj(A));
|
2058
|
+
// pstoreu(blockB+count+PacketSize, cj.pconj(B));
|
2059
|
+
// } else {
|
2060
|
+
// const Scalar* b0 = &rhs[k*rhsStride + j2];
|
2061
|
+
// blockB[count+0] = cj(b0[0]);
|
2062
|
+
// blockB[count+1] = cj(b0[1]);
|
2063
|
+
// blockB[count+2] = cj(b0[2]);
|
2064
|
+
// blockB[count+3] = cj(b0[3]);
|
2065
|
+
// blockB[count+4] = cj(b0[4]);
|
2066
|
+
// blockB[count+5] = cj(b0[5]);
|
2067
|
+
// blockB[count+6] = cj(b0[6]);
|
2068
|
+
// blockB[count+7] = cj(b0[7]);
|
2069
|
+
// }
|
2070
|
+
// count += 8;
|
2071
|
+
// }
|
2072
|
+
// // skip what we have after
|
2073
|
+
// if(PanelMode) count += 8 * (stride-offset-depth);
|
2074
|
+
// }
|
2075
|
+
// }
|
2076
|
+
if(nr>=4)
|
2077
|
+
{
|
2078
|
+
for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
|
2079
|
+
{
|
2080
|
+
// skip what we have before
|
2081
|
+
if(PanelMode) count += 4 * offset;
|
2082
|
+
for(Index k=0; k<depth; k++)
|
2083
|
+
{
|
2084
|
+
if (PacketSize==4) {
|
2085
|
+
Packet A = rhs.loadPacket(k, j2);
|
2086
|
+
pstoreu(blockB+count, cj.pconj(A));
|
2087
|
+
count += PacketSize;
|
2088
|
+
} else {
|
2089
|
+
const LinearMapper dm0 = rhs.getLinearMapper(k, j2);
|
2090
|
+
blockB[count+0] = cj(dm0(0));
|
2091
|
+
blockB[count+1] = cj(dm0(1));
|
2092
|
+
blockB[count+2] = cj(dm0(2));
|
2093
|
+
blockB[count+3] = cj(dm0(3));
|
2094
|
+
count += 4;
|
2095
|
+
}
|
2096
|
+
}
|
2097
|
+
// skip what we have after
|
2098
|
+
if(PanelMode) count += 4 * (stride-offset-depth);
|
2099
|
+
}
|
2100
|
+
}
|
2101
|
+
// copy the remaining columns one at a time (nr==1)
|
2102
|
+
for(Index j2=packet_cols4; j2<cols; ++j2)
|
2103
|
+
{
|
2104
|
+
if(PanelMode) count += offset;
|
2105
|
+
for(Index k=0; k<depth; k++)
|
2106
|
+
{
|
2107
|
+
blockB[count] = cj(rhs(k, j2));
|
2108
|
+
count += 1;
|
2109
|
+
}
|
2110
|
+
if(PanelMode) count += stride-offset-depth;
|
2111
|
+
}
|
2112
|
+
}
|
2113
|
+
|
2114
|
+
} // end namespace internal
|
2115
|
+
|
2116
|
+
/** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
|
2117
|
+
* \sa setCpuCacheSize */
|
2118
|
+
inline std::ptrdiff_t l1CacheSize()
|
2119
|
+
{
|
2120
|
+
std::ptrdiff_t l1, l2, l3;
|
2121
|
+
internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
|
2122
|
+
return l1;
|
2123
|
+
}
|
2124
|
+
|
2125
|
+
/** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
|
2126
|
+
* \sa setCpuCacheSize */
|
2127
|
+
inline std::ptrdiff_t l2CacheSize()
|
2128
|
+
{
|
2129
|
+
std::ptrdiff_t l1, l2, l3;
|
2130
|
+
internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
|
2131
|
+
return l2;
|
2132
|
+
}
|
2133
|
+
|
2134
|
+
/** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\
|
2135
|
+
rs.
|
2136
|
+
* \sa setCpuCacheSize */
|
2137
|
+
inline std::ptrdiff_t l3CacheSize()
|
2138
|
+
{
|
2139
|
+
std::ptrdiff_t l1, l2, l3;
|
2140
|
+
internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
|
2141
|
+
return l3;
|
2142
|
+
}
|
2143
|
+
|
2144
|
+
/** Set the cpu L1 and L2 cache sizes (in bytes).
|
2145
|
+
* These values are use to adjust the size of the blocks
|
2146
|
+
* for the algorithms working per blocks.
|
2147
|
+
*
|
2148
|
+
* \sa computeProductBlockingSizes */
|
2149
|
+
inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
|
2150
|
+
{
|
2151
|
+
internal::manage_caching_sizes(SetAction, &l1, &l2, &l3);
|
2152
|
+
}
|
2153
|
+
|
2154
|
+
} // end namespace Eigen
|
2155
|
+
|
2156
|
+
#endif // EIGEN_GENERAL_BLOCK_PANEL_H
|