tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,182 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_RANDOM_H
11
+ #define EIGEN_RANDOM_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+ template<typename Scalar> struct scalar_random_op {
18
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
19
+ inline const Scalar operator() () const { return random<Scalar>(); }
20
+ };
21
+
22
+ template<typename Scalar>
23
+ struct functor_traits<scalar_random_op<Scalar> >
24
+ { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
25
+
26
+ } // end namespace internal
27
+
28
+ /** \returns a random matrix expression
29
+ *
30
+ * Numbers are uniformly spread through their whole definition range for integer types,
31
+ * and in the [-1:1] range for floating point scalar types.
32
+ *
33
+ * The parameters \a rows and \a cols are the number of rows and of columns of
34
+ * the returned matrix. Must be compatible with this MatrixBase type.
35
+ *
36
+ * \not_reentrant
37
+ *
38
+ * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
39
+ * it is redundant to pass \a rows and \a cols as arguments, so Random() should be used
40
+ * instead.
41
+ *
42
+ *
43
+ * Example: \include MatrixBase_random_int_int.cpp
44
+ * Output: \verbinclude MatrixBase_random_int_int.out
45
+ *
46
+ * This expression has the "evaluate before nesting" flag so that it will be evaluated into
47
+ * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
48
+ * behavior with expressions involving random matrices.
49
+ *
50
+ * See DenseBase::NullaryExpr(Index, const CustomNullaryOp&) for an example using C++11 random generators.
51
+ *
52
+ * \sa DenseBase::setRandom(), DenseBase::Random(Index), DenseBase::Random()
53
+ */
54
+ template<typename Derived>
55
+ inline const typename DenseBase<Derived>::RandomReturnType
56
+ DenseBase<Derived>::Random(Index rows, Index cols)
57
+ {
58
+ return NullaryExpr(rows, cols, internal::scalar_random_op<Scalar>());
59
+ }
60
+
61
+ /** \returns a random vector expression
62
+ *
63
+ * Numbers are uniformly spread through their whole definition range for integer types,
64
+ * and in the [-1:1] range for floating point scalar types.
65
+ *
66
+ * The parameter \a size is the size of the returned vector.
67
+ * Must be compatible with this MatrixBase type.
68
+ *
69
+ * \only_for_vectors
70
+ * \not_reentrant
71
+ *
72
+ * This variant is meant to be used for dynamic-size vector types. For fixed-size types,
73
+ * it is redundant to pass \a size as argument, so Random() should be used
74
+ * instead.
75
+ *
76
+ * Example: \include MatrixBase_random_int.cpp
77
+ * Output: \verbinclude MatrixBase_random_int.out
78
+ *
79
+ * This expression has the "evaluate before nesting" flag so that it will be evaluated into
80
+ * a temporary vector whenever it is nested in a larger expression. This prevents unexpected
81
+ * behavior with expressions involving random matrices.
82
+ *
83
+ * \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random()
84
+ */
85
+ template<typename Derived>
86
+ inline const typename DenseBase<Derived>::RandomReturnType
87
+ DenseBase<Derived>::Random(Index size)
88
+ {
89
+ return NullaryExpr(size, internal::scalar_random_op<Scalar>());
90
+ }
91
+
92
+ /** \returns a fixed-size random matrix or vector expression
93
+ *
94
+ * Numbers are uniformly spread through their whole definition range for integer types,
95
+ * and in the [-1:1] range for floating point scalar types.
96
+ *
97
+ * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
98
+ * need to use the variants taking size arguments.
99
+ *
100
+ * Example: \include MatrixBase_random.cpp
101
+ * Output: \verbinclude MatrixBase_random.out
102
+ *
103
+ * This expression has the "evaluate before nesting" flag so that it will be evaluated into
104
+ * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
105
+ * behavior with expressions involving random matrices.
106
+ *
107
+ * \not_reentrant
108
+ *
109
+ * \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random(Index)
110
+ */
111
+ template<typename Derived>
112
+ inline const typename DenseBase<Derived>::RandomReturnType
113
+ DenseBase<Derived>::Random()
114
+ {
115
+ return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op<Scalar>());
116
+ }
117
+
118
+ /** Sets all coefficients in this expression to random values.
119
+ *
120
+ * Numbers are uniformly spread through their whole definition range for integer types,
121
+ * and in the [-1:1] range for floating point scalar types.
122
+ *
123
+ * \not_reentrant
124
+ *
125
+ * Example: \include MatrixBase_setRandom.cpp
126
+ * Output: \verbinclude MatrixBase_setRandom.out
127
+ *
128
+ * \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
129
+ */
130
+ template<typename Derived>
131
+ inline Derived& DenseBase<Derived>::setRandom()
132
+ {
133
+ return *this = Random(rows(), cols());
134
+ }
135
+
136
+ /** Resizes to the given \a newSize, and sets all coefficients in this expression to random values.
137
+ *
138
+ * Numbers are uniformly spread through their whole definition range for integer types,
139
+ * and in the [-1:1] range for floating point scalar types.
140
+ *
141
+ * \only_for_vectors
142
+ * \not_reentrant
143
+ *
144
+ * Example: \include Matrix_setRandom_int.cpp
145
+ * Output: \verbinclude Matrix_setRandom_int.out
146
+ *
147
+ * \sa DenseBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, DenseBase::Random()
148
+ */
149
+ template<typename Derived>
150
+ EIGEN_STRONG_INLINE Derived&
151
+ PlainObjectBase<Derived>::setRandom(Index newSize)
152
+ {
153
+ resize(newSize);
154
+ return setRandom();
155
+ }
156
+
157
+ /** Resizes to the given size, and sets all coefficients in this expression to random values.
158
+ *
159
+ * Numbers are uniformly spread through their whole definition range for integer types,
160
+ * and in the [-1:1] range for floating point scalar types.
161
+ *
162
+ * \not_reentrant
163
+ *
164
+ * \param rows the new number of rows
165
+ * \param cols the new number of columns
166
+ *
167
+ * Example: \include Matrix_setRandom_int_int.cpp
168
+ * Output: \verbinclude Matrix_setRandom_int_int.out
169
+ *
170
+ * \sa DenseBase::setRandom(), setRandom(Index), class CwiseNullaryOp, DenseBase::Random()
171
+ */
172
+ template<typename Derived>
173
+ EIGEN_STRONG_INLINE Derived&
174
+ PlainObjectBase<Derived>::setRandom(Index rows, Index cols)
175
+ {
176
+ resize(rows, cols);
177
+ return setRandom();
178
+ }
179
+
180
+ } // end namespace Eigen
181
+
182
+ #endif // EIGEN_RANDOM_H
@@ -0,0 +1,505 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_REDUX_H
12
+ #define EIGEN_REDUX_H
13
+
14
+ namespace Eigen {
15
+
16
+ namespace internal {
17
+
18
+ // TODO
19
+ // * implement other kind of vectorization
20
+ // * factorize code
21
+
22
+ /***************************************************************************
23
+ * Part 1 : the logic deciding a strategy for vectorization and unrolling
24
+ ***************************************************************************/
25
+
26
+ template<typename Func, typename Derived>
27
+ struct redux_traits
28
+ {
29
+ public:
30
+ typedef typename find_best_packet<typename Derived::Scalar,Derived::SizeAtCompileTime>::type PacketType;
31
+ enum {
32
+ PacketSize = unpacket_traits<PacketType>::size,
33
+ InnerMaxSize = int(Derived::IsRowMajor)
34
+ ? Derived::MaxColsAtCompileTime
35
+ : Derived::MaxRowsAtCompileTime
36
+ };
37
+
38
+ enum {
39
+ MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
40
+ && (functor_traits<Func>::PacketAccess),
41
+ MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit),
42
+ MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize
43
+ };
44
+
45
+ public:
46
+ enum {
47
+ Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
48
+ : int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
49
+ : int(DefaultTraversal)
50
+ };
51
+
52
+ public:
53
+ enum {
54
+ Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost
55
+ : Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
56
+ UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
57
+ };
58
+
59
+ public:
60
+ enum {
61
+ Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling
62
+ };
63
+
64
+ #ifdef EIGEN_DEBUG_ASSIGN
65
+ static void debug()
66
+ {
67
+ std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
68
+ std::cerr.setf(std::ios::hex, std::ios::basefield);
69
+ EIGEN_DEBUG_VAR(Derived::Flags)
70
+ std::cerr.unsetf(std::ios::hex);
71
+ EIGEN_DEBUG_VAR(InnerMaxSize)
72
+ EIGEN_DEBUG_VAR(PacketSize)
73
+ EIGEN_DEBUG_VAR(MightVectorize)
74
+ EIGEN_DEBUG_VAR(MayLinearVectorize)
75
+ EIGEN_DEBUG_VAR(MaySliceVectorize)
76
+ EIGEN_DEBUG_VAR(Traversal)
77
+ EIGEN_DEBUG_VAR(UnrollingLimit)
78
+ EIGEN_DEBUG_VAR(Unrolling)
79
+ std::cerr << std::endl;
80
+ }
81
+ #endif
82
+ };
83
+
84
+ /***************************************************************************
85
+ * Part 2 : unrollers
86
+ ***************************************************************************/
87
+
88
+ /*** no vectorization ***/
89
+
90
+ template<typename Func, typename Derived, int Start, int Length>
91
+ struct redux_novec_unroller
92
+ {
93
+ enum {
94
+ HalfLength = Length/2
95
+ };
96
+
97
+ typedef typename Derived::Scalar Scalar;
98
+
99
+ EIGEN_DEVICE_FUNC
100
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
101
+ {
102
+ return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
103
+ redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
104
+ }
105
+ };
106
+
107
+ template<typename Func, typename Derived, int Start>
108
+ struct redux_novec_unroller<Func, Derived, Start, 1>
109
+ {
110
+ enum {
111
+ outer = Start / Derived::InnerSizeAtCompileTime,
112
+ inner = Start % Derived::InnerSizeAtCompileTime
113
+ };
114
+
115
+ typedef typename Derived::Scalar Scalar;
116
+
117
+ EIGEN_DEVICE_FUNC
118
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
119
+ {
120
+ return mat.coeffByOuterInner(outer, inner);
121
+ }
122
+ };
123
+
124
+ // This is actually dead code and will never be called. It is required
125
+ // to prevent false warnings regarding failed inlining though
126
+ // for 0 length run() will never be called at all.
127
+ template<typename Func, typename Derived, int Start>
128
+ struct redux_novec_unroller<Func, Derived, Start, 0>
129
+ {
130
+ typedef typename Derived::Scalar Scalar;
131
+ EIGEN_DEVICE_FUNC
132
+ static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
133
+ };
134
+
135
+ /*** vectorization ***/
136
+
137
+ template<typename Func, typename Derived, int Start, int Length>
138
+ struct redux_vec_unroller
139
+ {
140
+ enum {
141
+ PacketSize = redux_traits<Func, Derived>::PacketSize,
142
+ HalfLength = Length/2
143
+ };
144
+
145
+ typedef typename Derived::Scalar Scalar;
146
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
147
+
148
+ static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
149
+ {
150
+ return func.packetOp(
151
+ redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
152
+ redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
153
+ }
154
+ };
155
+
156
+ template<typename Func, typename Derived, int Start>
157
+ struct redux_vec_unroller<Func, Derived, Start, 1>
158
+ {
159
+ enum {
160
+ index = Start * redux_traits<Func, Derived>::PacketSize,
161
+ outer = index / int(Derived::InnerSizeAtCompileTime),
162
+ inner = index % int(Derived::InnerSizeAtCompileTime),
163
+ alignment = Derived::Alignment
164
+ };
165
+
166
+ typedef typename Derived::Scalar Scalar;
167
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
168
+
169
+ static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
170
+ {
171
+ return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner);
172
+ }
173
+ };
174
+
175
+ /***************************************************************************
176
+ * Part 3 : implementation of all cases
177
+ ***************************************************************************/
178
+
179
+ template<typename Func, typename Derived,
180
+ int Traversal = redux_traits<Func, Derived>::Traversal,
181
+ int Unrolling = redux_traits<Func, Derived>::Unrolling
182
+ >
183
+ struct redux_impl;
184
+
185
+ template<typename Func, typename Derived>
186
+ struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
187
+ {
188
+ typedef typename Derived::Scalar Scalar;
189
+ EIGEN_DEVICE_FUNC
190
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
191
+ {
192
+ eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
193
+ Scalar res;
194
+ res = mat.coeffByOuterInner(0, 0);
195
+ for(Index i = 1; i < mat.innerSize(); ++i)
196
+ res = func(res, mat.coeffByOuterInner(0, i));
197
+ for(Index i = 1; i < mat.outerSize(); ++i)
198
+ for(Index j = 0; j < mat.innerSize(); ++j)
199
+ res = func(res, mat.coeffByOuterInner(i, j));
200
+ return res;
201
+ }
202
+ };
203
+
204
+ template<typename Func, typename Derived>
205
+ struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
206
+ : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
207
+ {};
208
+
209
+ template<typename Func, typename Derived>
210
+ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
211
+ {
212
+ typedef typename Derived::Scalar Scalar;
213
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
214
+
215
+ static Scalar run(const Derived &mat, const Func& func)
216
+ {
217
+ const Index size = mat.size();
218
+
219
+ const Index packetSize = redux_traits<Func, Derived>::PacketSize;
220
+ const int packetAlignment = unpacket_traits<PacketScalar>::alignment;
221
+ enum {
222
+ alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
223
+ alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment)
224
+ };
225
+ const Index alignedStart = internal::first_default_aligned(mat.nestedExpression());
226
+ const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
227
+ const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
228
+ const Index alignedEnd2 = alignedStart + alignedSize2;
229
+ const Index alignedEnd = alignedStart + alignedSize;
230
+ Scalar res;
231
+ if(alignedSize)
232
+ {
233
+ PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart);
234
+ if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
235
+ {
236
+ PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize);
237
+ for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
238
+ {
239
+ packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index));
240
+ packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize));
241
+ }
242
+
243
+ packet_res0 = func.packetOp(packet_res0,packet_res1);
244
+ if(alignedEnd>alignedEnd2)
245
+ packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2));
246
+ }
247
+ res = func.predux(packet_res0);
248
+
249
+ for(Index index = 0; index < alignedStart; ++index)
250
+ res = func(res,mat.coeff(index));
251
+
252
+ for(Index index = alignedEnd; index < size; ++index)
253
+ res = func(res,mat.coeff(index));
254
+ }
255
+ else // too small to vectorize anything.
256
+ // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
257
+ {
258
+ res = mat.coeff(0);
259
+ for(Index index = 1; index < size; ++index)
260
+ res = func(res,mat.coeff(index));
261
+ }
262
+
263
+ return res;
264
+ }
265
+ };
266
+
267
+ // NOTE: for SliceVectorizedTraversal we simply bypass unrolling
268
+ template<typename Func, typename Derived, int Unrolling>
269
+ struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
270
+ {
271
+ typedef typename Derived::Scalar Scalar;
272
+ typedef typename redux_traits<Func, Derived>::PacketType PacketType;
273
+
274
+ EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func)
275
+ {
276
+ eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
277
+ const Index innerSize = mat.innerSize();
278
+ const Index outerSize = mat.outerSize();
279
+ enum {
280
+ packetSize = redux_traits<Func, Derived>::PacketSize
281
+ };
282
+ const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
283
+ Scalar res;
284
+ if(packetedInnerSize)
285
+ {
286
+ PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0);
287
+ for(Index j=0; j<outerSize; ++j)
288
+ for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
289
+ packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i));
290
+
291
+ res = func.predux(packet_res);
292
+ for(Index j=0; j<outerSize; ++j)
293
+ for(Index i=packetedInnerSize; i<innerSize; ++i)
294
+ res = func(res, mat.coeffByOuterInner(j,i));
295
+ }
296
+ else // too small to vectorize anything.
297
+ // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
298
+ {
299
+ res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
300
+ }
301
+
302
+ return res;
303
+ }
304
+ };
305
+
306
+ template<typename Func, typename Derived>
307
+ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
308
+ {
309
+ typedef typename Derived::Scalar Scalar;
310
+
311
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
312
+ enum {
313
+ PacketSize = redux_traits<Func, Derived>::PacketSize,
314
+ Size = Derived::SizeAtCompileTime,
315
+ VectorizedSize = (Size / PacketSize) * PacketSize
316
+ };
317
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
318
+ {
319
+ eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
320
+ if (VectorizedSize > 0) {
321
+ Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
322
+ if (VectorizedSize != Size)
323
+ res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
324
+ return res;
325
+ }
326
+ else {
327
+ return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func);
328
+ }
329
+ }
330
+ };
331
+
332
+ // evaluator adaptor
333
+ template<typename _XprType>
334
+ class redux_evaluator
335
+ {
336
+ public:
337
+ typedef _XprType XprType;
338
+ EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
339
+
340
+ typedef typename XprType::Scalar Scalar;
341
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
342
+ typedef typename XprType::PacketScalar PacketScalar;
343
+ typedef typename XprType::PacketReturnType PacketReturnType;
344
+
345
+ enum {
346
+ MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
347
+ MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
348
+ // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
349
+ Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
350
+ IsRowMajor = XprType::IsRowMajor,
351
+ SizeAtCompileTime = XprType::SizeAtCompileTime,
352
+ InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
353
+ CoeffReadCost = evaluator<XprType>::CoeffReadCost,
354
+ Alignment = evaluator<XprType>::Alignment
355
+ };
356
+
357
+ EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
358
+ EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
359
+ EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); }
360
+ EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); }
361
+ EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); }
362
+
363
+ EIGEN_DEVICE_FUNC
364
+ CoeffReturnType coeff(Index row, Index col) const
365
+ { return m_evaluator.coeff(row, col); }
366
+
367
+ EIGEN_DEVICE_FUNC
368
+ CoeffReturnType coeff(Index index) const
369
+ { return m_evaluator.coeff(index); }
370
+
371
+ template<int LoadMode, typename PacketType>
372
+ PacketType packet(Index row, Index col) const
373
+ { return m_evaluator.template packet<LoadMode,PacketType>(row, col); }
374
+
375
+ template<int LoadMode, typename PacketType>
376
+ PacketType packet(Index index) const
377
+ { return m_evaluator.template packet<LoadMode,PacketType>(index); }
378
+
379
+ EIGEN_DEVICE_FUNC
380
+ CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
381
+ { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
382
+
383
+ template<int LoadMode, typename PacketType>
384
+ PacketType packetByOuterInner(Index outer, Index inner) const
385
+ { return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
386
+
387
+ const XprType & nestedExpression() const { return m_xpr; }
388
+
389
+ protected:
390
+ internal::evaluator<XprType> m_evaluator;
391
+ const XprType &m_xpr;
392
+ };
393
+
394
+ } // end namespace internal
395
+
396
+ /***************************************************************************
397
+ * Part 4 : public API
398
+ ***************************************************************************/
399
+
400
+
401
+ /** \returns the result of a full redux operation on the whole matrix or vector using \a func
402
+ *
403
+ * The template parameter \a BinaryOp is the type of the functor \a func which must be
404
+ * an associative operator. Both current C++98 and C++11 functor styles are handled.
405
+ *
406
+ * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
407
+ */
408
+ template<typename Derived>
409
+ template<typename Func>
410
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
411
+ DenseBase<Derived>::redux(const Func& func) const
412
+ {
413
+ eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
414
+
415
+ typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
416
+ ThisEvaluator thisEval(derived());
417
+
418
+ return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func);
419
+ }
420
+
421
+ /** \returns the minimum of all coefficients of \c *this.
422
+ * \warning the result is undefined if \c *this contains NaN.
423
+ */
424
+ template<typename Derived>
425
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
426
+ DenseBase<Derived>::minCoeff() const
427
+ {
428
+ return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>());
429
+ }
430
+
431
+ /** \returns the maximum of all coefficients of \c *this.
432
+ * \warning the result is undefined if \c *this contains NaN.
433
+ */
434
+ template<typename Derived>
435
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
436
+ DenseBase<Derived>::maxCoeff() const
437
+ {
438
+ return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>());
439
+ }
440
+
441
+ /** \returns the sum of all coefficients of \c *this
442
+ *
443
+ * If \c *this is empty, then the value 0 is returned.
444
+ *
445
+ * \sa trace(), prod(), mean()
446
+ */
447
+ template<typename Derived>
448
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
449
+ DenseBase<Derived>::sum() const
450
+ {
451
+ if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
452
+ return Scalar(0);
453
+ return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>());
454
+ }
455
+
456
+ /** \returns the mean of all coefficients of *this
457
+ *
458
+ * \sa trace(), prod(), sum()
459
+ */
460
+ template<typename Derived>
461
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
462
+ DenseBase<Derived>::mean() const
463
+ {
464
+ #ifdef __INTEL_COMPILER
465
+ #pragma warning push
466
+ #pragma warning ( disable : 2259 )
467
+ #endif
468
+ return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size());
469
+ #ifdef __INTEL_COMPILER
470
+ #pragma warning pop
471
+ #endif
472
+ }
473
+
474
+ /** \returns the product of all coefficients of *this
475
+ *
476
+ * Example: \include MatrixBase_prod.cpp
477
+ * Output: \verbinclude MatrixBase_prod.out
478
+ *
479
+ * \sa sum(), mean(), trace()
480
+ */
481
+ template<typename Derived>
482
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
483
+ DenseBase<Derived>::prod() const
484
+ {
485
+ if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
486
+ return Scalar(1);
487
+ return derived().redux(Eigen::internal::scalar_product_op<Scalar>());
488
+ }
489
+
490
+ /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
491
+ *
492
+ * \c *this can be any matrix, not necessarily square.
493
+ *
494
+ * \sa diagonal(), sum()
495
+ */
496
+ template<typename Derived>
497
+ EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
498
+ MatrixBase<Derived>::trace() const
499
+ {
500
+ return derived().diagonal().sum();
501
+ }
502
+
503
+ } // end namespace Eigen
504
+
505
+ #endif // EIGEN_REDUX_H