tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,182 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_RANDOM_H
|
11
|
+
#define EIGEN_RANDOM_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
|
17
|
+
template<typename Scalar> struct scalar_random_op {
|
18
|
+
EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
|
19
|
+
inline const Scalar operator() () const { return random<Scalar>(); }
|
20
|
+
};
|
21
|
+
|
22
|
+
template<typename Scalar>
|
23
|
+
struct functor_traits<scalar_random_op<Scalar> >
|
24
|
+
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
|
25
|
+
|
26
|
+
} // end namespace internal
|
27
|
+
|
28
|
+
/** \returns a random matrix expression
|
29
|
+
*
|
30
|
+
* Numbers are uniformly spread through their whole definition range for integer types,
|
31
|
+
* and in the [-1:1] range for floating point scalar types.
|
32
|
+
*
|
33
|
+
* The parameters \a rows and \a cols are the number of rows and of columns of
|
34
|
+
* the returned matrix. Must be compatible with this MatrixBase type.
|
35
|
+
*
|
36
|
+
* \not_reentrant
|
37
|
+
*
|
38
|
+
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
39
|
+
* it is redundant to pass \a rows and \a cols as arguments, so Random() should be used
|
40
|
+
* instead.
|
41
|
+
*
|
42
|
+
*
|
43
|
+
* Example: \include MatrixBase_random_int_int.cpp
|
44
|
+
* Output: \verbinclude MatrixBase_random_int_int.out
|
45
|
+
*
|
46
|
+
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
|
47
|
+
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
|
48
|
+
* behavior with expressions involving random matrices.
|
49
|
+
*
|
50
|
+
* See DenseBase::NullaryExpr(Index, const CustomNullaryOp&) for an example using C++11 random generators.
|
51
|
+
*
|
52
|
+
* \sa DenseBase::setRandom(), DenseBase::Random(Index), DenseBase::Random()
|
53
|
+
*/
|
54
|
+
template<typename Derived>
|
55
|
+
inline const typename DenseBase<Derived>::RandomReturnType
|
56
|
+
DenseBase<Derived>::Random(Index rows, Index cols)
|
57
|
+
{
|
58
|
+
return NullaryExpr(rows, cols, internal::scalar_random_op<Scalar>());
|
59
|
+
}
|
60
|
+
|
61
|
+
/** \returns a random vector expression
|
62
|
+
*
|
63
|
+
* Numbers are uniformly spread through their whole definition range for integer types,
|
64
|
+
* and in the [-1:1] range for floating point scalar types.
|
65
|
+
*
|
66
|
+
* The parameter \a size is the size of the returned vector.
|
67
|
+
* Must be compatible with this MatrixBase type.
|
68
|
+
*
|
69
|
+
* \only_for_vectors
|
70
|
+
* \not_reentrant
|
71
|
+
*
|
72
|
+
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
73
|
+
* it is redundant to pass \a size as argument, so Random() should be used
|
74
|
+
* instead.
|
75
|
+
*
|
76
|
+
* Example: \include MatrixBase_random_int.cpp
|
77
|
+
* Output: \verbinclude MatrixBase_random_int.out
|
78
|
+
*
|
79
|
+
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
|
80
|
+
* a temporary vector whenever it is nested in a larger expression. This prevents unexpected
|
81
|
+
* behavior with expressions involving random matrices.
|
82
|
+
*
|
83
|
+
* \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random()
|
84
|
+
*/
|
85
|
+
template<typename Derived>
|
86
|
+
inline const typename DenseBase<Derived>::RandomReturnType
|
87
|
+
DenseBase<Derived>::Random(Index size)
|
88
|
+
{
|
89
|
+
return NullaryExpr(size, internal::scalar_random_op<Scalar>());
|
90
|
+
}
|
91
|
+
|
92
|
+
/** \returns a fixed-size random matrix or vector expression
|
93
|
+
*
|
94
|
+
* Numbers are uniformly spread through their whole definition range for integer types,
|
95
|
+
* and in the [-1:1] range for floating point scalar types.
|
96
|
+
*
|
97
|
+
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
98
|
+
* need to use the variants taking size arguments.
|
99
|
+
*
|
100
|
+
* Example: \include MatrixBase_random.cpp
|
101
|
+
* Output: \verbinclude MatrixBase_random.out
|
102
|
+
*
|
103
|
+
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
|
104
|
+
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
|
105
|
+
* behavior with expressions involving random matrices.
|
106
|
+
*
|
107
|
+
* \not_reentrant
|
108
|
+
*
|
109
|
+
* \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random(Index)
|
110
|
+
*/
|
111
|
+
template<typename Derived>
|
112
|
+
inline const typename DenseBase<Derived>::RandomReturnType
|
113
|
+
DenseBase<Derived>::Random()
|
114
|
+
{
|
115
|
+
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op<Scalar>());
|
116
|
+
}
|
117
|
+
|
118
|
+
/** Sets all coefficients in this expression to random values.
|
119
|
+
*
|
120
|
+
* Numbers are uniformly spread through their whole definition range for integer types,
|
121
|
+
* and in the [-1:1] range for floating point scalar types.
|
122
|
+
*
|
123
|
+
* \not_reentrant
|
124
|
+
*
|
125
|
+
* Example: \include MatrixBase_setRandom.cpp
|
126
|
+
* Output: \verbinclude MatrixBase_setRandom.out
|
127
|
+
*
|
128
|
+
* \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
|
129
|
+
*/
|
130
|
+
template<typename Derived>
|
131
|
+
inline Derived& DenseBase<Derived>::setRandom()
|
132
|
+
{
|
133
|
+
return *this = Random(rows(), cols());
|
134
|
+
}
|
135
|
+
|
136
|
+
/** Resizes to the given \a newSize, and sets all coefficients in this expression to random values.
|
137
|
+
*
|
138
|
+
* Numbers are uniformly spread through their whole definition range for integer types,
|
139
|
+
* and in the [-1:1] range for floating point scalar types.
|
140
|
+
*
|
141
|
+
* \only_for_vectors
|
142
|
+
* \not_reentrant
|
143
|
+
*
|
144
|
+
* Example: \include Matrix_setRandom_int.cpp
|
145
|
+
* Output: \verbinclude Matrix_setRandom_int.out
|
146
|
+
*
|
147
|
+
* \sa DenseBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, DenseBase::Random()
|
148
|
+
*/
|
149
|
+
template<typename Derived>
|
150
|
+
EIGEN_STRONG_INLINE Derived&
|
151
|
+
PlainObjectBase<Derived>::setRandom(Index newSize)
|
152
|
+
{
|
153
|
+
resize(newSize);
|
154
|
+
return setRandom();
|
155
|
+
}
|
156
|
+
|
157
|
+
/** Resizes to the given size, and sets all coefficients in this expression to random values.
|
158
|
+
*
|
159
|
+
* Numbers are uniformly spread through their whole definition range for integer types,
|
160
|
+
* and in the [-1:1] range for floating point scalar types.
|
161
|
+
*
|
162
|
+
* \not_reentrant
|
163
|
+
*
|
164
|
+
* \param rows the new number of rows
|
165
|
+
* \param cols the new number of columns
|
166
|
+
*
|
167
|
+
* Example: \include Matrix_setRandom_int_int.cpp
|
168
|
+
* Output: \verbinclude Matrix_setRandom_int_int.out
|
169
|
+
*
|
170
|
+
* \sa DenseBase::setRandom(), setRandom(Index), class CwiseNullaryOp, DenseBase::Random()
|
171
|
+
*/
|
172
|
+
template<typename Derived>
|
173
|
+
EIGEN_STRONG_INLINE Derived&
|
174
|
+
PlainObjectBase<Derived>::setRandom(Index rows, Index cols)
|
175
|
+
{
|
176
|
+
resize(rows, cols);
|
177
|
+
return setRandom();
|
178
|
+
}
|
179
|
+
|
180
|
+
} // end namespace Eigen
|
181
|
+
|
182
|
+
#endif // EIGEN_RANDOM_H
|
@@ -0,0 +1,505 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_REDUX_H
|
12
|
+
#define EIGEN_REDUX_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
|
18
|
+
// TODO
|
19
|
+
// * implement other kind of vectorization
|
20
|
+
// * factorize code
|
21
|
+
|
22
|
+
/***************************************************************************
|
23
|
+
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
24
|
+
***************************************************************************/
|
25
|
+
|
26
|
+
template<typename Func, typename Derived>
|
27
|
+
struct redux_traits
|
28
|
+
{
|
29
|
+
public:
|
30
|
+
typedef typename find_best_packet<typename Derived::Scalar,Derived::SizeAtCompileTime>::type PacketType;
|
31
|
+
enum {
|
32
|
+
PacketSize = unpacket_traits<PacketType>::size,
|
33
|
+
InnerMaxSize = int(Derived::IsRowMajor)
|
34
|
+
? Derived::MaxColsAtCompileTime
|
35
|
+
: Derived::MaxRowsAtCompileTime
|
36
|
+
};
|
37
|
+
|
38
|
+
enum {
|
39
|
+
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
|
40
|
+
&& (functor_traits<Func>::PacketAccess),
|
41
|
+
MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit),
|
42
|
+
MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize
|
43
|
+
};
|
44
|
+
|
45
|
+
public:
|
46
|
+
enum {
|
47
|
+
Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
|
48
|
+
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
|
49
|
+
: int(DefaultTraversal)
|
50
|
+
};
|
51
|
+
|
52
|
+
public:
|
53
|
+
enum {
|
54
|
+
Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost
|
55
|
+
: Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
|
56
|
+
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
|
57
|
+
};
|
58
|
+
|
59
|
+
public:
|
60
|
+
enum {
|
61
|
+
Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling
|
62
|
+
};
|
63
|
+
|
64
|
+
#ifdef EIGEN_DEBUG_ASSIGN
|
65
|
+
static void debug()
|
66
|
+
{
|
67
|
+
std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
|
68
|
+
std::cerr.setf(std::ios::hex, std::ios::basefield);
|
69
|
+
EIGEN_DEBUG_VAR(Derived::Flags)
|
70
|
+
std::cerr.unsetf(std::ios::hex);
|
71
|
+
EIGEN_DEBUG_VAR(InnerMaxSize)
|
72
|
+
EIGEN_DEBUG_VAR(PacketSize)
|
73
|
+
EIGEN_DEBUG_VAR(MightVectorize)
|
74
|
+
EIGEN_DEBUG_VAR(MayLinearVectorize)
|
75
|
+
EIGEN_DEBUG_VAR(MaySliceVectorize)
|
76
|
+
EIGEN_DEBUG_VAR(Traversal)
|
77
|
+
EIGEN_DEBUG_VAR(UnrollingLimit)
|
78
|
+
EIGEN_DEBUG_VAR(Unrolling)
|
79
|
+
std::cerr << std::endl;
|
80
|
+
}
|
81
|
+
#endif
|
82
|
+
};
|
83
|
+
|
84
|
+
/***************************************************************************
|
85
|
+
* Part 2 : unrollers
|
86
|
+
***************************************************************************/
|
87
|
+
|
88
|
+
/*** no vectorization ***/
|
89
|
+
|
90
|
+
template<typename Func, typename Derived, int Start, int Length>
|
91
|
+
struct redux_novec_unroller
|
92
|
+
{
|
93
|
+
enum {
|
94
|
+
HalfLength = Length/2
|
95
|
+
};
|
96
|
+
|
97
|
+
typedef typename Derived::Scalar Scalar;
|
98
|
+
|
99
|
+
EIGEN_DEVICE_FUNC
|
100
|
+
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
101
|
+
{
|
102
|
+
return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
103
|
+
redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
|
104
|
+
}
|
105
|
+
};
|
106
|
+
|
107
|
+
template<typename Func, typename Derived, int Start>
|
108
|
+
struct redux_novec_unroller<Func, Derived, Start, 1>
|
109
|
+
{
|
110
|
+
enum {
|
111
|
+
outer = Start / Derived::InnerSizeAtCompileTime,
|
112
|
+
inner = Start % Derived::InnerSizeAtCompileTime
|
113
|
+
};
|
114
|
+
|
115
|
+
typedef typename Derived::Scalar Scalar;
|
116
|
+
|
117
|
+
EIGEN_DEVICE_FUNC
|
118
|
+
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
|
119
|
+
{
|
120
|
+
return mat.coeffByOuterInner(outer, inner);
|
121
|
+
}
|
122
|
+
};
|
123
|
+
|
124
|
+
// This is actually dead code and will never be called. It is required
|
125
|
+
// to prevent false warnings regarding failed inlining though
|
126
|
+
// for 0 length run() will never be called at all.
|
127
|
+
template<typename Func, typename Derived, int Start>
|
128
|
+
struct redux_novec_unroller<Func, Derived, Start, 0>
|
129
|
+
{
|
130
|
+
typedef typename Derived::Scalar Scalar;
|
131
|
+
EIGEN_DEVICE_FUNC
|
132
|
+
static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
|
133
|
+
};
|
134
|
+
|
135
|
+
/*** vectorization ***/
|
136
|
+
|
137
|
+
template<typename Func, typename Derived, int Start, int Length>
|
138
|
+
struct redux_vec_unroller
|
139
|
+
{
|
140
|
+
enum {
|
141
|
+
PacketSize = redux_traits<Func, Derived>::PacketSize,
|
142
|
+
HalfLength = Length/2
|
143
|
+
};
|
144
|
+
|
145
|
+
typedef typename Derived::Scalar Scalar;
|
146
|
+
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
147
|
+
|
148
|
+
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
|
149
|
+
{
|
150
|
+
return func.packetOp(
|
151
|
+
redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
152
|
+
redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
|
153
|
+
}
|
154
|
+
};
|
155
|
+
|
156
|
+
template<typename Func, typename Derived, int Start>
|
157
|
+
struct redux_vec_unroller<Func, Derived, Start, 1>
|
158
|
+
{
|
159
|
+
enum {
|
160
|
+
index = Start * redux_traits<Func, Derived>::PacketSize,
|
161
|
+
outer = index / int(Derived::InnerSizeAtCompileTime),
|
162
|
+
inner = index % int(Derived::InnerSizeAtCompileTime),
|
163
|
+
alignment = Derived::Alignment
|
164
|
+
};
|
165
|
+
|
166
|
+
typedef typename Derived::Scalar Scalar;
|
167
|
+
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
168
|
+
|
169
|
+
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
|
170
|
+
{
|
171
|
+
return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner);
|
172
|
+
}
|
173
|
+
};
|
174
|
+
|
175
|
+
/***************************************************************************
|
176
|
+
* Part 3 : implementation of all cases
|
177
|
+
***************************************************************************/
|
178
|
+
|
179
|
+
template<typename Func, typename Derived,
|
180
|
+
int Traversal = redux_traits<Func, Derived>::Traversal,
|
181
|
+
int Unrolling = redux_traits<Func, Derived>::Unrolling
|
182
|
+
>
|
183
|
+
struct redux_impl;
|
184
|
+
|
185
|
+
template<typename Func, typename Derived>
|
186
|
+
struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
|
187
|
+
{
|
188
|
+
typedef typename Derived::Scalar Scalar;
|
189
|
+
EIGEN_DEVICE_FUNC
|
190
|
+
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
191
|
+
{
|
192
|
+
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
193
|
+
Scalar res;
|
194
|
+
res = mat.coeffByOuterInner(0, 0);
|
195
|
+
for(Index i = 1; i < mat.innerSize(); ++i)
|
196
|
+
res = func(res, mat.coeffByOuterInner(0, i));
|
197
|
+
for(Index i = 1; i < mat.outerSize(); ++i)
|
198
|
+
for(Index j = 0; j < mat.innerSize(); ++j)
|
199
|
+
res = func(res, mat.coeffByOuterInner(i, j));
|
200
|
+
return res;
|
201
|
+
}
|
202
|
+
};
|
203
|
+
|
204
|
+
template<typename Func, typename Derived>
|
205
|
+
struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
|
206
|
+
: public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
|
207
|
+
{};
|
208
|
+
|
209
|
+
template<typename Func, typename Derived>
|
210
|
+
struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
211
|
+
{
|
212
|
+
typedef typename Derived::Scalar Scalar;
|
213
|
+
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
214
|
+
|
215
|
+
static Scalar run(const Derived &mat, const Func& func)
|
216
|
+
{
|
217
|
+
const Index size = mat.size();
|
218
|
+
|
219
|
+
const Index packetSize = redux_traits<Func, Derived>::PacketSize;
|
220
|
+
const int packetAlignment = unpacket_traits<PacketScalar>::alignment;
|
221
|
+
enum {
|
222
|
+
alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
|
223
|
+
alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment)
|
224
|
+
};
|
225
|
+
const Index alignedStart = internal::first_default_aligned(mat.nestedExpression());
|
226
|
+
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
|
227
|
+
const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
|
228
|
+
const Index alignedEnd2 = alignedStart + alignedSize2;
|
229
|
+
const Index alignedEnd = alignedStart + alignedSize;
|
230
|
+
Scalar res;
|
231
|
+
if(alignedSize)
|
232
|
+
{
|
233
|
+
PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart);
|
234
|
+
if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
|
235
|
+
{
|
236
|
+
PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize);
|
237
|
+
for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
|
238
|
+
{
|
239
|
+
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index));
|
240
|
+
packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize));
|
241
|
+
}
|
242
|
+
|
243
|
+
packet_res0 = func.packetOp(packet_res0,packet_res1);
|
244
|
+
if(alignedEnd>alignedEnd2)
|
245
|
+
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2));
|
246
|
+
}
|
247
|
+
res = func.predux(packet_res0);
|
248
|
+
|
249
|
+
for(Index index = 0; index < alignedStart; ++index)
|
250
|
+
res = func(res,mat.coeff(index));
|
251
|
+
|
252
|
+
for(Index index = alignedEnd; index < size; ++index)
|
253
|
+
res = func(res,mat.coeff(index));
|
254
|
+
}
|
255
|
+
else // too small to vectorize anything.
|
256
|
+
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
257
|
+
{
|
258
|
+
res = mat.coeff(0);
|
259
|
+
for(Index index = 1; index < size; ++index)
|
260
|
+
res = func(res,mat.coeff(index));
|
261
|
+
}
|
262
|
+
|
263
|
+
return res;
|
264
|
+
}
|
265
|
+
};
|
266
|
+
|
267
|
+
// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
|
268
|
+
template<typename Func, typename Derived, int Unrolling>
|
269
|
+
struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
|
270
|
+
{
|
271
|
+
typedef typename Derived::Scalar Scalar;
|
272
|
+
typedef typename redux_traits<Func, Derived>::PacketType PacketType;
|
273
|
+
|
274
|
+
EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func)
|
275
|
+
{
|
276
|
+
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
277
|
+
const Index innerSize = mat.innerSize();
|
278
|
+
const Index outerSize = mat.outerSize();
|
279
|
+
enum {
|
280
|
+
packetSize = redux_traits<Func, Derived>::PacketSize
|
281
|
+
};
|
282
|
+
const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
|
283
|
+
Scalar res;
|
284
|
+
if(packetedInnerSize)
|
285
|
+
{
|
286
|
+
PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0);
|
287
|
+
for(Index j=0; j<outerSize; ++j)
|
288
|
+
for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
|
289
|
+
packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i));
|
290
|
+
|
291
|
+
res = func.predux(packet_res);
|
292
|
+
for(Index j=0; j<outerSize; ++j)
|
293
|
+
for(Index i=packetedInnerSize; i<innerSize; ++i)
|
294
|
+
res = func(res, mat.coeffByOuterInner(j,i));
|
295
|
+
}
|
296
|
+
else // too small to vectorize anything.
|
297
|
+
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
298
|
+
{
|
299
|
+
res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
|
300
|
+
}
|
301
|
+
|
302
|
+
return res;
|
303
|
+
}
|
304
|
+
};
|
305
|
+
|
306
|
+
template<typename Func, typename Derived>
|
307
|
+
struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
|
308
|
+
{
|
309
|
+
typedef typename Derived::Scalar Scalar;
|
310
|
+
|
311
|
+
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
312
|
+
enum {
|
313
|
+
PacketSize = redux_traits<Func, Derived>::PacketSize,
|
314
|
+
Size = Derived::SizeAtCompileTime,
|
315
|
+
VectorizedSize = (Size / PacketSize) * PacketSize
|
316
|
+
};
|
317
|
+
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
318
|
+
{
|
319
|
+
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
320
|
+
if (VectorizedSize > 0) {
|
321
|
+
Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
|
322
|
+
if (VectorizedSize != Size)
|
323
|
+
res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
|
324
|
+
return res;
|
325
|
+
}
|
326
|
+
else {
|
327
|
+
return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func);
|
328
|
+
}
|
329
|
+
}
|
330
|
+
};
|
331
|
+
|
332
|
+
// evaluator adaptor
|
333
|
+
template<typename _XprType>
|
334
|
+
class redux_evaluator
|
335
|
+
{
|
336
|
+
public:
|
337
|
+
typedef _XprType XprType;
|
338
|
+
EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
|
339
|
+
|
340
|
+
typedef typename XprType::Scalar Scalar;
|
341
|
+
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
342
|
+
typedef typename XprType::PacketScalar PacketScalar;
|
343
|
+
typedef typename XprType::PacketReturnType PacketReturnType;
|
344
|
+
|
345
|
+
enum {
|
346
|
+
MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
|
347
|
+
MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
|
348
|
+
// TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
|
349
|
+
Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
|
350
|
+
IsRowMajor = XprType::IsRowMajor,
|
351
|
+
SizeAtCompileTime = XprType::SizeAtCompileTime,
|
352
|
+
InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
|
353
|
+
CoeffReadCost = evaluator<XprType>::CoeffReadCost,
|
354
|
+
Alignment = evaluator<XprType>::Alignment
|
355
|
+
};
|
356
|
+
|
357
|
+
EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
|
358
|
+
EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
|
359
|
+
EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); }
|
360
|
+
EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); }
|
361
|
+
EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); }
|
362
|
+
|
363
|
+
EIGEN_DEVICE_FUNC
|
364
|
+
CoeffReturnType coeff(Index row, Index col) const
|
365
|
+
{ return m_evaluator.coeff(row, col); }
|
366
|
+
|
367
|
+
EIGEN_DEVICE_FUNC
|
368
|
+
CoeffReturnType coeff(Index index) const
|
369
|
+
{ return m_evaluator.coeff(index); }
|
370
|
+
|
371
|
+
template<int LoadMode, typename PacketType>
|
372
|
+
PacketType packet(Index row, Index col) const
|
373
|
+
{ return m_evaluator.template packet<LoadMode,PacketType>(row, col); }
|
374
|
+
|
375
|
+
template<int LoadMode, typename PacketType>
|
376
|
+
PacketType packet(Index index) const
|
377
|
+
{ return m_evaluator.template packet<LoadMode,PacketType>(index); }
|
378
|
+
|
379
|
+
EIGEN_DEVICE_FUNC
|
380
|
+
CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
|
381
|
+
{ return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
|
382
|
+
|
383
|
+
template<int LoadMode, typename PacketType>
|
384
|
+
PacketType packetByOuterInner(Index outer, Index inner) const
|
385
|
+
{ return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
|
386
|
+
|
387
|
+
const XprType & nestedExpression() const { return m_xpr; }
|
388
|
+
|
389
|
+
protected:
|
390
|
+
internal::evaluator<XprType> m_evaluator;
|
391
|
+
const XprType &m_xpr;
|
392
|
+
};
|
393
|
+
|
394
|
+
} // end namespace internal
|
395
|
+
|
396
|
+
/***************************************************************************
|
397
|
+
* Part 4 : public API
|
398
|
+
***************************************************************************/
|
399
|
+
|
400
|
+
|
401
|
+
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
|
402
|
+
*
|
403
|
+
* The template parameter \a BinaryOp is the type of the functor \a func which must be
|
404
|
+
* an associative operator. Both current C++98 and C++11 functor styles are handled.
|
405
|
+
*
|
406
|
+
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
|
407
|
+
*/
|
408
|
+
template<typename Derived>
|
409
|
+
template<typename Func>
|
410
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
411
|
+
DenseBase<Derived>::redux(const Func& func) const
|
412
|
+
{
|
413
|
+
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
414
|
+
|
415
|
+
typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
|
416
|
+
ThisEvaluator thisEval(derived());
|
417
|
+
|
418
|
+
return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func);
|
419
|
+
}
|
420
|
+
|
421
|
+
/** \returns the minimum of all coefficients of \c *this.
|
422
|
+
* \warning the result is undefined if \c *this contains NaN.
|
423
|
+
*/
|
424
|
+
template<typename Derived>
|
425
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
426
|
+
DenseBase<Derived>::minCoeff() const
|
427
|
+
{
|
428
|
+
return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>());
|
429
|
+
}
|
430
|
+
|
431
|
+
/** \returns the maximum of all coefficients of \c *this.
|
432
|
+
* \warning the result is undefined if \c *this contains NaN.
|
433
|
+
*/
|
434
|
+
template<typename Derived>
|
435
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
436
|
+
DenseBase<Derived>::maxCoeff() const
|
437
|
+
{
|
438
|
+
return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>());
|
439
|
+
}
|
440
|
+
|
441
|
+
/** \returns the sum of all coefficients of \c *this
|
442
|
+
*
|
443
|
+
* If \c *this is empty, then the value 0 is returned.
|
444
|
+
*
|
445
|
+
* \sa trace(), prod(), mean()
|
446
|
+
*/
|
447
|
+
template<typename Derived>
|
448
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
449
|
+
DenseBase<Derived>::sum() const
|
450
|
+
{
|
451
|
+
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
452
|
+
return Scalar(0);
|
453
|
+
return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>());
|
454
|
+
}
|
455
|
+
|
456
|
+
/** \returns the mean of all coefficients of *this
|
457
|
+
*
|
458
|
+
* \sa trace(), prod(), sum()
|
459
|
+
*/
|
460
|
+
template<typename Derived>
|
461
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
462
|
+
DenseBase<Derived>::mean() const
|
463
|
+
{
|
464
|
+
#ifdef __INTEL_COMPILER
|
465
|
+
#pragma warning push
|
466
|
+
#pragma warning ( disable : 2259 )
|
467
|
+
#endif
|
468
|
+
return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size());
|
469
|
+
#ifdef __INTEL_COMPILER
|
470
|
+
#pragma warning pop
|
471
|
+
#endif
|
472
|
+
}
|
473
|
+
|
474
|
+
/** \returns the product of all coefficients of *this
|
475
|
+
*
|
476
|
+
* Example: \include MatrixBase_prod.cpp
|
477
|
+
* Output: \verbinclude MatrixBase_prod.out
|
478
|
+
*
|
479
|
+
* \sa sum(), mean(), trace()
|
480
|
+
*/
|
481
|
+
template<typename Derived>
|
482
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
483
|
+
DenseBase<Derived>::prod() const
|
484
|
+
{
|
485
|
+
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
|
486
|
+
return Scalar(1);
|
487
|
+
return derived().redux(Eigen::internal::scalar_product_op<Scalar>());
|
488
|
+
}
|
489
|
+
|
490
|
+
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
491
|
+
*
|
492
|
+
* \c *this can be any matrix, not necessarily square.
|
493
|
+
*
|
494
|
+
* \sa diagonal(), sum()
|
495
|
+
*/
|
496
|
+
template<typename Derived>
|
497
|
+
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
498
|
+
MatrixBase<Derived>::trace() const
|
499
|
+
{
|
500
|
+
return derived().diagonal().sum();
|
501
|
+
}
|
502
|
+
|
503
|
+
} // end namespace Eigen
|
504
|
+
|
505
|
+
#endif // EIGEN_REDUX_H
|