tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,676 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
|
12
|
+
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
|
18
|
+
template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
|
19
|
+
: traits<_MatrixType>
|
20
|
+
{
|
21
|
+
enum { Flags = 0 };
|
22
|
+
};
|
23
|
+
|
24
|
+
template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
|
25
|
+
|
26
|
+
template<typename MatrixType>
|
27
|
+
struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
|
28
|
+
{
|
29
|
+
typedef typename MatrixType::PlainObject ReturnType;
|
30
|
+
};
|
31
|
+
|
32
|
+
} // end namespace internal
|
33
|
+
|
34
|
+
/** \ingroup QR_Module
|
35
|
+
*
|
36
|
+
* \class FullPivHouseholderQR
|
37
|
+
*
|
38
|
+
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
|
39
|
+
*
|
40
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
|
41
|
+
*
|
42
|
+
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
|
43
|
+
* such that
|
44
|
+
* \f[
|
45
|
+
* \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R}
|
46
|
+
* \f]
|
47
|
+
* by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix
|
48
|
+
* and \b R an upper triangular matrix.
|
49
|
+
*
|
50
|
+
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
|
51
|
+
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
|
52
|
+
*
|
53
|
+
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
54
|
+
*
|
55
|
+
* \sa MatrixBase::fullPivHouseholderQr()
|
56
|
+
*/
|
57
|
+
template<typename _MatrixType> class FullPivHouseholderQR
|
58
|
+
{
|
59
|
+
public:
|
60
|
+
|
61
|
+
typedef _MatrixType MatrixType;
|
62
|
+
enum {
|
63
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
64
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
65
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
66
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
67
|
+
};
|
68
|
+
typedef typename MatrixType::Scalar Scalar;
|
69
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
70
|
+
// FIXME should be int
|
71
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
72
|
+
typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
|
73
|
+
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
74
|
+
typedef Matrix<StorageIndex, 1,
|
75
|
+
EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
|
76
|
+
EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
|
77
|
+
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
|
78
|
+
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
|
79
|
+
typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
|
80
|
+
typedef typename MatrixType::PlainObject PlainObject;
|
81
|
+
|
82
|
+
/** \brief Default Constructor.
|
83
|
+
*
|
84
|
+
* The default constructor is useful in cases in which the user intends to
|
85
|
+
* perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
|
86
|
+
*/
|
87
|
+
FullPivHouseholderQR()
|
88
|
+
: m_qr(),
|
89
|
+
m_hCoeffs(),
|
90
|
+
m_rows_transpositions(),
|
91
|
+
m_cols_transpositions(),
|
92
|
+
m_cols_permutation(),
|
93
|
+
m_temp(),
|
94
|
+
m_isInitialized(false),
|
95
|
+
m_usePrescribedThreshold(false) {}
|
96
|
+
|
97
|
+
/** \brief Default Constructor with memory preallocation
|
98
|
+
*
|
99
|
+
* Like the default constructor but with preallocation of the internal data
|
100
|
+
* according to the specified problem \a size.
|
101
|
+
* \sa FullPivHouseholderQR()
|
102
|
+
*/
|
103
|
+
FullPivHouseholderQR(Index rows, Index cols)
|
104
|
+
: m_qr(rows, cols),
|
105
|
+
m_hCoeffs((std::min)(rows,cols)),
|
106
|
+
m_rows_transpositions((std::min)(rows,cols)),
|
107
|
+
m_cols_transpositions((std::min)(rows,cols)),
|
108
|
+
m_cols_permutation(cols),
|
109
|
+
m_temp(cols),
|
110
|
+
m_isInitialized(false),
|
111
|
+
m_usePrescribedThreshold(false) {}
|
112
|
+
|
113
|
+
/** \brief Constructs a QR factorization from a given matrix
|
114
|
+
*
|
115
|
+
* This constructor computes the QR factorization of the matrix \a matrix by calling
|
116
|
+
* the method compute(). It is a short cut for:
|
117
|
+
*
|
118
|
+
* \code
|
119
|
+
* FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
|
120
|
+
* qr.compute(matrix);
|
121
|
+
* \endcode
|
122
|
+
*
|
123
|
+
* \sa compute()
|
124
|
+
*/
|
125
|
+
template<typename InputType>
|
126
|
+
explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix)
|
127
|
+
: m_qr(matrix.rows(), matrix.cols()),
|
128
|
+
m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
|
129
|
+
m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
|
130
|
+
m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
|
131
|
+
m_cols_permutation(matrix.cols()),
|
132
|
+
m_temp(matrix.cols()),
|
133
|
+
m_isInitialized(false),
|
134
|
+
m_usePrescribedThreshold(false)
|
135
|
+
{
|
136
|
+
compute(matrix.derived());
|
137
|
+
}
|
138
|
+
|
139
|
+
/** \brief Constructs a QR factorization from a given matrix
|
140
|
+
*
|
141
|
+
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
|
142
|
+
*
|
143
|
+
* \sa FullPivHouseholderQR(const EigenBase&)
|
144
|
+
*/
|
145
|
+
template<typename InputType>
|
146
|
+
explicit FullPivHouseholderQR(EigenBase<InputType>& matrix)
|
147
|
+
: m_qr(matrix.derived()),
|
148
|
+
m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
|
149
|
+
m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
|
150
|
+
m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
|
151
|
+
m_cols_permutation(matrix.cols()),
|
152
|
+
m_temp(matrix.cols()),
|
153
|
+
m_isInitialized(false),
|
154
|
+
m_usePrescribedThreshold(false)
|
155
|
+
{
|
156
|
+
computeInPlace();
|
157
|
+
}
|
158
|
+
|
159
|
+
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
160
|
+
* \c *this is the QR decomposition.
|
161
|
+
*
|
162
|
+
* \param b the right-hand-side of the equation to solve.
|
163
|
+
*
|
164
|
+
* \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
|
165
|
+
* and an arbitrary solution otherwise.
|
166
|
+
*
|
167
|
+
* \note_about_checking_solutions
|
168
|
+
*
|
169
|
+
* \note_about_arbitrary_choice_of_solution
|
170
|
+
*
|
171
|
+
* Example: \include FullPivHouseholderQR_solve.cpp
|
172
|
+
* Output: \verbinclude FullPivHouseholderQR_solve.out
|
173
|
+
*/
|
174
|
+
template<typename Rhs>
|
175
|
+
inline const Solve<FullPivHouseholderQR, Rhs>
|
176
|
+
solve(const MatrixBase<Rhs>& b) const
|
177
|
+
{
|
178
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
179
|
+
return Solve<FullPivHouseholderQR, Rhs>(*this, b.derived());
|
180
|
+
}
|
181
|
+
|
182
|
+
/** \returns Expression object representing the matrix Q
|
183
|
+
*/
|
184
|
+
MatrixQReturnType matrixQ(void) const;
|
185
|
+
|
186
|
+
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
187
|
+
*/
|
188
|
+
const MatrixType& matrixQR() const
|
189
|
+
{
|
190
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
191
|
+
return m_qr;
|
192
|
+
}
|
193
|
+
|
194
|
+
template<typename InputType>
|
195
|
+
FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
|
196
|
+
|
197
|
+
/** \returns a const reference to the column permutation matrix */
|
198
|
+
const PermutationType& colsPermutation() const
|
199
|
+
{
|
200
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
201
|
+
return m_cols_permutation;
|
202
|
+
}
|
203
|
+
|
204
|
+
/** \returns a const reference to the vector of indices representing the rows transpositions */
|
205
|
+
const IntDiagSizeVectorType& rowsTranspositions() const
|
206
|
+
{
|
207
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
208
|
+
return m_rows_transpositions;
|
209
|
+
}
|
210
|
+
|
211
|
+
/** \returns the absolute value of the determinant of the matrix of which
|
212
|
+
* *this is the QR decomposition. It has only linear complexity
|
213
|
+
* (that is, O(n) where n is the dimension of the square matrix)
|
214
|
+
* as the QR decomposition has already been computed.
|
215
|
+
*
|
216
|
+
* \note This is only for square matrices.
|
217
|
+
*
|
218
|
+
* \warning a determinant can be very big or small, so for matrices
|
219
|
+
* of large enough dimension, there is a risk of overflow/underflow.
|
220
|
+
* One way to work around that is to use logAbsDeterminant() instead.
|
221
|
+
*
|
222
|
+
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
223
|
+
*/
|
224
|
+
typename MatrixType::RealScalar absDeterminant() const;
|
225
|
+
|
226
|
+
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
227
|
+
* *this is the QR decomposition. It has only linear complexity
|
228
|
+
* (that is, O(n) where n is the dimension of the square matrix)
|
229
|
+
* as the QR decomposition has already been computed.
|
230
|
+
*
|
231
|
+
* \note This is only for square matrices.
|
232
|
+
*
|
233
|
+
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
234
|
+
* to determinant computation.
|
235
|
+
*
|
236
|
+
* \sa absDeterminant(), MatrixBase::determinant()
|
237
|
+
*/
|
238
|
+
typename MatrixType::RealScalar logAbsDeterminant() const;
|
239
|
+
|
240
|
+
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
241
|
+
*
|
242
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
243
|
+
* For that, it uses the threshold value that you can control by calling
|
244
|
+
* setThreshold(const RealScalar&).
|
245
|
+
*/
|
246
|
+
inline Index rank() const
|
247
|
+
{
|
248
|
+
using std::abs;
|
249
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
250
|
+
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
|
251
|
+
Index result = 0;
|
252
|
+
for(Index i = 0; i < m_nonzero_pivots; ++i)
|
253
|
+
result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
|
254
|
+
return result;
|
255
|
+
}
|
256
|
+
|
257
|
+
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
|
258
|
+
*
|
259
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
260
|
+
* For that, it uses the threshold value that you can control by calling
|
261
|
+
* setThreshold(const RealScalar&).
|
262
|
+
*/
|
263
|
+
inline Index dimensionOfKernel() const
|
264
|
+
{
|
265
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
266
|
+
return cols() - rank();
|
267
|
+
}
|
268
|
+
|
269
|
+
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
|
270
|
+
* linear map, i.e. has trivial kernel; false otherwise.
|
271
|
+
*
|
272
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
273
|
+
* For that, it uses the threshold value that you can control by calling
|
274
|
+
* setThreshold(const RealScalar&).
|
275
|
+
*/
|
276
|
+
inline bool isInjective() const
|
277
|
+
{
|
278
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
279
|
+
return rank() == cols();
|
280
|
+
}
|
281
|
+
|
282
|
+
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
|
283
|
+
* linear map; false otherwise.
|
284
|
+
*
|
285
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
286
|
+
* For that, it uses the threshold value that you can control by calling
|
287
|
+
* setThreshold(const RealScalar&).
|
288
|
+
*/
|
289
|
+
inline bool isSurjective() const
|
290
|
+
{
|
291
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
292
|
+
return rank() == rows();
|
293
|
+
}
|
294
|
+
|
295
|
+
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
|
296
|
+
*
|
297
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
298
|
+
* For that, it uses the threshold value that you can control by calling
|
299
|
+
* setThreshold(const RealScalar&).
|
300
|
+
*/
|
301
|
+
inline bool isInvertible() const
|
302
|
+
{
|
303
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
304
|
+
return isInjective() && isSurjective();
|
305
|
+
}
|
306
|
+
|
307
|
+
/** \returns the inverse of the matrix of which *this is the QR decomposition.
|
308
|
+
*
|
309
|
+
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
310
|
+
* Use isInvertible() to first determine whether this matrix is invertible.
|
311
|
+
*/
|
312
|
+
inline const Inverse<FullPivHouseholderQR> inverse() const
|
313
|
+
{
|
314
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
315
|
+
return Inverse<FullPivHouseholderQR>(*this);
|
316
|
+
}
|
317
|
+
|
318
|
+
inline Index rows() const { return m_qr.rows(); }
|
319
|
+
inline Index cols() const { return m_qr.cols(); }
|
320
|
+
|
321
|
+
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
|
322
|
+
*
|
323
|
+
* For advanced uses only.
|
324
|
+
*/
|
325
|
+
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
326
|
+
|
327
|
+
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
|
328
|
+
* who need to determine when pivots are to be considered nonzero. This is not used for the
|
329
|
+
* QR decomposition itself.
|
330
|
+
*
|
331
|
+
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
|
332
|
+
* uses a formula to automatically determine a reasonable threshold.
|
333
|
+
* Once you have called the present method setThreshold(const RealScalar&),
|
334
|
+
* your value is used instead.
|
335
|
+
*
|
336
|
+
* \param threshold The new value to use as the threshold.
|
337
|
+
*
|
338
|
+
* A pivot will be considered nonzero if its absolute value is strictly greater than
|
339
|
+
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
|
340
|
+
* where maxpivot is the biggest pivot.
|
341
|
+
*
|
342
|
+
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
343
|
+
*/
|
344
|
+
FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
|
345
|
+
{
|
346
|
+
m_usePrescribedThreshold = true;
|
347
|
+
m_prescribedThreshold = threshold;
|
348
|
+
return *this;
|
349
|
+
}
|
350
|
+
|
351
|
+
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
352
|
+
* determining the threshold.
|
353
|
+
*
|
354
|
+
* You should pass the special object Eigen::Default as parameter here.
|
355
|
+
* \code qr.setThreshold(Eigen::Default); \endcode
|
356
|
+
*
|
357
|
+
* See the documentation of setThreshold(const RealScalar&).
|
358
|
+
*/
|
359
|
+
FullPivHouseholderQR& setThreshold(Default_t)
|
360
|
+
{
|
361
|
+
m_usePrescribedThreshold = false;
|
362
|
+
return *this;
|
363
|
+
}
|
364
|
+
|
365
|
+
/** Returns the threshold that will be used by certain methods such as rank().
|
366
|
+
*
|
367
|
+
* See the documentation of setThreshold(const RealScalar&).
|
368
|
+
*/
|
369
|
+
RealScalar threshold() const
|
370
|
+
{
|
371
|
+
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
372
|
+
return m_usePrescribedThreshold ? m_prescribedThreshold
|
373
|
+
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
374
|
+
// and turns out to be identical to Higham's formula used already in LDLt.
|
375
|
+
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
|
376
|
+
}
|
377
|
+
|
378
|
+
/** \returns the number of nonzero pivots in the QR decomposition.
|
379
|
+
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
|
380
|
+
* So that notion isn't really intrinsically interesting, but it is
|
381
|
+
* still useful when implementing algorithms.
|
382
|
+
*
|
383
|
+
* \sa rank()
|
384
|
+
*/
|
385
|
+
inline Index nonzeroPivots() const
|
386
|
+
{
|
387
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
388
|
+
return m_nonzero_pivots;
|
389
|
+
}
|
390
|
+
|
391
|
+
/** \returns the absolute value of the biggest pivot, i.e. the biggest
|
392
|
+
* diagonal coefficient of U.
|
393
|
+
*/
|
394
|
+
RealScalar maxPivot() const { return m_maxpivot; }
|
395
|
+
|
396
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
397
|
+
template<typename RhsType, typename DstType>
|
398
|
+
EIGEN_DEVICE_FUNC
|
399
|
+
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
400
|
+
#endif
|
401
|
+
|
402
|
+
protected:
|
403
|
+
|
404
|
+
static void check_template_parameters()
|
405
|
+
{
|
406
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
407
|
+
}
|
408
|
+
|
409
|
+
void computeInPlace();
|
410
|
+
|
411
|
+
MatrixType m_qr;
|
412
|
+
HCoeffsType m_hCoeffs;
|
413
|
+
IntDiagSizeVectorType m_rows_transpositions;
|
414
|
+
IntDiagSizeVectorType m_cols_transpositions;
|
415
|
+
PermutationType m_cols_permutation;
|
416
|
+
RowVectorType m_temp;
|
417
|
+
bool m_isInitialized, m_usePrescribedThreshold;
|
418
|
+
RealScalar m_prescribedThreshold, m_maxpivot;
|
419
|
+
Index m_nonzero_pivots;
|
420
|
+
RealScalar m_precision;
|
421
|
+
Index m_det_pq;
|
422
|
+
};
|
423
|
+
|
424
|
+
template<typename MatrixType>
|
425
|
+
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
|
426
|
+
{
|
427
|
+
using std::abs;
|
428
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
429
|
+
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
430
|
+
return abs(m_qr.diagonal().prod());
|
431
|
+
}
|
432
|
+
|
433
|
+
template<typename MatrixType>
|
434
|
+
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
|
435
|
+
{
|
436
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
437
|
+
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
438
|
+
return m_qr.diagonal().cwiseAbs().array().log().sum();
|
439
|
+
}
|
440
|
+
|
441
|
+
/** Performs the QR factorization of the given matrix \a matrix. The result of
|
442
|
+
* the factorization is stored into \c *this, and a reference to \c *this
|
443
|
+
* is returned.
|
444
|
+
*
|
445
|
+
* \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
|
446
|
+
*/
|
447
|
+
template<typename MatrixType>
|
448
|
+
template<typename InputType>
|
449
|
+
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
|
450
|
+
{
|
451
|
+
m_qr = matrix.derived();
|
452
|
+
computeInPlace();
|
453
|
+
return *this;
|
454
|
+
}
|
455
|
+
|
456
|
+
template<typename MatrixType>
|
457
|
+
void FullPivHouseholderQR<MatrixType>::computeInPlace()
|
458
|
+
{
|
459
|
+
check_template_parameters();
|
460
|
+
|
461
|
+
using std::abs;
|
462
|
+
Index rows = m_qr.rows();
|
463
|
+
Index cols = m_qr.cols();
|
464
|
+
Index size = (std::min)(rows,cols);
|
465
|
+
|
466
|
+
|
467
|
+
m_hCoeffs.resize(size);
|
468
|
+
|
469
|
+
m_temp.resize(cols);
|
470
|
+
|
471
|
+
m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
|
472
|
+
|
473
|
+
m_rows_transpositions.resize(size);
|
474
|
+
m_cols_transpositions.resize(size);
|
475
|
+
Index number_of_transpositions = 0;
|
476
|
+
|
477
|
+
RealScalar biggest(0);
|
478
|
+
|
479
|
+
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
|
480
|
+
m_maxpivot = RealScalar(0);
|
481
|
+
|
482
|
+
for (Index k = 0; k < size; ++k)
|
483
|
+
{
|
484
|
+
Index row_of_biggest_in_corner, col_of_biggest_in_corner;
|
485
|
+
typedef internal::scalar_score_coeff_op<Scalar> Scoring;
|
486
|
+
typedef typename Scoring::result_type Score;
|
487
|
+
|
488
|
+
Score score = m_qr.bottomRightCorner(rows-k, cols-k)
|
489
|
+
.unaryExpr(Scoring())
|
490
|
+
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
|
491
|
+
row_of_biggest_in_corner += k;
|
492
|
+
col_of_biggest_in_corner += k;
|
493
|
+
RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score);
|
494
|
+
if(k==0) biggest = biggest_in_corner;
|
495
|
+
|
496
|
+
// if the corner is negligible, then we have less than full rank, and we can finish early
|
497
|
+
if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
|
498
|
+
{
|
499
|
+
m_nonzero_pivots = k;
|
500
|
+
for(Index i = k; i < size; i++)
|
501
|
+
{
|
502
|
+
m_rows_transpositions.coeffRef(i) = i;
|
503
|
+
m_cols_transpositions.coeffRef(i) = i;
|
504
|
+
m_hCoeffs.coeffRef(i) = Scalar(0);
|
505
|
+
}
|
506
|
+
break;
|
507
|
+
}
|
508
|
+
|
509
|
+
m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
|
510
|
+
m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
|
511
|
+
if(k != row_of_biggest_in_corner) {
|
512
|
+
m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
|
513
|
+
++number_of_transpositions;
|
514
|
+
}
|
515
|
+
if(k != col_of_biggest_in_corner) {
|
516
|
+
m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
|
517
|
+
++number_of_transpositions;
|
518
|
+
}
|
519
|
+
|
520
|
+
RealScalar beta;
|
521
|
+
m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
|
522
|
+
m_qr.coeffRef(k,k) = beta;
|
523
|
+
|
524
|
+
// remember the maximum absolute value of diagonal coefficients
|
525
|
+
if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
|
526
|
+
|
527
|
+
m_qr.bottomRightCorner(rows-k, cols-k-1)
|
528
|
+
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
|
529
|
+
}
|
530
|
+
|
531
|
+
m_cols_permutation.setIdentity(cols);
|
532
|
+
for(Index k = 0; k < size; ++k)
|
533
|
+
m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
|
534
|
+
|
535
|
+
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
536
|
+
m_isInitialized = true;
|
537
|
+
}
|
538
|
+
|
539
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
540
|
+
template<typename _MatrixType>
|
541
|
+
template<typename RhsType, typename DstType>
|
542
|
+
void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
543
|
+
{
|
544
|
+
eigen_assert(rhs.rows() == rows());
|
545
|
+
const Index l_rank = rank();
|
546
|
+
|
547
|
+
// FIXME introduce nonzeroPivots() and use it here. and more generally,
|
548
|
+
// make the same improvements in this dec as in FullPivLU.
|
549
|
+
if(l_rank==0)
|
550
|
+
{
|
551
|
+
dst.setZero();
|
552
|
+
return;
|
553
|
+
}
|
554
|
+
|
555
|
+
typename RhsType::PlainObject c(rhs);
|
556
|
+
|
557
|
+
Matrix<Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols());
|
558
|
+
for (Index k = 0; k < l_rank; ++k)
|
559
|
+
{
|
560
|
+
Index remainingSize = rows()-k;
|
561
|
+
c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
|
562
|
+
c.bottomRightCorner(remainingSize, rhs.cols())
|
563
|
+
.applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
|
564
|
+
m_hCoeffs.coeff(k), &temp.coeffRef(0));
|
565
|
+
}
|
566
|
+
|
567
|
+
m_qr.topLeftCorner(l_rank, l_rank)
|
568
|
+
.template triangularView<Upper>()
|
569
|
+
.solveInPlace(c.topRows(l_rank));
|
570
|
+
|
571
|
+
for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
|
572
|
+
for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
|
573
|
+
}
|
574
|
+
#endif
|
575
|
+
|
576
|
+
namespace internal {
|
577
|
+
|
578
|
+
template<typename DstXprType, typename MatrixType>
|
579
|
+
struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
|
580
|
+
{
|
581
|
+
typedef FullPivHouseholderQR<MatrixType> QrType;
|
582
|
+
typedef Inverse<QrType> SrcXprType;
|
583
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
|
584
|
+
{
|
585
|
+
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
|
586
|
+
}
|
587
|
+
};
|
588
|
+
|
589
|
+
/** \ingroup QR_Module
|
590
|
+
*
|
591
|
+
* \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
|
592
|
+
*
|
593
|
+
* \tparam MatrixType type of underlying dense matrix
|
594
|
+
*/
|
595
|
+
template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
|
596
|
+
: public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
|
597
|
+
{
|
598
|
+
public:
|
599
|
+
typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
|
600
|
+
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
601
|
+
typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
|
602
|
+
MatrixType::MaxRowsAtCompileTime> WorkVectorType;
|
603
|
+
|
604
|
+
FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
|
605
|
+
const HCoeffsType& hCoeffs,
|
606
|
+
const IntDiagSizeVectorType& rowsTranspositions)
|
607
|
+
: m_qr(qr),
|
608
|
+
m_hCoeffs(hCoeffs),
|
609
|
+
m_rowsTranspositions(rowsTranspositions)
|
610
|
+
{}
|
611
|
+
|
612
|
+
template <typename ResultType>
|
613
|
+
void evalTo(ResultType& result) const
|
614
|
+
{
|
615
|
+
const Index rows = m_qr.rows();
|
616
|
+
WorkVectorType workspace(rows);
|
617
|
+
evalTo(result, workspace);
|
618
|
+
}
|
619
|
+
|
620
|
+
template <typename ResultType>
|
621
|
+
void evalTo(ResultType& result, WorkVectorType& workspace) const
|
622
|
+
{
|
623
|
+
using numext::conj;
|
624
|
+
// compute the product H'_0 H'_1 ... H'_n-1,
|
625
|
+
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
|
626
|
+
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
627
|
+
const Index rows = m_qr.rows();
|
628
|
+
const Index cols = m_qr.cols();
|
629
|
+
const Index size = (std::min)(rows, cols);
|
630
|
+
workspace.resize(rows);
|
631
|
+
result.setIdentity(rows, rows);
|
632
|
+
for (Index k = size-1; k >= 0; k--)
|
633
|
+
{
|
634
|
+
result.block(k, k, rows-k, rows-k)
|
635
|
+
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
|
636
|
+
result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
|
637
|
+
}
|
638
|
+
}
|
639
|
+
|
640
|
+
Index rows() const { return m_qr.rows(); }
|
641
|
+
Index cols() const { return m_qr.rows(); }
|
642
|
+
|
643
|
+
protected:
|
644
|
+
typename MatrixType::Nested m_qr;
|
645
|
+
typename HCoeffsType::Nested m_hCoeffs;
|
646
|
+
typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
|
647
|
+
};
|
648
|
+
|
649
|
+
// template<typename MatrixType>
|
650
|
+
// struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
|
651
|
+
// : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > >
|
652
|
+
// {};
|
653
|
+
|
654
|
+
} // end namespace internal
|
655
|
+
|
656
|
+
template<typename MatrixType>
|
657
|
+
inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
|
658
|
+
{
|
659
|
+
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
660
|
+
return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
|
661
|
+
}
|
662
|
+
|
663
|
+
/** \return the full-pivoting Householder QR decomposition of \c *this.
|
664
|
+
*
|
665
|
+
* \sa class FullPivHouseholderQR
|
666
|
+
*/
|
667
|
+
template<typename Derived>
|
668
|
+
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
|
669
|
+
MatrixBase<Derived>::fullPivHouseholderQr() const
|
670
|
+
{
|
671
|
+
return FullPivHouseholderQR<PlainObject>(eval());
|
672
|
+
}
|
673
|
+
|
674
|
+
} // end namespace Eigen
|
675
|
+
|
676
|
+
#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
|