tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,91 @@
1
+ /*
2
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without modification,
5
+ are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+ * Redistributions in binary form must reproduce the above copyright notice,
10
+ this list of conditions and the following disclaimer in the documentation
11
+ and/or other materials provided with the distribution.
12
+ * Neither the name of Intel Corporation nor the names of its contributors may
13
+ be used to endorse or promote products derived from this software without
14
+ specific prior written permission.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
+
27
+ ********************************************************************************
28
+ * Content : Eigen bindings to LAPACKe
29
+ * Singular Value Decomposition - SVD.
30
+ ********************************************************************************
31
+ */
32
+
33
+ #ifndef EIGEN_JACOBISVD_LAPACKE_H
34
+ #define EIGEN_JACOBISVD_LAPACKE_H
35
+
36
+ namespace Eigen {
37
+
38
+ /** \internal Specialization for the data types supported by LAPACKe */
39
+
40
+ #define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
41
+ template<> inline \
42
+ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
43
+ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
44
+ { \
45
+ typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
46
+ /*typedef MatrixType::Scalar Scalar;*/ \
47
+ /*typedef MatrixType::RealScalar RealScalar;*/ \
48
+ allocate(matrix.rows(), matrix.cols(), computationOptions); \
49
+ \
50
+ /*const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();*/ \
51
+ m_nonzeroSingularValues = m_diagSize; \
52
+ \
53
+ lapack_int lda = internal::convert_index<lapack_int>(matrix.outerStride()), ldu, ldvt; \
54
+ lapack_int matrix_order = LAPACKE_COLROW; \
55
+ char jobu, jobvt; \
56
+ LAPACKE_TYPE *u, *vt, dummy; \
57
+ jobu = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \
58
+ jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \
59
+ if (computeU()) { \
60
+ ldu = internal::convert_index<lapack_int>(m_matrixU.outerStride()); \
61
+ u = (LAPACKE_TYPE*)m_matrixU.data(); \
62
+ } else { ldu=1; u=&dummy; }\
63
+ MatrixType localV; \
64
+ lapack_int vt_rows = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
65
+ if (computeV()) { \
66
+ localV.resize(vt_rows, m_cols); \
67
+ ldvt = internal::convert_index<lapack_int>(localV.outerStride()); \
68
+ vt = (LAPACKE_TYPE*)localV.data(); \
69
+ } else { ldvt=1; vt=&dummy; }\
70
+ Matrix<LAPACKE_RTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
71
+ MatrixType m_temp; m_temp = matrix; \
72
+ LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index<lapack_int>(m_rows), internal::convert_index<lapack_int>(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
73
+ if (computeV()) m_matrixV = localV.adjoint(); \
74
+ /* for(int i=0;i<m_diagSize;i++) if (m_singularValues.coeffRef(i) < precision) { m_nonzeroSingularValues--; m_singularValues.coeffRef(i)=RealScalar(0);}*/ \
75
+ m_isInitialized = true; \
76
+ return *this; \
77
+ }
78
+
79
+ EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR)
80
+ EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR)
81
+ EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR)
82
+ EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR)
83
+
84
+ EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR)
85
+ EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR)
86
+ EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR)
87
+ EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR)
88
+
89
+ } // end namespace Eigen
90
+
91
+ #endif // EIGEN_JACOBISVD_LAPACKE_H
@@ -0,0 +1,315 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5
+ // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ //
7
+ // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
8
+ // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
9
+ // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
10
+ // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
11
+ //
12
+ // This Source Code Form is subject to the terms of the Mozilla
13
+ // Public License v. 2.0. If a copy of the MPL was not distributed
14
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
15
+
16
+ #ifndef EIGEN_SVDBASE_H
17
+ #define EIGEN_SVDBASE_H
18
+
19
+ namespace Eigen {
20
+ /** \ingroup SVD_Module
21
+ *
22
+ *
23
+ * \class SVDBase
24
+ *
25
+ * \brief Base class of SVD algorithms
26
+ *
27
+ * \tparam Derived the type of the actual SVD decomposition
28
+ *
29
+ * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
30
+ * \f[ A = U S V^* \f]
31
+ * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
32
+ * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
33
+ * and right \em singular \em vectors of \a A respectively.
34
+ *
35
+ * Singular values are always sorted in decreasing order.
36
+ *
37
+ *
38
+ * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
39
+ * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
40
+ * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
41
+ * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
42
+ *
43
+ * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
44
+ * terminate in finite (and reasonable) time.
45
+ * \sa class BDCSVD, class JacobiSVD
46
+ */
47
+ template<typename Derived>
48
+ class SVDBase
49
+ {
50
+
51
+ public:
52
+ typedef typename internal::traits<Derived>::MatrixType MatrixType;
53
+ typedef typename MatrixType::Scalar Scalar;
54
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
55
+ typedef typename MatrixType::StorageIndex StorageIndex;
56
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
57
+ enum {
58
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
59
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
60
+ DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
61
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
62
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
63
+ MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
64
+ MatrixOptions = MatrixType::Options
65
+ };
66
+
67
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
68
+ typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
69
+ typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
70
+
71
+ Derived& derived() { return *static_cast<Derived*>(this); }
72
+ const Derived& derived() const { return *static_cast<const Derived*>(this); }
73
+
74
+ /** \returns the \a U matrix.
75
+ *
76
+ * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
77
+ * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
78
+ *
79
+ * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
80
+ *
81
+ * This method asserts that you asked for \a U to be computed.
82
+ */
83
+ const MatrixUType& matrixU() const
84
+ {
85
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
86
+ eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
87
+ return m_matrixU;
88
+ }
89
+
90
+ /** \returns the \a V matrix.
91
+ *
92
+ * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
93
+ * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
94
+ *
95
+ * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
96
+ *
97
+ * This method asserts that you asked for \a V to be computed.
98
+ */
99
+ const MatrixVType& matrixV() const
100
+ {
101
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
102
+ eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
103
+ return m_matrixV;
104
+ }
105
+
106
+ /** \returns the vector of singular values.
107
+ *
108
+ * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
109
+ * returned vector has size \a m. Singular values are always sorted in decreasing order.
110
+ */
111
+ const SingularValuesType& singularValues() const
112
+ {
113
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
114
+ return m_singularValues;
115
+ }
116
+
117
+ /** \returns the number of singular values that are not exactly 0 */
118
+ Index nonzeroSingularValues() const
119
+ {
120
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
121
+ return m_nonzeroSingularValues;
122
+ }
123
+
124
+ /** \returns the rank of the matrix of which \c *this is the SVD.
125
+ *
126
+ * \note This method has to determine which singular values should be considered nonzero.
127
+ * For that, it uses the threshold value that you can control by calling
128
+ * setThreshold(const RealScalar&).
129
+ */
130
+ inline Index rank() const
131
+ {
132
+ using std::abs;
133
+ eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
134
+ if(m_singularValues.size()==0) return 0;
135
+ RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
136
+ Index i = m_nonzeroSingularValues-1;
137
+ while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
138
+ return i+1;
139
+ }
140
+
141
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
142
+ * which need to determine when singular values are to be considered nonzero.
143
+ * This is not used for the SVD decomposition itself.
144
+ *
145
+ * When it needs to get the threshold value, Eigen calls threshold().
146
+ * The default is \c NumTraits<Scalar>::epsilon()
147
+ *
148
+ * \param threshold The new value to use as the threshold.
149
+ *
150
+ * A singular value will be considered nonzero if its value is strictly greater than
151
+ * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
152
+ *
153
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
154
+ */
155
+ Derived& setThreshold(const RealScalar& threshold)
156
+ {
157
+ m_usePrescribedThreshold = true;
158
+ m_prescribedThreshold = threshold;
159
+ return derived();
160
+ }
161
+
162
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
163
+ * determining the threshold.
164
+ *
165
+ * You should pass the special object Eigen::Default as parameter here.
166
+ * \code svd.setThreshold(Eigen::Default); \endcode
167
+ *
168
+ * See the documentation of setThreshold(const RealScalar&).
169
+ */
170
+ Derived& setThreshold(Default_t)
171
+ {
172
+ m_usePrescribedThreshold = false;
173
+ return derived();
174
+ }
175
+
176
+ /** Returns the threshold that will be used by certain methods such as rank().
177
+ *
178
+ * See the documentation of setThreshold(const RealScalar&).
179
+ */
180
+ RealScalar threshold() const
181
+ {
182
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
183
+ // this temporary is needed to workaround a MSVC issue
184
+ Index diagSize = (std::max<Index>)(1,m_diagSize);
185
+ return m_usePrescribedThreshold ? m_prescribedThreshold
186
+ : diagSize*NumTraits<Scalar>::epsilon();
187
+ }
188
+
189
+ /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
190
+ inline bool computeU() const { return m_computeFullU || m_computeThinU; }
191
+ /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
192
+ inline bool computeV() const { return m_computeFullV || m_computeThinV; }
193
+
194
+ inline Index rows() const { return m_rows; }
195
+ inline Index cols() const { return m_cols; }
196
+
197
+ /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
198
+ *
199
+ * \param b the right-hand-side of the equation to solve.
200
+ *
201
+ * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
202
+ *
203
+ * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
204
+ * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
205
+ */
206
+ template<typename Rhs>
207
+ inline const Solve<Derived, Rhs>
208
+ solve(const MatrixBase<Rhs>& b) const
209
+ {
210
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
211
+ eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
212
+ return Solve<Derived, Rhs>(derived(), b.derived());
213
+ }
214
+
215
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
216
+ template<typename RhsType, typename DstType>
217
+ EIGEN_DEVICE_FUNC
218
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
219
+ #endif
220
+
221
+ protected:
222
+
223
+ static void check_template_parameters()
224
+ {
225
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
226
+ }
227
+
228
+ // return true if already allocated
229
+ bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
230
+
231
+ MatrixUType m_matrixU;
232
+ MatrixVType m_matrixV;
233
+ SingularValuesType m_singularValues;
234
+ bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
235
+ bool m_computeFullU, m_computeThinU;
236
+ bool m_computeFullV, m_computeThinV;
237
+ unsigned int m_computationOptions;
238
+ Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
239
+ RealScalar m_prescribedThreshold;
240
+
241
+ /** \brief Default Constructor.
242
+ *
243
+ * Default constructor of SVDBase
244
+ */
245
+ SVDBase()
246
+ : m_isInitialized(false),
247
+ m_isAllocated(false),
248
+ m_usePrescribedThreshold(false),
249
+ m_computationOptions(0),
250
+ m_rows(-1), m_cols(-1), m_diagSize(0)
251
+ {
252
+ check_template_parameters();
253
+ }
254
+
255
+
256
+ };
257
+
258
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
259
+ template<typename Derived>
260
+ template<typename RhsType, typename DstType>
261
+ void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
262
+ {
263
+ eigen_assert(rhs.rows() == rows());
264
+
265
+ // A = U S V^*
266
+ // So A^{-1} = V S^{-1} U^*
267
+
268
+ Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
269
+ Index l_rank = rank();
270
+ tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
271
+ tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
272
+ dst = m_matrixV.leftCols(l_rank) * tmp;
273
+ }
274
+ #endif
275
+
276
+ template<typename MatrixType>
277
+ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
278
+ {
279
+ eigen_assert(rows >= 0 && cols >= 0);
280
+
281
+ if (m_isAllocated &&
282
+ rows == m_rows &&
283
+ cols == m_cols &&
284
+ computationOptions == m_computationOptions)
285
+ {
286
+ return true;
287
+ }
288
+
289
+ m_rows = rows;
290
+ m_cols = cols;
291
+ m_isInitialized = false;
292
+ m_isAllocated = true;
293
+ m_computationOptions = computationOptions;
294
+ m_computeFullU = (computationOptions & ComputeFullU) != 0;
295
+ m_computeThinU = (computationOptions & ComputeThinU) != 0;
296
+ m_computeFullV = (computationOptions & ComputeFullV) != 0;
297
+ m_computeThinV = (computationOptions & ComputeThinV) != 0;
298
+ eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
299
+ eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
300
+ eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
301
+ "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
302
+
303
+ m_diagSize = (std::min)(m_rows, m_cols);
304
+ m_singularValues.resize(m_diagSize);
305
+ if(RowsAtCompileTime==Dynamic)
306
+ m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
307
+ if(ColsAtCompileTime==Dynamic)
308
+ m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
309
+
310
+ return false;
311
+ }
312
+
313
+ }// end namespace
314
+
315
+ #endif // EIGEN_SVDBASE_H
@@ -0,0 +1,414 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5
+ // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_BIDIAGONALIZATION_H
12
+ #define EIGEN_BIDIAGONALIZATION_H
13
+
14
+ namespace Eigen {
15
+
16
+ namespace internal {
17
+ // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
18
+ // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
19
+
20
+ template<typename _MatrixType> class UpperBidiagonalization
21
+ {
22
+ public:
23
+
24
+ typedef _MatrixType MatrixType;
25
+ enum {
26
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
27
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
28
+ ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
29
+ };
30
+ typedef typename MatrixType::Scalar Scalar;
31
+ typedef typename MatrixType::RealScalar RealScalar;
32
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
33
+ typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
34
+ typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
35
+ typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
36
+ typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
37
+ typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
38
+ typedef HouseholderSequence<
39
+ const MatrixType,
40
+ const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
41
+ > HouseholderUSequenceType;
42
+ typedef HouseholderSequence<
43
+ const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
44
+ Diagonal<const MatrixType,1>,
45
+ OnTheRight
46
+ > HouseholderVSequenceType;
47
+
48
+ /**
49
+ * \brief Default Constructor.
50
+ *
51
+ * The default constructor is useful in cases in which the user intends to
52
+ * perform decompositions via Bidiagonalization::compute(const MatrixType&).
53
+ */
54
+ UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
55
+
56
+ explicit UpperBidiagonalization(const MatrixType& matrix)
57
+ : m_householder(matrix.rows(), matrix.cols()),
58
+ m_bidiagonal(matrix.cols(), matrix.cols()),
59
+ m_isInitialized(false)
60
+ {
61
+ compute(matrix);
62
+ }
63
+
64
+ UpperBidiagonalization& compute(const MatrixType& matrix);
65
+ UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
66
+
67
+ const MatrixType& householder() const { return m_householder; }
68
+ const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
69
+
70
+ const HouseholderUSequenceType householderU() const
71
+ {
72
+ eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
73
+ return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
74
+ }
75
+
76
+ const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
77
+ {
78
+ eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
79
+ return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
80
+ .setLength(m_householder.cols()-1)
81
+ .setShift(1);
82
+ }
83
+
84
+ protected:
85
+ MatrixType m_householder;
86
+ BidiagonalType m_bidiagonal;
87
+ bool m_isInitialized;
88
+ };
89
+
90
+ // Standard upper bidiagonalization without fancy optimizations
91
+ // This version should be faster for small matrix size
92
+ template<typename MatrixType>
93
+ void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
94
+ typename MatrixType::RealScalar *diagonal,
95
+ typename MatrixType::RealScalar *upper_diagonal,
96
+ typename MatrixType::Scalar* tempData = 0)
97
+ {
98
+ typedef typename MatrixType::Scalar Scalar;
99
+
100
+ Index rows = mat.rows();
101
+ Index cols = mat.cols();
102
+
103
+ typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
104
+ TempType tempVector;
105
+ if(tempData==0)
106
+ {
107
+ tempVector.resize(rows);
108
+ tempData = tempVector.data();
109
+ }
110
+
111
+ for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
112
+ {
113
+ Index remainingRows = rows - k;
114
+ Index remainingCols = cols - k - 1;
115
+
116
+ // construct left householder transform in-place in A
117
+ mat.col(k).tail(remainingRows)
118
+ .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
119
+ // apply householder transform to remaining part of A on the left
120
+ mat.bottomRightCorner(remainingRows, remainingCols)
121
+ .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
122
+
123
+ if(k == cols-1) break;
124
+
125
+ // construct right householder transform in-place in mat
126
+ mat.row(k).tail(remainingCols)
127
+ .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
128
+ // apply householder transform to remaining part of mat on the left
129
+ mat.bottomRightCorner(remainingRows-1, remainingCols)
130
+ .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
131
+ }
132
+ }
133
+
134
+ /** \internal
135
+ * Helper routine for the block reduction to upper bidiagonal form.
136
+ *
137
+ * Let's partition the matrix A:
138
+ *
139
+ * | A00 A01 |
140
+ * A = | |
141
+ * | A10 A11 |
142
+ *
143
+ * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
144
+ * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
145
+ * is updated using matrix-matrix products:
146
+ * A22 -= V * Y^T - X * U^T
147
+ * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
148
+ * respectively, and the update matrices X and Y are computed during the reduction.
149
+ *
150
+ */
151
+ template<typename MatrixType>
152
+ void upperbidiagonalization_blocked_helper(MatrixType& A,
153
+ typename MatrixType::RealScalar *diagonal,
154
+ typename MatrixType::RealScalar *upper_diagonal,
155
+ Index bs,
156
+ Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
157
+ traits<MatrixType>::Flags & RowMajorBit> > X,
158
+ Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
159
+ traits<MatrixType>::Flags & RowMajorBit> > Y)
160
+ {
161
+ typedef typename MatrixType::Scalar Scalar;
162
+ typedef typename MatrixType::RealScalar RealScalar;
163
+ typedef typename NumTraits<RealScalar>::Literal Literal;
164
+ enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
165
+ typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
166
+ typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
167
+ typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
168
+ typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
169
+ typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
170
+
171
+ Index brows = A.rows();
172
+ Index bcols = A.cols();
173
+
174
+ Scalar tau_u, tau_u_prev(0), tau_v;
175
+
176
+ for(Index k = 0; k < bs; ++k)
177
+ {
178
+ Index remainingRows = brows - k;
179
+ Index remainingCols = bcols - k - 1;
180
+
181
+ SubMatType X_k1( X.block(k,0, remainingRows,k) );
182
+ SubMatType V_k1( A.block(k,0, remainingRows,k) );
183
+
184
+ // 1 - update the k-th column of A
185
+ SubColumnType v_k = A.col(k).tail(remainingRows);
186
+ v_k -= V_k1 * Y.row(k).head(k).adjoint();
187
+ if(k) v_k -= X_k1 * A.col(k).head(k);
188
+
189
+ // 2 - construct left Householder transform in-place
190
+ v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
191
+
192
+ if(k+1<bcols)
193
+ {
194
+ SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
195
+ SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
196
+
197
+ // this eases the application of Householder transforAions
198
+ // A(k,k) will store tau_v later
199
+ A(k,k) = Scalar(1);
200
+
201
+ // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
202
+ {
203
+ SubColumnType y_k( Y.col(k).tail(remainingCols) );
204
+
205
+ // let's use the begining of column k of Y as a temporary vector
206
+ SubColumnType tmp( Y.col(k).head(k) );
207
+ y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
208
+ tmp.noalias() = V_k1.adjoint() * v_k;
209
+ y_k.noalias() -= Y_k.leftCols(k) * tmp;
210
+ tmp.noalias() = X_k1.adjoint() * v_k;
211
+ y_k.noalias() -= U_k1.adjoint() * tmp;
212
+ y_k *= numext::conj(tau_v);
213
+ }
214
+
215
+ // 4 - update k-th row of A (it will become u_k)
216
+ SubRowType u_k( A.row(k).tail(remainingCols) );
217
+ u_k = u_k.conjugate();
218
+ {
219
+ u_k -= Y_k * A.row(k).head(k+1).adjoint();
220
+ if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
221
+ }
222
+
223
+ // 5 - construct right Householder transform in-place
224
+ u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
225
+
226
+ // this eases the application of Householder transformations
227
+ // A(k,k+1) will store tau_u later
228
+ A(k,k+1) = Scalar(1);
229
+
230
+ // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
231
+ {
232
+ SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
233
+
234
+ // let's use the begining of column k of X as a temporary vectors
235
+ // note that tmp0 and tmp1 overlaps
236
+ SubColumnType tmp0 ( X.col(k).head(k) ),
237
+ tmp1 ( X.col(k).head(k+1) );
238
+
239
+ x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
240
+ tmp0.noalias() = U_k1 * u_k.transpose();
241
+ x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
242
+ tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
243
+ x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
244
+ x_k *= numext::conj(tau_u);
245
+ tau_u = numext::conj(tau_u);
246
+ u_k = u_k.conjugate();
247
+ }
248
+
249
+ if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
250
+ tau_u_prev = tau_u;
251
+ }
252
+ else
253
+ A.coeffRef(k-1,k) = tau_u_prev;
254
+
255
+ A.coeffRef(k,k) = tau_v;
256
+ }
257
+
258
+ if(bs<bcols)
259
+ A.coeffRef(bs-1,bs) = tau_u_prev;
260
+
261
+ // update A22
262
+ if(bcols>bs && brows>bs)
263
+ {
264
+ SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
265
+ SubMatType A10( A.block(bs,0, brows-bs,bs) );
266
+ SubMatType A01( A.block(0,bs, bs,bcols-bs) );
267
+ Scalar tmp = A01(bs-1,0);
268
+ A01(bs-1,0) = Literal(1);
269
+ A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
270
+ A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
271
+ A01(bs-1,0) = tmp;
272
+ }
273
+ }
274
+
275
+ /** \internal
276
+ *
277
+ * Implementation of a block-bidiagonal reduction.
278
+ * It is based on the following paper:
279
+ * The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form.
280
+ * by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995)
281
+ * section 3.3
282
+ */
283
+ template<typename MatrixType, typename BidiagType>
284
+ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
285
+ Index maxBlockSize=32,
286
+ typename MatrixType::Scalar* /*tempData*/ = 0)
287
+ {
288
+ typedef typename MatrixType::Scalar Scalar;
289
+ typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
290
+
291
+ Index rows = A.rows();
292
+ Index cols = A.cols();
293
+ Index size = (std::min)(rows, cols);
294
+
295
+ // X and Y are work space
296
+ enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
297
+ Matrix<Scalar,
298
+ MatrixType::RowsAtCompileTime,
299
+ Dynamic,
300
+ StorageOrder,
301
+ MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
302
+ Matrix<Scalar,
303
+ MatrixType::ColsAtCompileTime,
304
+ Dynamic,
305
+ StorageOrder,
306
+ MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
307
+ Index blockSize = (std::min)(maxBlockSize,size);
308
+
309
+ Index k = 0;
310
+ for(k = 0; k < size; k += blockSize)
311
+ {
312
+ Index bs = (std::min)(size-k,blockSize); // actual size of the block
313
+ Index brows = rows - k; // rows of the block
314
+ Index bcols = cols - k; // columns of the block
315
+
316
+ // partition the matrix A:
317
+ //
318
+ // | A00 A01 A02 |
319
+ // | |
320
+ // A = | A10 A11 A12 |
321
+ // | |
322
+ // | A20 A21 A22 |
323
+ //
324
+ // where A11 is a bs x bs diagonal block,
325
+ // and let:
326
+ // | A11 A12 |
327
+ // B = | |
328
+ // | A21 A22 |
329
+
330
+ BlockType B = A.block(k,k,brows,bcols);
331
+
332
+ // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
333
+ // Finally, the algorithm continue on the updated A22.
334
+ //
335
+ // However, if B is too small, or A22 empty, then let's use an unblocked strategy
336
+ if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
337
+ {
338
+ upperbidiagonalization_inplace_unblocked(B,
339
+ &(bidiagonal.template diagonal<0>().coeffRef(k)),
340
+ &(bidiagonal.template diagonal<1>().coeffRef(k)),
341
+ X.data()
342
+ );
343
+ break; // We're done
344
+ }
345
+ else
346
+ {
347
+ upperbidiagonalization_blocked_helper<BlockType>( B,
348
+ &(bidiagonal.template diagonal<0>().coeffRef(k)),
349
+ &(bidiagonal.template diagonal<1>().coeffRef(k)),
350
+ bs,
351
+ X.topLeftCorner(brows,bs),
352
+ Y.topLeftCorner(bcols,bs)
353
+ );
354
+ }
355
+ }
356
+ }
357
+
358
+ template<typename _MatrixType>
359
+ UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
360
+ {
361
+ Index rows = matrix.rows();
362
+ Index cols = matrix.cols();
363
+ EIGEN_ONLY_USED_FOR_DEBUG(cols);
364
+
365
+ eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
366
+
367
+ m_householder = matrix;
368
+
369
+ ColVectorType temp(rows);
370
+
371
+ upperbidiagonalization_inplace_unblocked(m_householder,
372
+ &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
373
+ &(m_bidiagonal.template diagonal<1>().coeffRef(0)),
374
+ temp.data());
375
+
376
+ m_isInitialized = true;
377
+ return *this;
378
+ }
379
+
380
+ template<typename _MatrixType>
381
+ UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
382
+ {
383
+ Index rows = matrix.rows();
384
+ Index cols = matrix.cols();
385
+ EIGEN_ONLY_USED_FOR_DEBUG(rows);
386
+ EIGEN_ONLY_USED_FOR_DEBUG(cols);
387
+
388
+ eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
389
+
390
+ m_householder = matrix;
391
+ upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
392
+
393
+ m_isInitialized = true;
394
+ return *this;
395
+ }
396
+
397
+ #if 0
398
+ /** \return the Householder QR decomposition of \c *this.
399
+ *
400
+ * \sa class Bidiagonalization
401
+ */
402
+ template<typename Derived>
403
+ const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
404
+ MatrixBase<Derived>::bidiagonalization() const
405
+ {
406
+ return UpperBidiagonalization<PlainObject>(eval());
407
+ }
408
+ #endif
409
+
410
+ } // end namespace internal
411
+
412
+ } // end namespace Eigen
413
+
414
+ #endif // EIGEN_BIDIAGONALIZATION_H