tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,91 @@
1
+ /*
2
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without modification,
5
+ are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+ * Redistributions in binary form must reproduce the above copyright notice,
10
+ this list of conditions and the following disclaimer in the documentation
11
+ and/or other materials provided with the distribution.
12
+ * Neither the name of Intel Corporation nor the names of its contributors may
13
+ be used to endorse or promote products derived from this software without
14
+ specific prior written permission.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
+
27
+ ********************************************************************************
28
+ * Content : Eigen bindings to LAPACKe
29
+ * Complex Schur needed to complex unsymmetrical eigenvalues/eigenvectors.
30
+ ********************************************************************************
31
+ */
32
+
33
+ #ifndef EIGEN_COMPLEX_SCHUR_LAPACKE_H
34
+ #define EIGEN_COMPLEX_SCHUR_LAPACKE_H
35
+
36
+ namespace Eigen {
37
+
38
+ /** \internal Specialization for the data types supported by LAPACKe */
39
+
40
+ #define EIGEN_LAPACKE_SCHUR_COMPLEX(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
41
+ template<> template<typename InputType> inline \
42
+ ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
43
+ ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
44
+ { \
45
+ typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
46
+ typedef MatrixType::RealScalar RealScalar; \
47
+ typedef std::complex<RealScalar> ComplexScalar; \
48
+ \
49
+ eigen_assert(matrix.cols() == matrix.rows()); \
50
+ \
51
+ m_matUisUptodate = false; \
52
+ if(matrix.cols() == 1) \
53
+ { \
54
+ m_matT = matrix.derived().template cast<ComplexScalar>(); \
55
+ if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \
56
+ m_info = Success; \
57
+ m_isInitialized = true; \
58
+ m_matUisUptodate = computeU; \
59
+ return *this; \
60
+ } \
61
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
62
+ lapack_int matrix_order = LAPACKE_COLROW; \
63
+ char jobvs, sort='N'; \
64
+ LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \
65
+ jobvs = (computeU) ? 'V' : 'N'; \
66
+ m_matU.resize(n, n); \
67
+ lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
68
+ m_matT = matrix; \
69
+ lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
70
+ Matrix<EIGTYPE, Dynamic, Dynamic> w; \
71
+ w.resize(n, 1);\
72
+ info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
73
+ if(info == 0) \
74
+ m_info = Success; \
75
+ else \
76
+ m_info = NoConvergence; \
77
+ \
78
+ m_isInitialized = true; \
79
+ m_matUisUptodate = computeU; \
80
+ return *this; \
81
+ \
82
+ }
83
+
84
+ EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR)
85
+ EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR)
86
+ EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR)
87
+ EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR)
88
+
89
+ } // end namespace Eigen
90
+
91
+ #endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H
@@ -0,0 +1,622 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_EIGENSOLVER_H
12
+ #define EIGEN_EIGENSOLVER_H
13
+
14
+ #include "./RealSchur.h"
15
+
16
+ namespace Eigen {
17
+
18
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
19
+ *
20
+ *
21
+ * \class EigenSolver
22
+ *
23
+ * \brief Computes eigenvalues and eigenvectors of general matrices
24
+ *
25
+ * \tparam _MatrixType the type of the matrix of which we are computing the
26
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
27
+ * class template. Currently, only real matrices are supported.
28
+ *
29
+ * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
31
+ * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32
+ * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33
+ * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34
+ * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35
+ *
36
+ * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37
+ * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38
+ * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39
+ * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40
+ * have blocks of the form
41
+ * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42
+ * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
43
+ * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44
+ * this variant of the eigendecomposition the pseudo-eigendecomposition.
45
+ *
46
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
47
+ * a given matrix. Alternatively, you can use the
48
+ * EigenSolver(const MatrixType&, bool) constructor which computes the
49
+ * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50
+ * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51
+ * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52
+ * pseudoEigenvectors() methods allow the construction of the
53
+ * pseudo-eigendecomposition.
54
+ *
55
+ * The documentation for EigenSolver(const MatrixType&, bool) contains an
56
+ * example of the typical use of this class.
57
+ *
58
+ * \note The implementation is adapted from
59
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60
+ * Their code is based on EISPACK.
61
+ *
62
+ * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63
+ */
64
+ template<typename _MatrixType> class EigenSolver
65
+ {
66
+ public:
67
+
68
+ /** \brief Synonym for the template parameter \p _MatrixType. */
69
+ typedef _MatrixType MatrixType;
70
+
71
+ enum {
72
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74
+ Options = MatrixType::Options,
75
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77
+ };
78
+
79
+ /** \brief Scalar type for matrices of type #MatrixType. */
80
+ typedef typename MatrixType::Scalar Scalar;
81
+ typedef typename NumTraits<Scalar>::Real RealScalar;
82
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
83
+
84
+ /** \brief Complex scalar type for #MatrixType.
85
+ *
86
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87
+ * \c float or \c double) and just \c Scalar if #Scalar is
88
+ * complex.
89
+ */
90
+ typedef std::complex<RealScalar> ComplexScalar;
91
+
92
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93
+ *
94
+ * This is a column vector with entries of type #ComplexScalar.
95
+ * The length of the vector is the size of #MatrixType.
96
+ */
97
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98
+
99
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100
+ *
101
+ * This is a square matrix with entries of type #ComplexScalar.
102
+ * The size is the same as the size of #MatrixType.
103
+ */
104
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105
+
106
+ /** \brief Default constructor.
107
+ *
108
+ * The default constructor is useful in cases in which the user intends to
109
+ * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110
+ *
111
+ * \sa compute() for an example.
112
+ */
113
+ EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114
+
115
+ /** \brief Default constructor with memory preallocation
116
+ *
117
+ * Like the default constructor but with preallocation of the internal data
118
+ * according to the specified problem \a size.
119
+ * \sa EigenSolver()
120
+ */
121
+ explicit EigenSolver(Index size)
122
+ : m_eivec(size, size),
123
+ m_eivalues(size),
124
+ m_isInitialized(false),
125
+ m_eigenvectorsOk(false),
126
+ m_realSchur(size),
127
+ m_matT(size, size),
128
+ m_tmp(size)
129
+ {}
130
+
131
+ /** \brief Constructor; computes eigendecomposition of given matrix.
132
+ *
133
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
134
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
135
+ * eigenvalues are computed; if false, only the eigenvalues are
136
+ * computed.
137
+ *
138
+ * This constructor calls compute() to compute the eigenvalues
139
+ * and eigenvectors.
140
+ *
141
+ * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142
+ * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143
+ *
144
+ * \sa compute()
145
+ */
146
+ template<typename InputType>
147
+ explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
148
+ : m_eivec(matrix.rows(), matrix.cols()),
149
+ m_eivalues(matrix.cols()),
150
+ m_isInitialized(false),
151
+ m_eigenvectorsOk(false),
152
+ m_realSchur(matrix.cols()),
153
+ m_matT(matrix.rows(), matrix.cols()),
154
+ m_tmp(matrix.cols())
155
+ {
156
+ compute(matrix.derived(), computeEigenvectors);
157
+ }
158
+
159
+ /** \brief Returns the eigenvectors of given matrix.
160
+ *
161
+ * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
162
+ *
163
+ * \pre Either the constructor
164
+ * EigenSolver(const MatrixType&,bool) or the member function
165
+ * compute(const MatrixType&, bool) has been called before, and
166
+ * \p computeEigenvectors was set to true (the default).
167
+ *
168
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
169
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
170
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. The
171
+ * matrix returned by this function is the matrix \f$ V \f$ in the
172
+ * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
173
+ *
174
+ * Example: \include EigenSolver_eigenvectors.cpp
175
+ * Output: \verbinclude EigenSolver_eigenvectors.out
176
+ *
177
+ * \sa eigenvalues(), pseudoEigenvectors()
178
+ */
179
+ EigenvectorsType eigenvectors() const;
180
+
181
+ /** \brief Returns the pseudo-eigenvectors of given matrix.
182
+ *
183
+ * \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
184
+ *
185
+ * \pre Either the constructor
186
+ * EigenSolver(const MatrixType&,bool) or the member function
187
+ * compute(const MatrixType&, bool) has been called before, and
188
+ * \p computeEigenvectors was set to true (the default).
189
+ *
190
+ * The real matrix \f$ V \f$ returned by this function and the
191
+ * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
192
+ * satisfy \f$ AV = VD \f$.
193
+ *
194
+ * Example: \include EigenSolver_pseudoEigenvectors.cpp
195
+ * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
196
+ *
197
+ * \sa pseudoEigenvalueMatrix(), eigenvectors()
198
+ */
199
+ const MatrixType& pseudoEigenvectors() const
200
+ {
201
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
202
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
203
+ return m_eivec;
204
+ }
205
+
206
+ /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
207
+ *
208
+ * \returns A block-diagonal matrix.
209
+ *
210
+ * \pre Either the constructor
211
+ * EigenSolver(const MatrixType&,bool) or the member function
212
+ * compute(const MatrixType&, bool) has been called before.
213
+ *
214
+ * The matrix \f$ D \f$ returned by this function is real and
215
+ * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
216
+ * blocks of the form
217
+ * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
218
+ * These blocks are not sorted in any particular order.
219
+ * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
220
+ * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
221
+ *
222
+ * \sa pseudoEigenvectors() for an example, eigenvalues()
223
+ */
224
+ MatrixType pseudoEigenvalueMatrix() const;
225
+
226
+ /** \brief Returns the eigenvalues of given matrix.
227
+ *
228
+ * \returns A const reference to the column vector containing the eigenvalues.
229
+ *
230
+ * \pre Either the constructor
231
+ * EigenSolver(const MatrixType&,bool) or the member function
232
+ * compute(const MatrixType&, bool) has been called before.
233
+ *
234
+ * The eigenvalues are repeated according to their algebraic multiplicity,
235
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
236
+ * are not sorted in any particular order.
237
+ *
238
+ * Example: \include EigenSolver_eigenvalues.cpp
239
+ * Output: \verbinclude EigenSolver_eigenvalues.out
240
+ *
241
+ * \sa eigenvectors(), pseudoEigenvalueMatrix(),
242
+ * MatrixBase::eigenvalues()
243
+ */
244
+ const EigenvalueType& eigenvalues() const
245
+ {
246
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
247
+ return m_eivalues;
248
+ }
249
+
250
+ /** \brief Computes eigendecomposition of given matrix.
251
+ *
252
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
253
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
254
+ * eigenvalues are computed; if false, only the eigenvalues are
255
+ * computed.
256
+ * \returns Reference to \c *this
257
+ *
258
+ * This function computes the eigenvalues of the real matrix \p matrix.
259
+ * The eigenvalues() function can be used to retrieve them. If
260
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
261
+ * and can be retrieved by calling eigenvectors().
262
+ *
263
+ * The matrix is first reduced to real Schur form using the RealSchur
264
+ * class. The Schur decomposition is then used to compute the eigenvalues
265
+ * and eigenvectors.
266
+ *
267
+ * The cost of the computation is dominated by the cost of the
268
+ * Schur decomposition, which is very approximately \f$ 25n^3 \f$
269
+ * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
270
+ * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
271
+ *
272
+ * This method reuses of the allocated data in the EigenSolver object.
273
+ *
274
+ * Example: \include EigenSolver_compute.cpp
275
+ * Output: \verbinclude EigenSolver_compute.out
276
+ */
277
+ template<typename InputType>
278
+ EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
279
+
280
+ /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
281
+ ComputationInfo info() const
282
+ {
283
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
284
+ return m_info;
285
+ }
286
+
287
+ /** \brief Sets the maximum number of iterations allowed. */
288
+ EigenSolver& setMaxIterations(Index maxIters)
289
+ {
290
+ m_realSchur.setMaxIterations(maxIters);
291
+ return *this;
292
+ }
293
+
294
+ /** \brief Returns the maximum number of iterations. */
295
+ Index getMaxIterations()
296
+ {
297
+ return m_realSchur.getMaxIterations();
298
+ }
299
+
300
+ private:
301
+ void doComputeEigenvectors();
302
+
303
+ protected:
304
+
305
+ static void check_template_parameters()
306
+ {
307
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
308
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
309
+ }
310
+
311
+ MatrixType m_eivec;
312
+ EigenvalueType m_eivalues;
313
+ bool m_isInitialized;
314
+ bool m_eigenvectorsOk;
315
+ ComputationInfo m_info;
316
+ RealSchur<MatrixType> m_realSchur;
317
+ MatrixType m_matT;
318
+
319
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
320
+ ColumnVectorType m_tmp;
321
+ };
322
+
323
+ template<typename MatrixType>
324
+ MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
325
+ {
326
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
327
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
328
+ Index n = m_eivalues.rows();
329
+ MatrixType matD = MatrixType::Zero(n,n);
330
+ for (Index i=0; i<n; ++i)
331
+ {
332
+ if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
333
+ matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
334
+ else
335
+ {
336
+ matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
337
+ -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
338
+ ++i;
339
+ }
340
+ }
341
+ return matD;
342
+ }
343
+
344
+ template<typename MatrixType>
345
+ typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
346
+ {
347
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
348
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
349
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
350
+ Index n = m_eivec.cols();
351
+ EigenvectorsType matV(n,n);
352
+ for (Index j=0; j<n; ++j)
353
+ {
354
+ if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
355
+ {
356
+ // we have a real eigen value
357
+ matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
358
+ matV.col(j).normalize();
359
+ }
360
+ else
361
+ {
362
+ // we have a pair of complex eigen values
363
+ for (Index i=0; i<n; ++i)
364
+ {
365
+ matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
366
+ matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
367
+ }
368
+ matV.col(j).normalize();
369
+ matV.col(j+1).normalize();
370
+ ++j;
371
+ }
372
+ }
373
+ return matV;
374
+ }
375
+
376
+ template<typename MatrixType>
377
+ template<typename InputType>
378
+ EigenSolver<MatrixType>&
379
+ EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
380
+ {
381
+ check_template_parameters();
382
+
383
+ using std::sqrt;
384
+ using std::abs;
385
+ using numext::isfinite;
386
+ eigen_assert(matrix.cols() == matrix.rows());
387
+
388
+ // Reduce to real Schur form.
389
+ m_realSchur.compute(matrix.derived(), computeEigenvectors);
390
+
391
+ m_info = m_realSchur.info();
392
+
393
+ if (m_info == Success)
394
+ {
395
+ m_matT = m_realSchur.matrixT();
396
+ if (computeEigenvectors)
397
+ m_eivec = m_realSchur.matrixU();
398
+
399
+ // Compute eigenvalues from matT
400
+ m_eivalues.resize(matrix.cols());
401
+ Index i = 0;
402
+ while (i < matrix.cols())
403
+ {
404
+ if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
405
+ {
406
+ m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
407
+ if(!(isfinite)(m_eivalues.coeffRef(i)))
408
+ {
409
+ m_isInitialized = true;
410
+ m_eigenvectorsOk = false;
411
+ m_info = NumericalIssue;
412
+ return *this;
413
+ }
414
+ ++i;
415
+ }
416
+ else
417
+ {
418
+ Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
419
+ Scalar z;
420
+ // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
421
+ // without overflow
422
+ {
423
+ Scalar t0 = m_matT.coeff(i+1, i);
424
+ Scalar t1 = m_matT.coeff(i, i+1);
425
+ Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
426
+ t0 /= maxval;
427
+ t1 /= maxval;
428
+ Scalar p0 = p/maxval;
429
+ z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
430
+ }
431
+
432
+ m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
433
+ m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
434
+ if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
435
+ {
436
+ m_isInitialized = true;
437
+ m_eigenvectorsOk = false;
438
+ m_info = NumericalIssue;
439
+ return *this;
440
+ }
441
+ i += 2;
442
+ }
443
+ }
444
+
445
+ // Compute eigenvectors.
446
+ if (computeEigenvectors)
447
+ doComputeEigenvectors();
448
+ }
449
+
450
+ m_isInitialized = true;
451
+ m_eigenvectorsOk = computeEigenvectors;
452
+
453
+ return *this;
454
+ }
455
+
456
+
457
+ template<typename MatrixType>
458
+ void EigenSolver<MatrixType>::doComputeEigenvectors()
459
+ {
460
+ using std::abs;
461
+ const Index size = m_eivec.cols();
462
+ const Scalar eps = NumTraits<Scalar>::epsilon();
463
+
464
+ // inefficient! this is already computed in RealSchur
465
+ Scalar norm(0);
466
+ for (Index j = 0; j < size; ++j)
467
+ {
468
+ norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
469
+ }
470
+
471
+ // Backsubstitute to find vectors of upper triangular form
472
+ if (norm == Scalar(0))
473
+ {
474
+ return;
475
+ }
476
+
477
+ for (Index n = size-1; n >= 0; n--)
478
+ {
479
+ Scalar p = m_eivalues.coeff(n).real();
480
+ Scalar q = m_eivalues.coeff(n).imag();
481
+
482
+ // Scalar vector
483
+ if (q == Scalar(0))
484
+ {
485
+ Scalar lastr(0), lastw(0);
486
+ Index l = n;
487
+
488
+ m_matT.coeffRef(n,n) = Scalar(1);
489
+ for (Index i = n-1; i >= 0; i--)
490
+ {
491
+ Scalar w = m_matT.coeff(i,i) - p;
492
+ Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
493
+
494
+ if (m_eivalues.coeff(i).imag() < Scalar(0))
495
+ {
496
+ lastw = w;
497
+ lastr = r;
498
+ }
499
+ else
500
+ {
501
+ l = i;
502
+ if (m_eivalues.coeff(i).imag() == Scalar(0))
503
+ {
504
+ if (w != Scalar(0))
505
+ m_matT.coeffRef(i,n) = -r / w;
506
+ else
507
+ m_matT.coeffRef(i,n) = -r / (eps * norm);
508
+ }
509
+ else // Solve real equations
510
+ {
511
+ Scalar x = m_matT.coeff(i,i+1);
512
+ Scalar y = m_matT.coeff(i+1,i);
513
+ Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
514
+ Scalar t = (x * lastr - lastw * r) / denom;
515
+ m_matT.coeffRef(i,n) = t;
516
+ if (abs(x) > abs(lastw))
517
+ m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
518
+ else
519
+ m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
520
+ }
521
+
522
+ // Overflow control
523
+ Scalar t = abs(m_matT.coeff(i,n));
524
+ if ((eps * t) * t > Scalar(1))
525
+ m_matT.col(n).tail(size-i) /= t;
526
+ }
527
+ }
528
+ }
529
+ else if (q < Scalar(0) && n > 0) // Complex vector
530
+ {
531
+ Scalar lastra(0), lastsa(0), lastw(0);
532
+ Index l = n-1;
533
+
534
+ // Last vector component imaginary so matrix is triangular
535
+ if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
536
+ {
537
+ m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
538
+ m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
539
+ }
540
+ else
541
+ {
542
+ ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
543
+ m_matT.coeffRef(n-1,n-1) = numext::real(cc);
544
+ m_matT.coeffRef(n-1,n) = numext::imag(cc);
545
+ }
546
+ m_matT.coeffRef(n,n-1) = Scalar(0);
547
+ m_matT.coeffRef(n,n) = Scalar(1);
548
+ for (Index i = n-2; i >= 0; i--)
549
+ {
550
+ Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
551
+ Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
552
+ Scalar w = m_matT.coeff(i,i) - p;
553
+
554
+ if (m_eivalues.coeff(i).imag() < Scalar(0))
555
+ {
556
+ lastw = w;
557
+ lastra = ra;
558
+ lastsa = sa;
559
+ }
560
+ else
561
+ {
562
+ l = i;
563
+ if (m_eivalues.coeff(i).imag() == RealScalar(0))
564
+ {
565
+ ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
566
+ m_matT.coeffRef(i,n-1) = numext::real(cc);
567
+ m_matT.coeffRef(i,n) = numext::imag(cc);
568
+ }
569
+ else
570
+ {
571
+ // Solve complex equations
572
+ Scalar x = m_matT.coeff(i,i+1);
573
+ Scalar y = m_matT.coeff(i+1,i);
574
+ Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
575
+ Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
576
+ if ((vr == Scalar(0)) && (vi == Scalar(0)))
577
+ vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
578
+
579
+ ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
580
+ m_matT.coeffRef(i,n-1) = numext::real(cc);
581
+ m_matT.coeffRef(i,n) = numext::imag(cc);
582
+ if (abs(x) > (abs(lastw) + abs(q)))
583
+ {
584
+ m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
585
+ m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
586
+ }
587
+ else
588
+ {
589
+ cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
590
+ m_matT.coeffRef(i+1,n-1) = numext::real(cc);
591
+ m_matT.coeffRef(i+1,n) = numext::imag(cc);
592
+ }
593
+ }
594
+
595
+ // Overflow control
596
+ Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
597
+ if ((eps * t) * t > Scalar(1))
598
+ m_matT.block(i, n-1, size-i, 2) /= t;
599
+
600
+ }
601
+ }
602
+
603
+ // We handled a pair of complex conjugate eigenvalues, so need to skip them both
604
+ n--;
605
+ }
606
+ else
607
+ {
608
+ eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
609
+ }
610
+ }
611
+
612
+ // Back transformation to get eigenvectors of original matrix
613
+ for (Index j = size-1; j >= 0; j--)
614
+ {
615
+ m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
616
+ m_eivec.col(j) = m_tmp;
617
+ }
618
+ }
619
+
620
+ } // end namespace Eigen
621
+
622
+ #endif // EIGEN_EIGENSOLVER_H