tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,91 @@
|
|
1
|
+
/*
|
2
|
+
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
this list of conditions and the following disclaimer in the documentation
|
11
|
+
and/or other materials provided with the distribution.
|
12
|
+
* Neither the name of Intel Corporation nor the names of its contributors may
|
13
|
+
be used to endorse or promote products derived from this software without
|
14
|
+
specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
20
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
21
|
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
22
|
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
23
|
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
24
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
25
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
|
27
|
+
********************************************************************************
|
28
|
+
* Content : Eigen bindings to LAPACKe
|
29
|
+
* Complex Schur needed to complex unsymmetrical eigenvalues/eigenvectors.
|
30
|
+
********************************************************************************
|
31
|
+
*/
|
32
|
+
|
33
|
+
#ifndef EIGEN_COMPLEX_SCHUR_LAPACKE_H
|
34
|
+
#define EIGEN_COMPLEX_SCHUR_LAPACKE_H
|
35
|
+
|
36
|
+
namespace Eigen {
|
37
|
+
|
38
|
+
/** \internal Specialization for the data types supported by LAPACKe */
|
39
|
+
|
40
|
+
#define EIGEN_LAPACKE_SCHUR_COMPLEX(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
|
41
|
+
template<> template<typename InputType> inline \
|
42
|
+
ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
|
43
|
+
ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
|
44
|
+
{ \
|
45
|
+
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
|
46
|
+
typedef MatrixType::RealScalar RealScalar; \
|
47
|
+
typedef std::complex<RealScalar> ComplexScalar; \
|
48
|
+
\
|
49
|
+
eigen_assert(matrix.cols() == matrix.rows()); \
|
50
|
+
\
|
51
|
+
m_matUisUptodate = false; \
|
52
|
+
if(matrix.cols() == 1) \
|
53
|
+
{ \
|
54
|
+
m_matT = matrix.derived().template cast<ComplexScalar>(); \
|
55
|
+
if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \
|
56
|
+
m_info = Success; \
|
57
|
+
m_isInitialized = true; \
|
58
|
+
m_matUisUptodate = computeU; \
|
59
|
+
return *this; \
|
60
|
+
} \
|
61
|
+
lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
|
62
|
+
lapack_int matrix_order = LAPACKE_COLROW; \
|
63
|
+
char jobvs, sort='N'; \
|
64
|
+
LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \
|
65
|
+
jobvs = (computeU) ? 'V' : 'N'; \
|
66
|
+
m_matU.resize(n, n); \
|
67
|
+
lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
|
68
|
+
m_matT = matrix; \
|
69
|
+
lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
|
70
|
+
Matrix<EIGTYPE, Dynamic, Dynamic> w; \
|
71
|
+
w.resize(n, 1);\
|
72
|
+
info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
|
73
|
+
if(info == 0) \
|
74
|
+
m_info = Success; \
|
75
|
+
else \
|
76
|
+
m_info = NoConvergence; \
|
77
|
+
\
|
78
|
+
m_isInitialized = true; \
|
79
|
+
m_matUisUptodate = computeU; \
|
80
|
+
return *this; \
|
81
|
+
\
|
82
|
+
}
|
83
|
+
|
84
|
+
EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR)
|
85
|
+
EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR)
|
86
|
+
EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR)
|
87
|
+
EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR)
|
88
|
+
|
89
|
+
} // end namespace Eigen
|
90
|
+
|
91
|
+
#endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H
|
@@ -0,0 +1,622 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_EIGENSOLVER_H
|
12
|
+
#define EIGEN_EIGENSOLVER_H
|
13
|
+
|
14
|
+
#include "./RealSchur.h"
|
15
|
+
|
16
|
+
namespace Eigen {
|
17
|
+
|
18
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
19
|
+
*
|
20
|
+
*
|
21
|
+
* \class EigenSolver
|
22
|
+
*
|
23
|
+
* \brief Computes eigenvalues and eigenvectors of general matrices
|
24
|
+
*
|
25
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the
|
26
|
+
* eigendecomposition; this is expected to be an instantiation of the Matrix
|
27
|
+
* class template. Currently, only real matrices are supported.
|
28
|
+
*
|
29
|
+
* The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
|
30
|
+
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
|
31
|
+
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
|
32
|
+
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
|
33
|
+
* V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
|
34
|
+
* have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
|
35
|
+
*
|
36
|
+
* The eigenvalues and eigenvectors of a matrix may be complex, even when the
|
37
|
+
* matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
|
38
|
+
* \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
|
39
|
+
* matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
|
40
|
+
* have blocks of the form
|
41
|
+
* \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
|
42
|
+
* (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
|
43
|
+
* blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
|
44
|
+
* this variant of the eigendecomposition the pseudo-eigendecomposition.
|
45
|
+
*
|
46
|
+
* Call the function compute() to compute the eigenvalues and eigenvectors of
|
47
|
+
* a given matrix. Alternatively, you can use the
|
48
|
+
* EigenSolver(const MatrixType&, bool) constructor which computes the
|
49
|
+
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
|
50
|
+
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
|
51
|
+
* eigenvectors() functions. The pseudoEigenvalueMatrix() and
|
52
|
+
* pseudoEigenvectors() methods allow the construction of the
|
53
|
+
* pseudo-eigendecomposition.
|
54
|
+
*
|
55
|
+
* The documentation for EigenSolver(const MatrixType&, bool) contains an
|
56
|
+
* example of the typical use of this class.
|
57
|
+
*
|
58
|
+
* \note The implementation is adapted from
|
59
|
+
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
|
60
|
+
* Their code is based on EISPACK.
|
61
|
+
*
|
62
|
+
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
63
|
+
*/
|
64
|
+
template<typename _MatrixType> class EigenSolver
|
65
|
+
{
|
66
|
+
public:
|
67
|
+
|
68
|
+
/** \brief Synonym for the template parameter \p _MatrixType. */
|
69
|
+
typedef _MatrixType MatrixType;
|
70
|
+
|
71
|
+
enum {
|
72
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
73
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
74
|
+
Options = MatrixType::Options,
|
75
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
76
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
77
|
+
};
|
78
|
+
|
79
|
+
/** \brief Scalar type for matrices of type #MatrixType. */
|
80
|
+
typedef typename MatrixType::Scalar Scalar;
|
81
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
82
|
+
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
83
|
+
|
84
|
+
/** \brief Complex scalar type for #MatrixType.
|
85
|
+
*
|
86
|
+
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
87
|
+
* \c float or \c double) and just \c Scalar if #Scalar is
|
88
|
+
* complex.
|
89
|
+
*/
|
90
|
+
typedef std::complex<RealScalar> ComplexScalar;
|
91
|
+
|
92
|
+
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
93
|
+
*
|
94
|
+
* This is a column vector with entries of type #ComplexScalar.
|
95
|
+
* The length of the vector is the size of #MatrixType.
|
96
|
+
*/
|
97
|
+
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
|
98
|
+
|
99
|
+
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
100
|
+
*
|
101
|
+
* This is a square matrix with entries of type #ComplexScalar.
|
102
|
+
* The size is the same as the size of #MatrixType.
|
103
|
+
*/
|
104
|
+
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
|
105
|
+
|
106
|
+
/** \brief Default constructor.
|
107
|
+
*
|
108
|
+
* The default constructor is useful in cases in which the user intends to
|
109
|
+
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
|
110
|
+
*
|
111
|
+
* \sa compute() for an example.
|
112
|
+
*/
|
113
|
+
EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
|
114
|
+
|
115
|
+
/** \brief Default constructor with memory preallocation
|
116
|
+
*
|
117
|
+
* Like the default constructor but with preallocation of the internal data
|
118
|
+
* according to the specified problem \a size.
|
119
|
+
* \sa EigenSolver()
|
120
|
+
*/
|
121
|
+
explicit EigenSolver(Index size)
|
122
|
+
: m_eivec(size, size),
|
123
|
+
m_eivalues(size),
|
124
|
+
m_isInitialized(false),
|
125
|
+
m_eigenvectorsOk(false),
|
126
|
+
m_realSchur(size),
|
127
|
+
m_matT(size, size),
|
128
|
+
m_tmp(size)
|
129
|
+
{}
|
130
|
+
|
131
|
+
/** \brief Constructor; computes eigendecomposition of given matrix.
|
132
|
+
*
|
133
|
+
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
134
|
+
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
135
|
+
* eigenvalues are computed; if false, only the eigenvalues are
|
136
|
+
* computed.
|
137
|
+
*
|
138
|
+
* This constructor calls compute() to compute the eigenvalues
|
139
|
+
* and eigenvectors.
|
140
|
+
*
|
141
|
+
* Example: \include EigenSolver_EigenSolver_MatrixType.cpp
|
142
|
+
* Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
|
143
|
+
*
|
144
|
+
* \sa compute()
|
145
|
+
*/
|
146
|
+
template<typename InputType>
|
147
|
+
explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
|
148
|
+
: m_eivec(matrix.rows(), matrix.cols()),
|
149
|
+
m_eivalues(matrix.cols()),
|
150
|
+
m_isInitialized(false),
|
151
|
+
m_eigenvectorsOk(false),
|
152
|
+
m_realSchur(matrix.cols()),
|
153
|
+
m_matT(matrix.rows(), matrix.cols()),
|
154
|
+
m_tmp(matrix.cols())
|
155
|
+
{
|
156
|
+
compute(matrix.derived(), computeEigenvectors);
|
157
|
+
}
|
158
|
+
|
159
|
+
/** \brief Returns the eigenvectors of given matrix.
|
160
|
+
*
|
161
|
+
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
|
162
|
+
*
|
163
|
+
* \pre Either the constructor
|
164
|
+
* EigenSolver(const MatrixType&,bool) or the member function
|
165
|
+
* compute(const MatrixType&, bool) has been called before, and
|
166
|
+
* \p computeEigenvectors was set to true (the default).
|
167
|
+
*
|
168
|
+
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
|
169
|
+
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
|
170
|
+
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
|
171
|
+
* matrix returned by this function is the matrix \f$ V \f$ in the
|
172
|
+
* eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
|
173
|
+
*
|
174
|
+
* Example: \include EigenSolver_eigenvectors.cpp
|
175
|
+
* Output: \verbinclude EigenSolver_eigenvectors.out
|
176
|
+
*
|
177
|
+
* \sa eigenvalues(), pseudoEigenvectors()
|
178
|
+
*/
|
179
|
+
EigenvectorsType eigenvectors() const;
|
180
|
+
|
181
|
+
/** \brief Returns the pseudo-eigenvectors of given matrix.
|
182
|
+
*
|
183
|
+
* \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
|
184
|
+
*
|
185
|
+
* \pre Either the constructor
|
186
|
+
* EigenSolver(const MatrixType&,bool) or the member function
|
187
|
+
* compute(const MatrixType&, bool) has been called before, and
|
188
|
+
* \p computeEigenvectors was set to true (the default).
|
189
|
+
*
|
190
|
+
* The real matrix \f$ V \f$ returned by this function and the
|
191
|
+
* block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
|
192
|
+
* satisfy \f$ AV = VD \f$.
|
193
|
+
*
|
194
|
+
* Example: \include EigenSolver_pseudoEigenvectors.cpp
|
195
|
+
* Output: \verbinclude EigenSolver_pseudoEigenvectors.out
|
196
|
+
*
|
197
|
+
* \sa pseudoEigenvalueMatrix(), eigenvectors()
|
198
|
+
*/
|
199
|
+
const MatrixType& pseudoEigenvectors() const
|
200
|
+
{
|
201
|
+
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
202
|
+
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
203
|
+
return m_eivec;
|
204
|
+
}
|
205
|
+
|
206
|
+
/** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
|
207
|
+
*
|
208
|
+
* \returns A block-diagonal matrix.
|
209
|
+
*
|
210
|
+
* \pre Either the constructor
|
211
|
+
* EigenSolver(const MatrixType&,bool) or the member function
|
212
|
+
* compute(const MatrixType&, bool) has been called before.
|
213
|
+
*
|
214
|
+
* The matrix \f$ D \f$ returned by this function is real and
|
215
|
+
* block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
|
216
|
+
* blocks of the form
|
217
|
+
* \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
|
218
|
+
* These blocks are not sorted in any particular order.
|
219
|
+
* The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
|
220
|
+
* pseudoEigenvectors() satisfy \f$ AV = VD \f$.
|
221
|
+
*
|
222
|
+
* \sa pseudoEigenvectors() for an example, eigenvalues()
|
223
|
+
*/
|
224
|
+
MatrixType pseudoEigenvalueMatrix() const;
|
225
|
+
|
226
|
+
/** \brief Returns the eigenvalues of given matrix.
|
227
|
+
*
|
228
|
+
* \returns A const reference to the column vector containing the eigenvalues.
|
229
|
+
*
|
230
|
+
* \pre Either the constructor
|
231
|
+
* EigenSolver(const MatrixType&,bool) or the member function
|
232
|
+
* compute(const MatrixType&, bool) has been called before.
|
233
|
+
*
|
234
|
+
* The eigenvalues are repeated according to their algebraic multiplicity,
|
235
|
+
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
236
|
+
* are not sorted in any particular order.
|
237
|
+
*
|
238
|
+
* Example: \include EigenSolver_eigenvalues.cpp
|
239
|
+
* Output: \verbinclude EigenSolver_eigenvalues.out
|
240
|
+
*
|
241
|
+
* \sa eigenvectors(), pseudoEigenvalueMatrix(),
|
242
|
+
* MatrixBase::eigenvalues()
|
243
|
+
*/
|
244
|
+
const EigenvalueType& eigenvalues() const
|
245
|
+
{
|
246
|
+
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
247
|
+
return m_eivalues;
|
248
|
+
}
|
249
|
+
|
250
|
+
/** \brief Computes eigendecomposition of given matrix.
|
251
|
+
*
|
252
|
+
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
253
|
+
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
254
|
+
* eigenvalues are computed; if false, only the eigenvalues are
|
255
|
+
* computed.
|
256
|
+
* \returns Reference to \c *this
|
257
|
+
*
|
258
|
+
* This function computes the eigenvalues of the real matrix \p matrix.
|
259
|
+
* The eigenvalues() function can be used to retrieve them. If
|
260
|
+
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
261
|
+
* and can be retrieved by calling eigenvectors().
|
262
|
+
*
|
263
|
+
* The matrix is first reduced to real Schur form using the RealSchur
|
264
|
+
* class. The Schur decomposition is then used to compute the eigenvalues
|
265
|
+
* and eigenvectors.
|
266
|
+
*
|
267
|
+
* The cost of the computation is dominated by the cost of the
|
268
|
+
* Schur decomposition, which is very approximately \f$ 25n^3 \f$
|
269
|
+
* (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
|
270
|
+
* is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
|
271
|
+
*
|
272
|
+
* This method reuses of the allocated data in the EigenSolver object.
|
273
|
+
*
|
274
|
+
* Example: \include EigenSolver_compute.cpp
|
275
|
+
* Output: \verbinclude EigenSolver_compute.out
|
276
|
+
*/
|
277
|
+
template<typename InputType>
|
278
|
+
EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
|
279
|
+
|
280
|
+
/** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
|
281
|
+
ComputationInfo info() const
|
282
|
+
{
|
283
|
+
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
284
|
+
return m_info;
|
285
|
+
}
|
286
|
+
|
287
|
+
/** \brief Sets the maximum number of iterations allowed. */
|
288
|
+
EigenSolver& setMaxIterations(Index maxIters)
|
289
|
+
{
|
290
|
+
m_realSchur.setMaxIterations(maxIters);
|
291
|
+
return *this;
|
292
|
+
}
|
293
|
+
|
294
|
+
/** \brief Returns the maximum number of iterations. */
|
295
|
+
Index getMaxIterations()
|
296
|
+
{
|
297
|
+
return m_realSchur.getMaxIterations();
|
298
|
+
}
|
299
|
+
|
300
|
+
private:
|
301
|
+
void doComputeEigenvectors();
|
302
|
+
|
303
|
+
protected:
|
304
|
+
|
305
|
+
static void check_template_parameters()
|
306
|
+
{
|
307
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
308
|
+
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
309
|
+
}
|
310
|
+
|
311
|
+
MatrixType m_eivec;
|
312
|
+
EigenvalueType m_eivalues;
|
313
|
+
bool m_isInitialized;
|
314
|
+
bool m_eigenvectorsOk;
|
315
|
+
ComputationInfo m_info;
|
316
|
+
RealSchur<MatrixType> m_realSchur;
|
317
|
+
MatrixType m_matT;
|
318
|
+
|
319
|
+
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
320
|
+
ColumnVectorType m_tmp;
|
321
|
+
};
|
322
|
+
|
323
|
+
template<typename MatrixType>
|
324
|
+
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
|
325
|
+
{
|
326
|
+
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
327
|
+
const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
|
328
|
+
Index n = m_eivalues.rows();
|
329
|
+
MatrixType matD = MatrixType::Zero(n,n);
|
330
|
+
for (Index i=0; i<n; ++i)
|
331
|
+
{
|
332
|
+
if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
|
333
|
+
matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
|
334
|
+
else
|
335
|
+
{
|
336
|
+
matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
|
337
|
+
-numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
|
338
|
+
++i;
|
339
|
+
}
|
340
|
+
}
|
341
|
+
return matD;
|
342
|
+
}
|
343
|
+
|
344
|
+
template<typename MatrixType>
|
345
|
+
typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
|
346
|
+
{
|
347
|
+
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
348
|
+
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
349
|
+
const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
|
350
|
+
Index n = m_eivec.cols();
|
351
|
+
EigenvectorsType matV(n,n);
|
352
|
+
for (Index j=0; j<n; ++j)
|
353
|
+
{
|
354
|
+
if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
|
355
|
+
{
|
356
|
+
// we have a real eigen value
|
357
|
+
matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
|
358
|
+
matV.col(j).normalize();
|
359
|
+
}
|
360
|
+
else
|
361
|
+
{
|
362
|
+
// we have a pair of complex eigen values
|
363
|
+
for (Index i=0; i<n; ++i)
|
364
|
+
{
|
365
|
+
matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
|
366
|
+
matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
|
367
|
+
}
|
368
|
+
matV.col(j).normalize();
|
369
|
+
matV.col(j+1).normalize();
|
370
|
+
++j;
|
371
|
+
}
|
372
|
+
}
|
373
|
+
return matV;
|
374
|
+
}
|
375
|
+
|
376
|
+
template<typename MatrixType>
|
377
|
+
template<typename InputType>
|
378
|
+
EigenSolver<MatrixType>&
|
379
|
+
EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
|
380
|
+
{
|
381
|
+
check_template_parameters();
|
382
|
+
|
383
|
+
using std::sqrt;
|
384
|
+
using std::abs;
|
385
|
+
using numext::isfinite;
|
386
|
+
eigen_assert(matrix.cols() == matrix.rows());
|
387
|
+
|
388
|
+
// Reduce to real Schur form.
|
389
|
+
m_realSchur.compute(matrix.derived(), computeEigenvectors);
|
390
|
+
|
391
|
+
m_info = m_realSchur.info();
|
392
|
+
|
393
|
+
if (m_info == Success)
|
394
|
+
{
|
395
|
+
m_matT = m_realSchur.matrixT();
|
396
|
+
if (computeEigenvectors)
|
397
|
+
m_eivec = m_realSchur.matrixU();
|
398
|
+
|
399
|
+
// Compute eigenvalues from matT
|
400
|
+
m_eivalues.resize(matrix.cols());
|
401
|
+
Index i = 0;
|
402
|
+
while (i < matrix.cols())
|
403
|
+
{
|
404
|
+
if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
|
405
|
+
{
|
406
|
+
m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
|
407
|
+
if(!(isfinite)(m_eivalues.coeffRef(i)))
|
408
|
+
{
|
409
|
+
m_isInitialized = true;
|
410
|
+
m_eigenvectorsOk = false;
|
411
|
+
m_info = NumericalIssue;
|
412
|
+
return *this;
|
413
|
+
}
|
414
|
+
++i;
|
415
|
+
}
|
416
|
+
else
|
417
|
+
{
|
418
|
+
Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
|
419
|
+
Scalar z;
|
420
|
+
// Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
|
421
|
+
// without overflow
|
422
|
+
{
|
423
|
+
Scalar t0 = m_matT.coeff(i+1, i);
|
424
|
+
Scalar t1 = m_matT.coeff(i, i+1);
|
425
|
+
Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
|
426
|
+
t0 /= maxval;
|
427
|
+
t1 /= maxval;
|
428
|
+
Scalar p0 = p/maxval;
|
429
|
+
z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
|
430
|
+
}
|
431
|
+
|
432
|
+
m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
|
433
|
+
m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
|
434
|
+
if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
|
435
|
+
{
|
436
|
+
m_isInitialized = true;
|
437
|
+
m_eigenvectorsOk = false;
|
438
|
+
m_info = NumericalIssue;
|
439
|
+
return *this;
|
440
|
+
}
|
441
|
+
i += 2;
|
442
|
+
}
|
443
|
+
}
|
444
|
+
|
445
|
+
// Compute eigenvectors.
|
446
|
+
if (computeEigenvectors)
|
447
|
+
doComputeEigenvectors();
|
448
|
+
}
|
449
|
+
|
450
|
+
m_isInitialized = true;
|
451
|
+
m_eigenvectorsOk = computeEigenvectors;
|
452
|
+
|
453
|
+
return *this;
|
454
|
+
}
|
455
|
+
|
456
|
+
|
457
|
+
template<typename MatrixType>
|
458
|
+
void EigenSolver<MatrixType>::doComputeEigenvectors()
|
459
|
+
{
|
460
|
+
using std::abs;
|
461
|
+
const Index size = m_eivec.cols();
|
462
|
+
const Scalar eps = NumTraits<Scalar>::epsilon();
|
463
|
+
|
464
|
+
// inefficient! this is already computed in RealSchur
|
465
|
+
Scalar norm(0);
|
466
|
+
for (Index j = 0; j < size; ++j)
|
467
|
+
{
|
468
|
+
norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
|
469
|
+
}
|
470
|
+
|
471
|
+
// Backsubstitute to find vectors of upper triangular form
|
472
|
+
if (norm == Scalar(0))
|
473
|
+
{
|
474
|
+
return;
|
475
|
+
}
|
476
|
+
|
477
|
+
for (Index n = size-1; n >= 0; n--)
|
478
|
+
{
|
479
|
+
Scalar p = m_eivalues.coeff(n).real();
|
480
|
+
Scalar q = m_eivalues.coeff(n).imag();
|
481
|
+
|
482
|
+
// Scalar vector
|
483
|
+
if (q == Scalar(0))
|
484
|
+
{
|
485
|
+
Scalar lastr(0), lastw(0);
|
486
|
+
Index l = n;
|
487
|
+
|
488
|
+
m_matT.coeffRef(n,n) = Scalar(1);
|
489
|
+
for (Index i = n-1; i >= 0; i--)
|
490
|
+
{
|
491
|
+
Scalar w = m_matT.coeff(i,i) - p;
|
492
|
+
Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
|
493
|
+
|
494
|
+
if (m_eivalues.coeff(i).imag() < Scalar(0))
|
495
|
+
{
|
496
|
+
lastw = w;
|
497
|
+
lastr = r;
|
498
|
+
}
|
499
|
+
else
|
500
|
+
{
|
501
|
+
l = i;
|
502
|
+
if (m_eivalues.coeff(i).imag() == Scalar(0))
|
503
|
+
{
|
504
|
+
if (w != Scalar(0))
|
505
|
+
m_matT.coeffRef(i,n) = -r / w;
|
506
|
+
else
|
507
|
+
m_matT.coeffRef(i,n) = -r / (eps * norm);
|
508
|
+
}
|
509
|
+
else // Solve real equations
|
510
|
+
{
|
511
|
+
Scalar x = m_matT.coeff(i,i+1);
|
512
|
+
Scalar y = m_matT.coeff(i+1,i);
|
513
|
+
Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
|
514
|
+
Scalar t = (x * lastr - lastw * r) / denom;
|
515
|
+
m_matT.coeffRef(i,n) = t;
|
516
|
+
if (abs(x) > abs(lastw))
|
517
|
+
m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
|
518
|
+
else
|
519
|
+
m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
|
520
|
+
}
|
521
|
+
|
522
|
+
// Overflow control
|
523
|
+
Scalar t = abs(m_matT.coeff(i,n));
|
524
|
+
if ((eps * t) * t > Scalar(1))
|
525
|
+
m_matT.col(n).tail(size-i) /= t;
|
526
|
+
}
|
527
|
+
}
|
528
|
+
}
|
529
|
+
else if (q < Scalar(0) && n > 0) // Complex vector
|
530
|
+
{
|
531
|
+
Scalar lastra(0), lastsa(0), lastw(0);
|
532
|
+
Index l = n-1;
|
533
|
+
|
534
|
+
// Last vector component imaginary so matrix is triangular
|
535
|
+
if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
|
536
|
+
{
|
537
|
+
m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
|
538
|
+
m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
|
539
|
+
}
|
540
|
+
else
|
541
|
+
{
|
542
|
+
ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
|
543
|
+
m_matT.coeffRef(n-1,n-1) = numext::real(cc);
|
544
|
+
m_matT.coeffRef(n-1,n) = numext::imag(cc);
|
545
|
+
}
|
546
|
+
m_matT.coeffRef(n,n-1) = Scalar(0);
|
547
|
+
m_matT.coeffRef(n,n) = Scalar(1);
|
548
|
+
for (Index i = n-2; i >= 0; i--)
|
549
|
+
{
|
550
|
+
Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
|
551
|
+
Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
|
552
|
+
Scalar w = m_matT.coeff(i,i) - p;
|
553
|
+
|
554
|
+
if (m_eivalues.coeff(i).imag() < Scalar(0))
|
555
|
+
{
|
556
|
+
lastw = w;
|
557
|
+
lastra = ra;
|
558
|
+
lastsa = sa;
|
559
|
+
}
|
560
|
+
else
|
561
|
+
{
|
562
|
+
l = i;
|
563
|
+
if (m_eivalues.coeff(i).imag() == RealScalar(0))
|
564
|
+
{
|
565
|
+
ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
|
566
|
+
m_matT.coeffRef(i,n-1) = numext::real(cc);
|
567
|
+
m_matT.coeffRef(i,n) = numext::imag(cc);
|
568
|
+
}
|
569
|
+
else
|
570
|
+
{
|
571
|
+
// Solve complex equations
|
572
|
+
Scalar x = m_matT.coeff(i,i+1);
|
573
|
+
Scalar y = m_matT.coeff(i+1,i);
|
574
|
+
Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
|
575
|
+
Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
|
576
|
+
if ((vr == Scalar(0)) && (vi == Scalar(0)))
|
577
|
+
vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
|
578
|
+
|
579
|
+
ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
|
580
|
+
m_matT.coeffRef(i,n-1) = numext::real(cc);
|
581
|
+
m_matT.coeffRef(i,n) = numext::imag(cc);
|
582
|
+
if (abs(x) > (abs(lastw) + abs(q)))
|
583
|
+
{
|
584
|
+
m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
|
585
|
+
m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
|
586
|
+
}
|
587
|
+
else
|
588
|
+
{
|
589
|
+
cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
|
590
|
+
m_matT.coeffRef(i+1,n-1) = numext::real(cc);
|
591
|
+
m_matT.coeffRef(i+1,n) = numext::imag(cc);
|
592
|
+
}
|
593
|
+
}
|
594
|
+
|
595
|
+
// Overflow control
|
596
|
+
Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
|
597
|
+
if ((eps * t) * t > Scalar(1))
|
598
|
+
m_matT.block(i, n-1, size-i, 2) /= t;
|
599
|
+
|
600
|
+
}
|
601
|
+
}
|
602
|
+
|
603
|
+
// We handled a pair of complex conjugate eigenvalues, so need to skip them both
|
604
|
+
n--;
|
605
|
+
}
|
606
|
+
else
|
607
|
+
{
|
608
|
+
eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
|
609
|
+
}
|
610
|
+
}
|
611
|
+
|
612
|
+
// Back transformation to get eigenvectors of original matrix
|
613
|
+
for (Index j = size-1; j >= 0; j--)
|
614
|
+
{
|
615
|
+
m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
|
616
|
+
m_eivec.col(j) = m_tmp;
|
617
|
+
}
|
618
|
+
}
|
619
|
+
|
620
|
+
} // end namespace Eigen
|
621
|
+
|
622
|
+
#endif // EIGEN_EIGENSOLVER_H
|