tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,418 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
6
|
+
// Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk>
|
7
|
+
//
|
8
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
9
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
10
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
11
|
+
|
12
|
+
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
|
13
|
+
#define EIGEN_GENERALIZEDEIGENSOLVER_H
|
14
|
+
|
15
|
+
#include "./RealQZ.h"
|
16
|
+
|
17
|
+
namespace Eigen {
|
18
|
+
|
19
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
20
|
+
*
|
21
|
+
*
|
22
|
+
* \class GeneralizedEigenSolver
|
23
|
+
*
|
24
|
+
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
|
25
|
+
*
|
26
|
+
* \tparam _MatrixType the type of the matrices of which we are computing the
|
27
|
+
* eigen-decomposition; this is expected to be an instantiation of the Matrix
|
28
|
+
* class template. Currently, only real matrices are supported.
|
29
|
+
*
|
30
|
+
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
|
31
|
+
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
|
32
|
+
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
|
33
|
+
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
|
34
|
+
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
|
35
|
+
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
|
36
|
+
*
|
37
|
+
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
|
38
|
+
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
|
39
|
+
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
|
40
|
+
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
|
41
|
+
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
|
42
|
+
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
|
43
|
+
* called the left eigenvector.
|
44
|
+
*
|
45
|
+
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
|
46
|
+
* a given matrix pair. Alternatively, you can use the
|
47
|
+
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
|
48
|
+
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
|
49
|
+
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
|
50
|
+
* eigenvectors() functions.
|
51
|
+
*
|
52
|
+
* Here is an usage example of this class:
|
53
|
+
* Example: \include GeneralizedEigenSolver.cpp
|
54
|
+
* Output: \verbinclude GeneralizedEigenSolver.out
|
55
|
+
*
|
56
|
+
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
57
|
+
*/
|
58
|
+
template<typename _MatrixType> class GeneralizedEigenSolver
|
59
|
+
{
|
60
|
+
public:
|
61
|
+
|
62
|
+
/** \brief Synonym for the template parameter \p _MatrixType. */
|
63
|
+
typedef _MatrixType MatrixType;
|
64
|
+
|
65
|
+
enum {
|
66
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
67
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
68
|
+
Options = MatrixType::Options,
|
69
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
70
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
71
|
+
};
|
72
|
+
|
73
|
+
/** \brief Scalar type for matrices of type #MatrixType. */
|
74
|
+
typedef typename MatrixType::Scalar Scalar;
|
75
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
76
|
+
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
77
|
+
|
78
|
+
/** \brief Complex scalar type for #MatrixType.
|
79
|
+
*
|
80
|
+
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
81
|
+
* \c float or \c double) and just \c Scalar if #Scalar is
|
82
|
+
* complex.
|
83
|
+
*/
|
84
|
+
typedef std::complex<RealScalar> ComplexScalar;
|
85
|
+
|
86
|
+
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
|
87
|
+
*
|
88
|
+
* This is a column vector with entries of type #Scalar.
|
89
|
+
* The length of the vector is the size of #MatrixType.
|
90
|
+
*/
|
91
|
+
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
|
92
|
+
|
93
|
+
/** \brief Type for vector of complex scalar values eigenvalues as returned by alphas().
|
94
|
+
*
|
95
|
+
* This is a column vector with entries of type #ComplexScalar.
|
96
|
+
* The length of the vector is the size of #MatrixType.
|
97
|
+
*/
|
98
|
+
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
|
99
|
+
|
100
|
+
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
|
101
|
+
*/
|
102
|
+
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
|
103
|
+
|
104
|
+
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
105
|
+
*
|
106
|
+
* This is a square matrix with entries of type #ComplexScalar.
|
107
|
+
* The size is the same as the size of #MatrixType.
|
108
|
+
*/
|
109
|
+
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
|
110
|
+
|
111
|
+
/** \brief Default constructor.
|
112
|
+
*
|
113
|
+
* The default constructor is useful in cases in which the user intends to
|
114
|
+
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
|
115
|
+
*
|
116
|
+
* \sa compute() for an example.
|
117
|
+
*/
|
118
|
+
GeneralizedEigenSolver()
|
119
|
+
: m_eivec(),
|
120
|
+
m_alphas(),
|
121
|
+
m_betas(),
|
122
|
+
m_valuesOkay(false),
|
123
|
+
m_vectorsOkay(false),
|
124
|
+
m_realQZ()
|
125
|
+
{}
|
126
|
+
|
127
|
+
/** \brief Default constructor with memory preallocation
|
128
|
+
*
|
129
|
+
* Like the default constructor but with preallocation of the internal data
|
130
|
+
* according to the specified problem \a size.
|
131
|
+
* \sa GeneralizedEigenSolver()
|
132
|
+
*/
|
133
|
+
explicit GeneralizedEigenSolver(Index size)
|
134
|
+
: m_eivec(size, size),
|
135
|
+
m_alphas(size),
|
136
|
+
m_betas(size),
|
137
|
+
m_valuesOkay(false),
|
138
|
+
m_vectorsOkay(false),
|
139
|
+
m_realQZ(size),
|
140
|
+
m_tmp(size)
|
141
|
+
{}
|
142
|
+
|
143
|
+
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
|
144
|
+
*
|
145
|
+
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
146
|
+
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
147
|
+
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
148
|
+
* eigenvalues are computed; if false, only the eigenvalues are computed.
|
149
|
+
*
|
150
|
+
* This constructor calls compute() to compute the generalized eigenvalues
|
151
|
+
* and eigenvectors.
|
152
|
+
*
|
153
|
+
* \sa compute()
|
154
|
+
*/
|
155
|
+
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
|
156
|
+
: m_eivec(A.rows(), A.cols()),
|
157
|
+
m_alphas(A.cols()),
|
158
|
+
m_betas(A.cols()),
|
159
|
+
m_valuesOkay(false),
|
160
|
+
m_vectorsOkay(false),
|
161
|
+
m_realQZ(A.cols()),
|
162
|
+
m_tmp(A.cols())
|
163
|
+
{
|
164
|
+
compute(A, B, computeEigenvectors);
|
165
|
+
}
|
166
|
+
|
167
|
+
/* \brief Returns the computed generalized eigenvectors.
|
168
|
+
*
|
169
|
+
* \returns %Matrix whose columns are the (possibly complex) right eigenvectors.
|
170
|
+
* i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues.
|
171
|
+
*
|
172
|
+
* \pre Either the constructor
|
173
|
+
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
|
174
|
+
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
|
175
|
+
* \p computeEigenvectors was set to true (the default).
|
176
|
+
*
|
177
|
+
* \sa eigenvalues()
|
178
|
+
*/
|
179
|
+
EigenvectorsType eigenvectors() const {
|
180
|
+
eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated.");
|
181
|
+
return m_eivec;
|
182
|
+
}
|
183
|
+
|
184
|
+
/** \brief Returns an expression of the computed generalized eigenvalues.
|
185
|
+
*
|
186
|
+
* \returns An expression of the column vector containing the eigenvalues.
|
187
|
+
*
|
188
|
+
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
|
189
|
+
* Not that betas might contain zeros. It is therefore not recommended to use this function,
|
190
|
+
* but rather directly deal with the alphas and betas vectors.
|
191
|
+
*
|
192
|
+
* \pre Either the constructor
|
193
|
+
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
|
194
|
+
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
|
195
|
+
*
|
196
|
+
* The eigenvalues are repeated according to their algebraic multiplicity,
|
197
|
+
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
198
|
+
* are not sorted in any particular order.
|
199
|
+
*
|
200
|
+
* \sa alphas(), betas(), eigenvectors()
|
201
|
+
*/
|
202
|
+
EigenvalueType eigenvalues() const
|
203
|
+
{
|
204
|
+
eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
|
205
|
+
return EigenvalueType(m_alphas,m_betas);
|
206
|
+
}
|
207
|
+
|
208
|
+
/** \returns A const reference to the vectors containing the alpha values
|
209
|
+
*
|
210
|
+
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
211
|
+
*
|
212
|
+
* \sa betas(), eigenvalues() */
|
213
|
+
ComplexVectorType alphas() const
|
214
|
+
{
|
215
|
+
eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
|
216
|
+
return m_alphas;
|
217
|
+
}
|
218
|
+
|
219
|
+
/** \returns A const reference to the vectors containing the beta values
|
220
|
+
*
|
221
|
+
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
222
|
+
*
|
223
|
+
* \sa alphas(), eigenvalues() */
|
224
|
+
VectorType betas() const
|
225
|
+
{
|
226
|
+
eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
|
227
|
+
return m_betas;
|
228
|
+
}
|
229
|
+
|
230
|
+
/** \brief Computes generalized eigendecomposition of given matrix.
|
231
|
+
*
|
232
|
+
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
233
|
+
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
234
|
+
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
235
|
+
* eigenvalues are computed; if false, only the eigenvalues are
|
236
|
+
* computed.
|
237
|
+
* \returns Reference to \c *this
|
238
|
+
*
|
239
|
+
* This function computes the eigenvalues of the real matrix \p matrix.
|
240
|
+
* The eigenvalues() function can be used to retrieve them. If
|
241
|
+
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
242
|
+
* and can be retrieved by calling eigenvectors().
|
243
|
+
*
|
244
|
+
* The matrix is first reduced to real generalized Schur form using the RealQZ
|
245
|
+
* class. The generalized Schur decomposition is then used to compute the eigenvalues
|
246
|
+
* and eigenvectors.
|
247
|
+
*
|
248
|
+
* The cost of the computation is dominated by the cost of the
|
249
|
+
* generalized Schur decomposition.
|
250
|
+
*
|
251
|
+
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
|
252
|
+
*/
|
253
|
+
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
|
254
|
+
|
255
|
+
ComputationInfo info() const
|
256
|
+
{
|
257
|
+
eigen_assert(m_valuesOkay && "EigenSolver is not initialized.");
|
258
|
+
return m_realQZ.info();
|
259
|
+
}
|
260
|
+
|
261
|
+
/** Sets the maximal number of iterations allowed.
|
262
|
+
*/
|
263
|
+
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
|
264
|
+
{
|
265
|
+
m_realQZ.setMaxIterations(maxIters);
|
266
|
+
return *this;
|
267
|
+
}
|
268
|
+
|
269
|
+
protected:
|
270
|
+
|
271
|
+
static void check_template_parameters()
|
272
|
+
{
|
273
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
274
|
+
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
275
|
+
}
|
276
|
+
|
277
|
+
EigenvectorsType m_eivec;
|
278
|
+
ComplexVectorType m_alphas;
|
279
|
+
VectorType m_betas;
|
280
|
+
bool m_valuesOkay, m_vectorsOkay;
|
281
|
+
RealQZ<MatrixType> m_realQZ;
|
282
|
+
ComplexVectorType m_tmp;
|
283
|
+
};
|
284
|
+
|
285
|
+
template<typename MatrixType>
|
286
|
+
GeneralizedEigenSolver<MatrixType>&
|
287
|
+
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
|
288
|
+
{
|
289
|
+
check_template_parameters();
|
290
|
+
|
291
|
+
using std::sqrt;
|
292
|
+
using std::abs;
|
293
|
+
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
|
294
|
+
Index size = A.cols();
|
295
|
+
m_valuesOkay = false;
|
296
|
+
m_vectorsOkay = false;
|
297
|
+
// Reduce to generalized real Schur form:
|
298
|
+
// A = Q S Z and B = Q T Z
|
299
|
+
m_realQZ.compute(A, B, computeEigenvectors);
|
300
|
+
if (m_realQZ.info() == Success)
|
301
|
+
{
|
302
|
+
// Resize storage
|
303
|
+
m_alphas.resize(size);
|
304
|
+
m_betas.resize(size);
|
305
|
+
if (computeEigenvectors)
|
306
|
+
{
|
307
|
+
m_eivec.resize(size,size);
|
308
|
+
m_tmp.resize(size);
|
309
|
+
}
|
310
|
+
|
311
|
+
// Aliases:
|
312
|
+
Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
|
313
|
+
ComplexVectorType &cv = m_tmp;
|
314
|
+
const MatrixType &mS = m_realQZ.matrixS();
|
315
|
+
const MatrixType &mT = m_realQZ.matrixT();
|
316
|
+
|
317
|
+
Index i = 0;
|
318
|
+
while (i < size)
|
319
|
+
{
|
320
|
+
if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
|
321
|
+
{
|
322
|
+
// Real eigenvalue
|
323
|
+
m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
|
324
|
+
m_betas.coeffRef(i) = mT.diagonal().coeff(i);
|
325
|
+
if (computeEigenvectors)
|
326
|
+
{
|
327
|
+
v.setConstant(Scalar(0.0));
|
328
|
+
v.coeffRef(i) = Scalar(1.0);
|
329
|
+
// For singular eigenvalues do nothing more
|
330
|
+
if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)())
|
331
|
+
{
|
332
|
+
// Non-singular eigenvalue
|
333
|
+
const Scalar alpha = real(m_alphas.coeffRef(i));
|
334
|
+
const Scalar beta = m_betas.coeffRef(i);
|
335
|
+
for (Index j = i-1; j >= 0; j--)
|
336
|
+
{
|
337
|
+
const Index st = j+1;
|
338
|
+
const Index sz = i-j;
|
339
|
+
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
|
340
|
+
{
|
341
|
+
// 2x2 block
|
342
|
+
Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
|
343
|
+
Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
|
344
|
+
v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
|
345
|
+
j--;
|
346
|
+
}
|
347
|
+
else
|
348
|
+
{
|
349
|
+
v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
|
350
|
+
}
|
351
|
+
}
|
352
|
+
}
|
353
|
+
m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v;
|
354
|
+
m_eivec.col(i).real().normalize();
|
355
|
+
m_eivec.col(i).imag().setConstant(0);
|
356
|
+
}
|
357
|
+
++i;
|
358
|
+
}
|
359
|
+
else
|
360
|
+
{
|
361
|
+
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
|
362
|
+
// Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
|
363
|
+
|
364
|
+
// T = [a 0]
|
365
|
+
// [0 b]
|
366
|
+
RealScalar a = mT.diagonal().coeff(i),
|
367
|
+
b = mT.diagonal().coeff(i+1);
|
368
|
+
const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b;
|
369
|
+
|
370
|
+
// ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
|
371
|
+
Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
|
372
|
+
|
373
|
+
Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
|
374
|
+
Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
|
375
|
+
const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z);
|
376
|
+
m_alphas.coeffRef(i) = conj(alpha);
|
377
|
+
m_alphas.coeffRef(i+1) = alpha;
|
378
|
+
|
379
|
+
if (computeEigenvectors) {
|
380
|
+
// Compute eigenvector in position (i+1) and then position (i) is just the conjugate
|
381
|
+
cv.setZero();
|
382
|
+
cv.coeffRef(i+1) = Scalar(1.0);
|
383
|
+
// here, the "static_cast" workaound expression template issues.
|
384
|
+
cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1))
|
385
|
+
/ (static_cast<Scalar>(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i));
|
386
|
+
for (Index j = i-1; j >= 0; j--)
|
387
|
+
{
|
388
|
+
const Index st = j+1;
|
389
|
+
const Index sz = i+1-j;
|
390
|
+
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
|
391
|
+
{
|
392
|
+
// 2x2 block
|
393
|
+
Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
|
394
|
+
Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
|
395
|
+
cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
|
396
|
+
j--;
|
397
|
+
} else {
|
398
|
+
cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum()
|
399
|
+
/ (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
|
400
|
+
}
|
401
|
+
}
|
402
|
+
m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv);
|
403
|
+
m_eivec.col(i+1).normalize();
|
404
|
+
m_eivec.col(i) = m_eivec.col(i+1).conjugate();
|
405
|
+
}
|
406
|
+
i += 2;
|
407
|
+
}
|
408
|
+
}
|
409
|
+
|
410
|
+
m_valuesOkay = true;
|
411
|
+
m_vectorsOkay = computeEigenvectors;
|
412
|
+
}
|
413
|
+
return *this;
|
414
|
+
}
|
415
|
+
|
416
|
+
} // end namespace Eigen
|
417
|
+
|
418
|
+
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H
|
@@ -0,0 +1,226 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
|
12
|
+
#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
|
13
|
+
|
14
|
+
#include "./Tridiagonalization.h"
|
15
|
+
|
16
|
+
namespace Eigen {
|
17
|
+
|
18
|
+
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
19
|
+
*
|
20
|
+
*
|
21
|
+
* \class GeneralizedSelfAdjointEigenSolver
|
22
|
+
*
|
23
|
+
* \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
|
24
|
+
*
|
25
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the
|
26
|
+
* eigendecomposition; this is expected to be an instantiation of the Matrix
|
27
|
+
* class template.
|
28
|
+
*
|
29
|
+
* This class solves the generalized eigenvalue problem
|
30
|
+
* \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
|
31
|
+
* selfadjoint and the matrix \f$ B \f$ should be positive definite.
|
32
|
+
*
|
33
|
+
* Only the \b lower \b triangular \b part of the input matrix is referenced.
|
34
|
+
*
|
35
|
+
* Call the function compute() to compute the eigenvalues and eigenvectors of
|
36
|
+
* a given matrix. Alternatively, you can use the
|
37
|
+
* GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
|
38
|
+
* constructor which computes the eigenvalues and eigenvectors at construction time.
|
39
|
+
* Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
|
40
|
+
* and eigenvectors() functions.
|
41
|
+
*
|
42
|
+
* The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
|
43
|
+
* contains an example of the typical use of this class.
|
44
|
+
*
|
45
|
+
* \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
|
46
|
+
*/
|
47
|
+
template<typename _MatrixType>
|
48
|
+
class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
|
49
|
+
{
|
50
|
+
typedef SelfAdjointEigenSolver<_MatrixType> Base;
|
51
|
+
public:
|
52
|
+
|
53
|
+
typedef _MatrixType MatrixType;
|
54
|
+
|
55
|
+
/** \brief Default constructor for fixed-size matrices.
|
56
|
+
*
|
57
|
+
* The default constructor is useful in cases in which the user intends to
|
58
|
+
* perform decompositions via compute(). This constructor
|
59
|
+
* can only be used if \p _MatrixType is a fixed-size matrix; use
|
60
|
+
* GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
|
61
|
+
*/
|
62
|
+
GeneralizedSelfAdjointEigenSolver() : Base() {}
|
63
|
+
|
64
|
+
/** \brief Constructor, pre-allocates memory for dynamic-size matrices.
|
65
|
+
*
|
66
|
+
* \param [in] size Positive integer, size of the matrix whose
|
67
|
+
* eigenvalues and eigenvectors will be computed.
|
68
|
+
*
|
69
|
+
* This constructor is useful for dynamic-size matrices, when the user
|
70
|
+
* intends to perform decompositions via compute(). The \p size
|
71
|
+
* parameter is only used as a hint. It is not an error to give a wrong
|
72
|
+
* \p size, but it may impair performance.
|
73
|
+
*
|
74
|
+
* \sa compute() for an example
|
75
|
+
*/
|
76
|
+
explicit GeneralizedSelfAdjointEigenSolver(Index size)
|
77
|
+
: Base(size)
|
78
|
+
{}
|
79
|
+
|
80
|
+
/** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
|
81
|
+
*
|
82
|
+
* \param[in] matA Selfadjoint matrix in matrix pencil.
|
83
|
+
* Only the lower triangular part of the matrix is referenced.
|
84
|
+
* \param[in] matB Positive-definite matrix in matrix pencil.
|
85
|
+
* Only the lower triangular part of the matrix is referenced.
|
86
|
+
* \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
|
87
|
+
* Default is #ComputeEigenvectors|#Ax_lBx.
|
88
|
+
*
|
89
|
+
* This constructor calls compute(const MatrixType&, const MatrixType&, int)
|
90
|
+
* to compute the eigenvalues and (if requested) the eigenvectors of the
|
91
|
+
* generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
|
92
|
+
* selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
|
93
|
+
* \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
|
94
|
+
* \f$ x^* B x = 1 \f$. The eigenvectors are computed if
|
95
|
+
* \a options contains ComputeEigenvectors.
|
96
|
+
*
|
97
|
+
* In addition, the two following variants can be solved via \p options:
|
98
|
+
* - \c ABx_lx: \f$ ABx = \lambda x \f$
|
99
|
+
* - \c BAx_lx: \f$ BAx = \lambda x \f$
|
100
|
+
*
|
101
|
+
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
|
102
|
+
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
|
103
|
+
*
|
104
|
+
* \sa compute(const MatrixType&, const MatrixType&, int)
|
105
|
+
*/
|
106
|
+
GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
|
107
|
+
int options = ComputeEigenvectors|Ax_lBx)
|
108
|
+
: Base(matA.cols())
|
109
|
+
{
|
110
|
+
compute(matA, matB, options);
|
111
|
+
}
|
112
|
+
|
113
|
+
/** \brief Computes generalized eigendecomposition of given matrix pencil.
|
114
|
+
*
|
115
|
+
* \param[in] matA Selfadjoint matrix in matrix pencil.
|
116
|
+
* Only the lower triangular part of the matrix is referenced.
|
117
|
+
* \param[in] matB Positive-definite matrix in matrix pencil.
|
118
|
+
* Only the lower triangular part of the matrix is referenced.
|
119
|
+
* \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
|
120
|
+
* Default is #ComputeEigenvectors|#Ax_lBx.
|
121
|
+
*
|
122
|
+
* \returns Reference to \c *this
|
123
|
+
*
|
124
|
+
* Accoring to \p options, this function computes eigenvalues and (if requested)
|
125
|
+
* the eigenvectors of one of the following three generalized eigenproblems:
|
126
|
+
* - \c Ax_lBx: \f$ Ax = \lambda B x \f$
|
127
|
+
* - \c ABx_lx: \f$ ABx = \lambda x \f$
|
128
|
+
* - \c BAx_lx: \f$ BAx = \lambda x \f$
|
129
|
+
* with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
|
130
|
+
* matrix \f$ B \f$.
|
131
|
+
* In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
|
132
|
+
*
|
133
|
+
* The eigenvalues() function can be used to retrieve
|
134
|
+
* the eigenvalues. If \p options contains ComputeEigenvectors, then the
|
135
|
+
* eigenvectors are also computed and can be retrieved by calling
|
136
|
+
* eigenvectors().
|
137
|
+
*
|
138
|
+
* The implementation uses LLT to compute the Cholesky decomposition
|
139
|
+
* \f$ B = LL^* \f$ and computes the classical eigendecomposition
|
140
|
+
* of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
|
141
|
+
* and of \f$ L^{*} A L \f$ otherwise. This solves the
|
142
|
+
* generalized eigenproblem, because any solution of the generalized
|
143
|
+
* eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
|
144
|
+
* \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
|
145
|
+
* eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
|
146
|
+
* can be made for the two other variants.
|
147
|
+
*
|
148
|
+
* Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
|
149
|
+
* Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
|
150
|
+
*
|
151
|
+
* \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
|
152
|
+
*/
|
153
|
+
GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
|
154
|
+
int options = ComputeEigenvectors|Ax_lBx);
|
155
|
+
|
156
|
+
protected:
|
157
|
+
|
158
|
+
};
|
159
|
+
|
160
|
+
|
161
|
+
template<typename MatrixType>
|
162
|
+
GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
|
163
|
+
compute(const MatrixType& matA, const MatrixType& matB, int options)
|
164
|
+
{
|
165
|
+
eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
|
166
|
+
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
167
|
+
&& (options&EigVecMask)!=EigVecMask
|
168
|
+
&& ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
|
169
|
+
|| (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
|
170
|
+
&& "invalid option parameter");
|
171
|
+
|
172
|
+
bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);
|
173
|
+
|
174
|
+
// Compute the cholesky decomposition of matB = L L' = U'U
|
175
|
+
LLT<MatrixType> cholB(matB);
|
176
|
+
|
177
|
+
int type = (options&GenEigMask);
|
178
|
+
if(type==0)
|
179
|
+
type = Ax_lBx;
|
180
|
+
|
181
|
+
if(type==Ax_lBx)
|
182
|
+
{
|
183
|
+
// compute C = inv(L) A inv(L')
|
184
|
+
MatrixType matC = matA.template selfadjointView<Lower>();
|
185
|
+
cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
|
186
|
+
cholB.matrixU().template solveInPlace<OnTheRight>(matC);
|
187
|
+
|
188
|
+
Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );
|
189
|
+
|
190
|
+
// transform back the eigen vectors: evecs = inv(U) * evecs
|
191
|
+
if(computeEigVecs)
|
192
|
+
cholB.matrixU().solveInPlace(Base::m_eivec);
|
193
|
+
}
|
194
|
+
else if(type==ABx_lx)
|
195
|
+
{
|
196
|
+
// compute C = L' A L
|
197
|
+
MatrixType matC = matA.template selfadjointView<Lower>();
|
198
|
+
matC = matC * cholB.matrixL();
|
199
|
+
matC = cholB.matrixU() * matC;
|
200
|
+
|
201
|
+
Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
|
202
|
+
|
203
|
+
// transform back the eigen vectors: evecs = inv(U) * evecs
|
204
|
+
if(computeEigVecs)
|
205
|
+
cholB.matrixU().solveInPlace(Base::m_eivec);
|
206
|
+
}
|
207
|
+
else if(type==BAx_lx)
|
208
|
+
{
|
209
|
+
// compute C = L' A L
|
210
|
+
MatrixType matC = matA.template selfadjointView<Lower>();
|
211
|
+
matC = matC * cholB.matrixL();
|
212
|
+
matC = cholB.matrixU() * matC;
|
213
|
+
|
214
|
+
Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
|
215
|
+
|
216
|
+
// transform back the eigen vectors: evecs = L * evecs
|
217
|
+
if(computeEigVecs)
|
218
|
+
Base::m_eivec = cholB.matrixL() * Base::m_eivec;
|
219
|
+
}
|
220
|
+
|
221
|
+
return *this;
|
222
|
+
}
|
223
|
+
|
224
|
+
} // end namespace Eigen
|
225
|
+
|
226
|
+
#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
|