tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,418 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
+ // Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk>
7
+ //
8
+ // This Source Code Form is subject to the terms of the Mozilla
9
+ // Public License v. 2.0. If a copy of the MPL was not distributed
10
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
+
12
+ #ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
13
+ #define EIGEN_GENERALIZEDEIGENSOLVER_H
14
+
15
+ #include "./RealQZ.h"
16
+
17
+ namespace Eigen {
18
+
19
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
20
+ *
21
+ *
22
+ * \class GeneralizedEigenSolver
23
+ *
24
+ * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
25
+ *
26
+ * \tparam _MatrixType the type of the matrices of which we are computing the
27
+ * eigen-decomposition; this is expected to be an instantiation of the Matrix
28
+ * class template. Currently, only real matrices are supported.
29
+ *
30
+ * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
31
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
32
+ * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
33
+ * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
34
+ * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
35
+ * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
36
+ *
37
+ * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
38
+ * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
39
+ * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
40
+ * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
41
+ * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
42
+ * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
43
+ * called the left eigenvector.
44
+ *
45
+ * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
46
+ * a given matrix pair. Alternatively, you can use the
47
+ * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
48
+ * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
49
+ * eigenvectors are computed, they can be retrieved with the eigenvalues() and
50
+ * eigenvectors() functions.
51
+ *
52
+ * Here is an usage example of this class:
53
+ * Example: \include GeneralizedEigenSolver.cpp
54
+ * Output: \verbinclude GeneralizedEigenSolver.out
55
+ *
56
+ * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
57
+ */
58
+ template<typename _MatrixType> class GeneralizedEigenSolver
59
+ {
60
+ public:
61
+
62
+ /** \brief Synonym for the template parameter \p _MatrixType. */
63
+ typedef _MatrixType MatrixType;
64
+
65
+ enum {
66
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
67
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
68
+ Options = MatrixType::Options,
69
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
70
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
71
+ };
72
+
73
+ /** \brief Scalar type for matrices of type #MatrixType. */
74
+ typedef typename MatrixType::Scalar Scalar;
75
+ typedef typename NumTraits<Scalar>::Real RealScalar;
76
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
77
+
78
+ /** \brief Complex scalar type for #MatrixType.
79
+ *
80
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
81
+ * \c float or \c double) and just \c Scalar if #Scalar is
82
+ * complex.
83
+ */
84
+ typedef std::complex<RealScalar> ComplexScalar;
85
+
86
+ /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
87
+ *
88
+ * This is a column vector with entries of type #Scalar.
89
+ * The length of the vector is the size of #MatrixType.
90
+ */
91
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
92
+
93
+ /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas().
94
+ *
95
+ * This is a column vector with entries of type #ComplexScalar.
96
+ * The length of the vector is the size of #MatrixType.
97
+ */
98
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
99
+
100
+ /** \brief Expression type for the eigenvalues as returned by eigenvalues().
101
+ */
102
+ typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
103
+
104
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
105
+ *
106
+ * This is a square matrix with entries of type #ComplexScalar.
107
+ * The size is the same as the size of #MatrixType.
108
+ */
109
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
110
+
111
+ /** \brief Default constructor.
112
+ *
113
+ * The default constructor is useful in cases in which the user intends to
114
+ * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
115
+ *
116
+ * \sa compute() for an example.
117
+ */
118
+ GeneralizedEigenSolver()
119
+ : m_eivec(),
120
+ m_alphas(),
121
+ m_betas(),
122
+ m_valuesOkay(false),
123
+ m_vectorsOkay(false),
124
+ m_realQZ()
125
+ {}
126
+
127
+ /** \brief Default constructor with memory preallocation
128
+ *
129
+ * Like the default constructor but with preallocation of the internal data
130
+ * according to the specified problem \a size.
131
+ * \sa GeneralizedEigenSolver()
132
+ */
133
+ explicit GeneralizedEigenSolver(Index size)
134
+ : m_eivec(size, size),
135
+ m_alphas(size),
136
+ m_betas(size),
137
+ m_valuesOkay(false),
138
+ m_vectorsOkay(false),
139
+ m_realQZ(size),
140
+ m_tmp(size)
141
+ {}
142
+
143
+ /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
144
+ *
145
+ * \param[in] A Square matrix whose eigendecomposition is to be computed.
146
+ * \param[in] B Square matrix whose eigendecomposition is to be computed.
147
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
148
+ * eigenvalues are computed; if false, only the eigenvalues are computed.
149
+ *
150
+ * This constructor calls compute() to compute the generalized eigenvalues
151
+ * and eigenvectors.
152
+ *
153
+ * \sa compute()
154
+ */
155
+ GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
156
+ : m_eivec(A.rows(), A.cols()),
157
+ m_alphas(A.cols()),
158
+ m_betas(A.cols()),
159
+ m_valuesOkay(false),
160
+ m_vectorsOkay(false),
161
+ m_realQZ(A.cols()),
162
+ m_tmp(A.cols())
163
+ {
164
+ compute(A, B, computeEigenvectors);
165
+ }
166
+
167
+ /* \brief Returns the computed generalized eigenvectors.
168
+ *
169
+ * \returns %Matrix whose columns are the (possibly complex) right eigenvectors.
170
+ * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues.
171
+ *
172
+ * \pre Either the constructor
173
+ * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
174
+ * compute(const MatrixType&, const MatrixType& bool) has been called before, and
175
+ * \p computeEigenvectors was set to true (the default).
176
+ *
177
+ * \sa eigenvalues()
178
+ */
179
+ EigenvectorsType eigenvectors() const {
180
+ eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated.");
181
+ return m_eivec;
182
+ }
183
+
184
+ /** \brief Returns an expression of the computed generalized eigenvalues.
185
+ *
186
+ * \returns An expression of the column vector containing the eigenvalues.
187
+ *
188
+ * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
189
+ * Not that betas might contain zeros. It is therefore not recommended to use this function,
190
+ * but rather directly deal with the alphas and betas vectors.
191
+ *
192
+ * \pre Either the constructor
193
+ * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
194
+ * compute(const MatrixType&,const MatrixType&,bool) has been called before.
195
+ *
196
+ * The eigenvalues are repeated according to their algebraic multiplicity,
197
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
198
+ * are not sorted in any particular order.
199
+ *
200
+ * \sa alphas(), betas(), eigenvectors()
201
+ */
202
+ EigenvalueType eigenvalues() const
203
+ {
204
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
205
+ return EigenvalueType(m_alphas,m_betas);
206
+ }
207
+
208
+ /** \returns A const reference to the vectors containing the alpha values
209
+ *
210
+ * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
211
+ *
212
+ * \sa betas(), eigenvalues() */
213
+ ComplexVectorType alphas() const
214
+ {
215
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
216
+ return m_alphas;
217
+ }
218
+
219
+ /** \returns A const reference to the vectors containing the beta values
220
+ *
221
+ * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
222
+ *
223
+ * \sa alphas(), eigenvalues() */
224
+ VectorType betas() const
225
+ {
226
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
227
+ return m_betas;
228
+ }
229
+
230
+ /** \brief Computes generalized eigendecomposition of given matrix.
231
+ *
232
+ * \param[in] A Square matrix whose eigendecomposition is to be computed.
233
+ * \param[in] B Square matrix whose eigendecomposition is to be computed.
234
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
235
+ * eigenvalues are computed; if false, only the eigenvalues are
236
+ * computed.
237
+ * \returns Reference to \c *this
238
+ *
239
+ * This function computes the eigenvalues of the real matrix \p matrix.
240
+ * The eigenvalues() function can be used to retrieve them. If
241
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
242
+ * and can be retrieved by calling eigenvectors().
243
+ *
244
+ * The matrix is first reduced to real generalized Schur form using the RealQZ
245
+ * class. The generalized Schur decomposition is then used to compute the eigenvalues
246
+ * and eigenvectors.
247
+ *
248
+ * The cost of the computation is dominated by the cost of the
249
+ * generalized Schur decomposition.
250
+ *
251
+ * This method reuses of the allocated data in the GeneralizedEigenSolver object.
252
+ */
253
+ GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
254
+
255
+ ComputationInfo info() const
256
+ {
257
+ eigen_assert(m_valuesOkay && "EigenSolver is not initialized.");
258
+ return m_realQZ.info();
259
+ }
260
+
261
+ /** Sets the maximal number of iterations allowed.
262
+ */
263
+ GeneralizedEigenSolver& setMaxIterations(Index maxIters)
264
+ {
265
+ m_realQZ.setMaxIterations(maxIters);
266
+ return *this;
267
+ }
268
+
269
+ protected:
270
+
271
+ static void check_template_parameters()
272
+ {
273
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
274
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
275
+ }
276
+
277
+ EigenvectorsType m_eivec;
278
+ ComplexVectorType m_alphas;
279
+ VectorType m_betas;
280
+ bool m_valuesOkay, m_vectorsOkay;
281
+ RealQZ<MatrixType> m_realQZ;
282
+ ComplexVectorType m_tmp;
283
+ };
284
+
285
+ template<typename MatrixType>
286
+ GeneralizedEigenSolver<MatrixType>&
287
+ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
288
+ {
289
+ check_template_parameters();
290
+
291
+ using std::sqrt;
292
+ using std::abs;
293
+ eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
294
+ Index size = A.cols();
295
+ m_valuesOkay = false;
296
+ m_vectorsOkay = false;
297
+ // Reduce to generalized real Schur form:
298
+ // A = Q S Z and B = Q T Z
299
+ m_realQZ.compute(A, B, computeEigenvectors);
300
+ if (m_realQZ.info() == Success)
301
+ {
302
+ // Resize storage
303
+ m_alphas.resize(size);
304
+ m_betas.resize(size);
305
+ if (computeEigenvectors)
306
+ {
307
+ m_eivec.resize(size,size);
308
+ m_tmp.resize(size);
309
+ }
310
+
311
+ // Aliases:
312
+ Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
313
+ ComplexVectorType &cv = m_tmp;
314
+ const MatrixType &mS = m_realQZ.matrixS();
315
+ const MatrixType &mT = m_realQZ.matrixT();
316
+
317
+ Index i = 0;
318
+ while (i < size)
319
+ {
320
+ if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
321
+ {
322
+ // Real eigenvalue
323
+ m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
324
+ m_betas.coeffRef(i) = mT.diagonal().coeff(i);
325
+ if (computeEigenvectors)
326
+ {
327
+ v.setConstant(Scalar(0.0));
328
+ v.coeffRef(i) = Scalar(1.0);
329
+ // For singular eigenvalues do nothing more
330
+ if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)())
331
+ {
332
+ // Non-singular eigenvalue
333
+ const Scalar alpha = real(m_alphas.coeffRef(i));
334
+ const Scalar beta = m_betas.coeffRef(i);
335
+ for (Index j = i-1; j >= 0; j--)
336
+ {
337
+ const Index st = j+1;
338
+ const Index sz = i-j;
339
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
340
+ {
341
+ // 2x2 block
342
+ Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
343
+ Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
344
+ v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
345
+ j--;
346
+ }
347
+ else
348
+ {
349
+ v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
350
+ }
351
+ }
352
+ }
353
+ m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v;
354
+ m_eivec.col(i).real().normalize();
355
+ m_eivec.col(i).imag().setConstant(0);
356
+ }
357
+ ++i;
358
+ }
359
+ else
360
+ {
361
+ // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
362
+ // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
363
+
364
+ // T = [a 0]
365
+ // [0 b]
366
+ RealScalar a = mT.diagonal().coeff(i),
367
+ b = mT.diagonal().coeff(i+1);
368
+ const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b;
369
+
370
+ // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
371
+ Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
372
+
373
+ Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
374
+ Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
375
+ const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z);
376
+ m_alphas.coeffRef(i) = conj(alpha);
377
+ m_alphas.coeffRef(i+1) = alpha;
378
+
379
+ if (computeEigenvectors) {
380
+ // Compute eigenvector in position (i+1) and then position (i) is just the conjugate
381
+ cv.setZero();
382
+ cv.coeffRef(i+1) = Scalar(1.0);
383
+ // here, the "static_cast" workaound expression template issues.
384
+ cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1))
385
+ / (static_cast<Scalar>(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i));
386
+ for (Index j = i-1; j >= 0; j--)
387
+ {
388
+ const Index st = j+1;
389
+ const Index sz = i+1-j;
390
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
391
+ {
392
+ // 2x2 block
393
+ Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
394
+ Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
395
+ cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
396
+ j--;
397
+ } else {
398
+ cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum()
399
+ / (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
400
+ }
401
+ }
402
+ m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv);
403
+ m_eivec.col(i+1).normalize();
404
+ m_eivec.col(i) = m_eivec.col(i+1).conjugate();
405
+ }
406
+ i += 2;
407
+ }
408
+ }
409
+
410
+ m_valuesOkay = true;
411
+ m_vectorsOkay = computeEigenvectors;
412
+ }
413
+ return *this;
414
+ }
415
+
416
+ } // end namespace Eigen
417
+
418
+ #endif // EIGEN_GENERALIZEDEIGENSOLVER_H
@@ -0,0 +1,226 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
12
+ #define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
13
+
14
+ #include "./Tridiagonalization.h"
15
+
16
+ namespace Eigen {
17
+
18
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
19
+ *
20
+ *
21
+ * \class GeneralizedSelfAdjointEigenSolver
22
+ *
23
+ * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
24
+ *
25
+ * \tparam _MatrixType the type of the matrix of which we are computing the
26
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
27
+ * class template.
28
+ *
29
+ * This class solves the generalized eigenvalue problem
30
+ * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
31
+ * selfadjoint and the matrix \f$ B \f$ should be positive definite.
32
+ *
33
+ * Only the \b lower \b triangular \b part of the input matrix is referenced.
34
+ *
35
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
36
+ * a given matrix. Alternatively, you can use the
37
+ * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
38
+ * constructor which computes the eigenvalues and eigenvectors at construction time.
39
+ * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
40
+ * and eigenvectors() functions.
41
+ *
42
+ * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
43
+ * contains an example of the typical use of this class.
44
+ *
45
+ * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
46
+ */
47
+ template<typename _MatrixType>
48
+ class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
49
+ {
50
+ typedef SelfAdjointEigenSolver<_MatrixType> Base;
51
+ public:
52
+
53
+ typedef _MatrixType MatrixType;
54
+
55
+ /** \brief Default constructor for fixed-size matrices.
56
+ *
57
+ * The default constructor is useful in cases in which the user intends to
58
+ * perform decompositions via compute(). This constructor
59
+ * can only be used if \p _MatrixType is a fixed-size matrix; use
60
+ * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
61
+ */
62
+ GeneralizedSelfAdjointEigenSolver() : Base() {}
63
+
64
+ /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
65
+ *
66
+ * \param [in] size Positive integer, size of the matrix whose
67
+ * eigenvalues and eigenvectors will be computed.
68
+ *
69
+ * This constructor is useful for dynamic-size matrices, when the user
70
+ * intends to perform decompositions via compute(). The \p size
71
+ * parameter is only used as a hint. It is not an error to give a wrong
72
+ * \p size, but it may impair performance.
73
+ *
74
+ * \sa compute() for an example
75
+ */
76
+ explicit GeneralizedSelfAdjointEigenSolver(Index size)
77
+ : Base(size)
78
+ {}
79
+
80
+ /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
81
+ *
82
+ * \param[in] matA Selfadjoint matrix in matrix pencil.
83
+ * Only the lower triangular part of the matrix is referenced.
84
+ * \param[in] matB Positive-definite matrix in matrix pencil.
85
+ * Only the lower triangular part of the matrix is referenced.
86
+ * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
87
+ * Default is #ComputeEigenvectors|#Ax_lBx.
88
+ *
89
+ * This constructor calls compute(const MatrixType&, const MatrixType&, int)
90
+ * to compute the eigenvalues and (if requested) the eigenvectors of the
91
+ * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
92
+ * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
93
+ * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
94
+ * \f$ x^* B x = 1 \f$. The eigenvectors are computed if
95
+ * \a options contains ComputeEigenvectors.
96
+ *
97
+ * In addition, the two following variants can be solved via \p options:
98
+ * - \c ABx_lx: \f$ ABx = \lambda x \f$
99
+ * - \c BAx_lx: \f$ BAx = \lambda x \f$
100
+ *
101
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
102
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
103
+ *
104
+ * \sa compute(const MatrixType&, const MatrixType&, int)
105
+ */
106
+ GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
107
+ int options = ComputeEigenvectors|Ax_lBx)
108
+ : Base(matA.cols())
109
+ {
110
+ compute(matA, matB, options);
111
+ }
112
+
113
+ /** \brief Computes generalized eigendecomposition of given matrix pencil.
114
+ *
115
+ * \param[in] matA Selfadjoint matrix in matrix pencil.
116
+ * Only the lower triangular part of the matrix is referenced.
117
+ * \param[in] matB Positive-definite matrix in matrix pencil.
118
+ * Only the lower triangular part of the matrix is referenced.
119
+ * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
120
+ * Default is #ComputeEigenvectors|#Ax_lBx.
121
+ *
122
+ * \returns Reference to \c *this
123
+ *
124
+ * Accoring to \p options, this function computes eigenvalues and (if requested)
125
+ * the eigenvectors of one of the following three generalized eigenproblems:
126
+ * - \c Ax_lBx: \f$ Ax = \lambda B x \f$
127
+ * - \c ABx_lx: \f$ ABx = \lambda x \f$
128
+ * - \c BAx_lx: \f$ BAx = \lambda x \f$
129
+ * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
130
+ * matrix \f$ B \f$.
131
+ * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
132
+ *
133
+ * The eigenvalues() function can be used to retrieve
134
+ * the eigenvalues. If \p options contains ComputeEigenvectors, then the
135
+ * eigenvectors are also computed and can be retrieved by calling
136
+ * eigenvectors().
137
+ *
138
+ * The implementation uses LLT to compute the Cholesky decomposition
139
+ * \f$ B = LL^* \f$ and computes the classical eigendecomposition
140
+ * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
141
+ * and of \f$ L^{*} A L \f$ otherwise. This solves the
142
+ * generalized eigenproblem, because any solution of the generalized
143
+ * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
144
+ * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
145
+ * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
146
+ * can be made for the two other variants.
147
+ *
148
+ * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
149
+ * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
150
+ *
151
+ * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
152
+ */
153
+ GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
154
+ int options = ComputeEigenvectors|Ax_lBx);
155
+
156
+ protected:
157
+
158
+ };
159
+
160
+
161
+ template<typename MatrixType>
162
+ GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
163
+ compute(const MatrixType& matA, const MatrixType& matB, int options)
164
+ {
165
+ eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
166
+ eigen_assert((options&~(EigVecMask|GenEigMask))==0
167
+ && (options&EigVecMask)!=EigVecMask
168
+ && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
169
+ || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
170
+ && "invalid option parameter");
171
+
172
+ bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);
173
+
174
+ // Compute the cholesky decomposition of matB = L L' = U'U
175
+ LLT<MatrixType> cholB(matB);
176
+
177
+ int type = (options&GenEigMask);
178
+ if(type==0)
179
+ type = Ax_lBx;
180
+
181
+ if(type==Ax_lBx)
182
+ {
183
+ // compute C = inv(L) A inv(L')
184
+ MatrixType matC = matA.template selfadjointView<Lower>();
185
+ cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
186
+ cholB.matrixU().template solveInPlace<OnTheRight>(matC);
187
+
188
+ Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );
189
+
190
+ // transform back the eigen vectors: evecs = inv(U) * evecs
191
+ if(computeEigVecs)
192
+ cholB.matrixU().solveInPlace(Base::m_eivec);
193
+ }
194
+ else if(type==ABx_lx)
195
+ {
196
+ // compute C = L' A L
197
+ MatrixType matC = matA.template selfadjointView<Lower>();
198
+ matC = matC * cholB.matrixL();
199
+ matC = cholB.matrixU() * matC;
200
+
201
+ Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
202
+
203
+ // transform back the eigen vectors: evecs = inv(U) * evecs
204
+ if(computeEigVecs)
205
+ cholB.matrixU().solveInPlace(Base::m_eivec);
206
+ }
207
+ else if(type==BAx_lx)
208
+ {
209
+ // compute C = L' A L
210
+ MatrixType matC = matA.template selfadjointView<Lower>();
211
+ matC = matC * cholB.matrixL();
212
+ matC = cholB.matrixU() * matC;
213
+
214
+ Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
215
+
216
+ // transform back the eigen vectors: evecs = L * evecs
217
+ if(computeEigVecs)
218
+ Base::m_eivec = cholB.matrixL() * Base::m_eivec;
219
+ }
220
+
221
+ return *this;
222
+ }
223
+
224
+ } // end namespace Eigen
225
+
226
+ #endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H