tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,804 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
5
|
+
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_JACOBISVD_H
|
12
|
+
#define EIGEN_JACOBISVD_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
// forward declaration (needed by ICC)
|
18
|
+
// the empty body is required by MSVC
|
19
|
+
template<typename MatrixType, int QRPreconditioner,
|
20
|
+
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
21
|
+
struct svd_precondition_2x2_block_to_be_real {};
|
22
|
+
|
23
|
+
/*** QR preconditioners (R-SVD)
|
24
|
+
***
|
25
|
+
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
|
26
|
+
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
|
27
|
+
*** JacobiSVD which by itself is only able to work on square matrices.
|
28
|
+
***/
|
29
|
+
|
30
|
+
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
|
31
|
+
|
32
|
+
template<typename MatrixType, int QRPreconditioner, int Case>
|
33
|
+
struct qr_preconditioner_should_do_anything
|
34
|
+
{
|
35
|
+
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
|
36
|
+
MatrixType::ColsAtCompileTime != Dynamic &&
|
37
|
+
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
|
38
|
+
b = MatrixType::RowsAtCompileTime != Dynamic &&
|
39
|
+
MatrixType::ColsAtCompileTime != Dynamic &&
|
40
|
+
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
|
41
|
+
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
|
42
|
+
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
|
43
|
+
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
|
44
|
+
};
|
45
|
+
};
|
46
|
+
|
47
|
+
template<typename MatrixType, int QRPreconditioner, int Case,
|
48
|
+
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
|
49
|
+
> struct qr_preconditioner_impl {};
|
50
|
+
|
51
|
+
template<typename MatrixType, int QRPreconditioner, int Case>
|
52
|
+
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
|
53
|
+
{
|
54
|
+
public:
|
55
|
+
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
|
56
|
+
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
|
57
|
+
{
|
58
|
+
return false;
|
59
|
+
}
|
60
|
+
};
|
61
|
+
|
62
|
+
/*** preconditioner using FullPivHouseholderQR ***/
|
63
|
+
|
64
|
+
template<typename MatrixType>
|
65
|
+
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
66
|
+
{
|
67
|
+
public:
|
68
|
+
typedef typename MatrixType::Scalar Scalar;
|
69
|
+
enum
|
70
|
+
{
|
71
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
72
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
73
|
+
};
|
74
|
+
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
|
75
|
+
|
76
|
+
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
77
|
+
{
|
78
|
+
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
79
|
+
{
|
80
|
+
m_qr.~QRType();
|
81
|
+
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
82
|
+
}
|
83
|
+
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
84
|
+
}
|
85
|
+
|
86
|
+
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
87
|
+
{
|
88
|
+
if(matrix.rows() > matrix.cols())
|
89
|
+
{
|
90
|
+
m_qr.compute(matrix);
|
91
|
+
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
92
|
+
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
|
93
|
+
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
94
|
+
return true;
|
95
|
+
}
|
96
|
+
return false;
|
97
|
+
}
|
98
|
+
private:
|
99
|
+
typedef FullPivHouseholderQR<MatrixType> QRType;
|
100
|
+
QRType m_qr;
|
101
|
+
WorkspaceType m_workspace;
|
102
|
+
};
|
103
|
+
|
104
|
+
template<typename MatrixType>
|
105
|
+
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
106
|
+
{
|
107
|
+
public:
|
108
|
+
typedef typename MatrixType::Scalar Scalar;
|
109
|
+
enum
|
110
|
+
{
|
111
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
112
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
113
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
114
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
115
|
+
TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor))
|
116
|
+
: ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor)
|
117
|
+
: MatrixType::Options
|
118
|
+
};
|
119
|
+
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
120
|
+
TransposeTypeWithSameStorageOrder;
|
121
|
+
|
122
|
+
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
123
|
+
{
|
124
|
+
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
125
|
+
{
|
126
|
+
m_qr.~QRType();
|
127
|
+
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
128
|
+
}
|
129
|
+
m_adjoint.resize(svd.cols(), svd.rows());
|
130
|
+
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
131
|
+
}
|
132
|
+
|
133
|
+
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
134
|
+
{
|
135
|
+
if(matrix.cols() > matrix.rows())
|
136
|
+
{
|
137
|
+
m_adjoint = matrix.adjoint();
|
138
|
+
m_qr.compute(m_adjoint);
|
139
|
+
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
140
|
+
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
|
141
|
+
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
142
|
+
return true;
|
143
|
+
}
|
144
|
+
else return false;
|
145
|
+
}
|
146
|
+
private:
|
147
|
+
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
148
|
+
QRType m_qr;
|
149
|
+
TransposeTypeWithSameStorageOrder m_adjoint;
|
150
|
+
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
151
|
+
};
|
152
|
+
|
153
|
+
/*** preconditioner using ColPivHouseholderQR ***/
|
154
|
+
|
155
|
+
template<typename MatrixType>
|
156
|
+
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
157
|
+
{
|
158
|
+
public:
|
159
|
+
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
160
|
+
{
|
161
|
+
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
162
|
+
{
|
163
|
+
m_qr.~QRType();
|
164
|
+
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
165
|
+
}
|
166
|
+
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
167
|
+
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
168
|
+
}
|
169
|
+
|
170
|
+
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
171
|
+
{
|
172
|
+
if(matrix.rows() > matrix.cols())
|
173
|
+
{
|
174
|
+
m_qr.compute(matrix);
|
175
|
+
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
176
|
+
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
177
|
+
else if(svd.m_computeThinU)
|
178
|
+
{
|
179
|
+
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
180
|
+
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
181
|
+
}
|
182
|
+
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
183
|
+
return true;
|
184
|
+
}
|
185
|
+
return false;
|
186
|
+
}
|
187
|
+
|
188
|
+
private:
|
189
|
+
typedef ColPivHouseholderQR<MatrixType> QRType;
|
190
|
+
QRType m_qr;
|
191
|
+
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
192
|
+
};
|
193
|
+
|
194
|
+
template<typename MatrixType>
|
195
|
+
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
196
|
+
{
|
197
|
+
public:
|
198
|
+
typedef typename MatrixType::Scalar Scalar;
|
199
|
+
enum
|
200
|
+
{
|
201
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
202
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
203
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
204
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
205
|
+
TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor))
|
206
|
+
: ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor)
|
207
|
+
: MatrixType::Options
|
208
|
+
};
|
209
|
+
|
210
|
+
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
211
|
+
TransposeTypeWithSameStorageOrder;
|
212
|
+
|
213
|
+
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
214
|
+
{
|
215
|
+
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
216
|
+
{
|
217
|
+
m_qr.~QRType();
|
218
|
+
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
219
|
+
}
|
220
|
+
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
221
|
+
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
222
|
+
m_adjoint.resize(svd.cols(), svd.rows());
|
223
|
+
}
|
224
|
+
|
225
|
+
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
226
|
+
{
|
227
|
+
if(matrix.cols() > matrix.rows())
|
228
|
+
{
|
229
|
+
m_adjoint = matrix.adjoint();
|
230
|
+
m_qr.compute(m_adjoint);
|
231
|
+
|
232
|
+
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
233
|
+
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
234
|
+
else if(svd.m_computeThinV)
|
235
|
+
{
|
236
|
+
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
237
|
+
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
238
|
+
}
|
239
|
+
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
240
|
+
return true;
|
241
|
+
}
|
242
|
+
else return false;
|
243
|
+
}
|
244
|
+
|
245
|
+
private:
|
246
|
+
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
247
|
+
QRType m_qr;
|
248
|
+
TransposeTypeWithSameStorageOrder m_adjoint;
|
249
|
+
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
250
|
+
};
|
251
|
+
|
252
|
+
/*** preconditioner using HouseholderQR ***/
|
253
|
+
|
254
|
+
template<typename MatrixType>
|
255
|
+
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
256
|
+
{
|
257
|
+
public:
|
258
|
+
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
259
|
+
{
|
260
|
+
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
261
|
+
{
|
262
|
+
m_qr.~QRType();
|
263
|
+
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
264
|
+
}
|
265
|
+
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
266
|
+
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
267
|
+
}
|
268
|
+
|
269
|
+
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
270
|
+
{
|
271
|
+
if(matrix.rows() > matrix.cols())
|
272
|
+
{
|
273
|
+
m_qr.compute(matrix);
|
274
|
+
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
275
|
+
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
276
|
+
else if(svd.m_computeThinU)
|
277
|
+
{
|
278
|
+
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
279
|
+
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
280
|
+
}
|
281
|
+
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
|
282
|
+
return true;
|
283
|
+
}
|
284
|
+
return false;
|
285
|
+
}
|
286
|
+
private:
|
287
|
+
typedef HouseholderQR<MatrixType> QRType;
|
288
|
+
QRType m_qr;
|
289
|
+
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
290
|
+
};
|
291
|
+
|
292
|
+
template<typename MatrixType>
|
293
|
+
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
294
|
+
{
|
295
|
+
public:
|
296
|
+
typedef typename MatrixType::Scalar Scalar;
|
297
|
+
enum
|
298
|
+
{
|
299
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
300
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
301
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
302
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
303
|
+
Options = MatrixType::Options
|
304
|
+
};
|
305
|
+
|
306
|
+
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
307
|
+
TransposeTypeWithSameStorageOrder;
|
308
|
+
|
309
|
+
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
310
|
+
{
|
311
|
+
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
312
|
+
{
|
313
|
+
m_qr.~QRType();
|
314
|
+
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
315
|
+
}
|
316
|
+
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
317
|
+
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
318
|
+
m_adjoint.resize(svd.cols(), svd.rows());
|
319
|
+
}
|
320
|
+
|
321
|
+
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
322
|
+
{
|
323
|
+
if(matrix.cols() > matrix.rows())
|
324
|
+
{
|
325
|
+
m_adjoint = matrix.adjoint();
|
326
|
+
m_qr.compute(m_adjoint);
|
327
|
+
|
328
|
+
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
329
|
+
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
330
|
+
else if(svd.m_computeThinV)
|
331
|
+
{
|
332
|
+
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
333
|
+
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
334
|
+
}
|
335
|
+
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
|
336
|
+
return true;
|
337
|
+
}
|
338
|
+
else return false;
|
339
|
+
}
|
340
|
+
|
341
|
+
private:
|
342
|
+
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
343
|
+
QRType m_qr;
|
344
|
+
TransposeTypeWithSameStorageOrder m_adjoint;
|
345
|
+
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
346
|
+
};
|
347
|
+
|
348
|
+
/*** 2x2 SVD implementation
|
349
|
+
***
|
350
|
+
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
|
351
|
+
***/
|
352
|
+
|
353
|
+
template<typename MatrixType, int QRPreconditioner>
|
354
|
+
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
|
355
|
+
{
|
356
|
+
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
357
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
358
|
+
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
|
359
|
+
};
|
360
|
+
|
361
|
+
template<typename MatrixType, int QRPreconditioner>
|
362
|
+
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
363
|
+
{
|
364
|
+
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
365
|
+
typedef typename MatrixType::Scalar Scalar;
|
366
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
367
|
+
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
|
368
|
+
{
|
369
|
+
using std::sqrt;
|
370
|
+
using std::abs;
|
371
|
+
Scalar z;
|
372
|
+
JacobiRotation<Scalar> rot;
|
373
|
+
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
374
|
+
|
375
|
+
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
376
|
+
const RealScalar precision = NumTraits<Scalar>::epsilon();
|
377
|
+
|
378
|
+
if(n==0)
|
379
|
+
{
|
380
|
+
// make sure first column is zero
|
381
|
+
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
|
382
|
+
|
383
|
+
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
|
384
|
+
{
|
385
|
+
// work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n
|
386
|
+
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
387
|
+
work_matrix.row(p) *= z;
|
388
|
+
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
389
|
+
}
|
390
|
+
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
|
391
|
+
{
|
392
|
+
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
393
|
+
work_matrix.row(q) *= z;
|
394
|
+
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
395
|
+
}
|
396
|
+
// otherwise the second row is already zero, so we have nothing to do.
|
397
|
+
}
|
398
|
+
else
|
399
|
+
{
|
400
|
+
rot.c() = conj(work_matrix.coeff(p,p)) / n;
|
401
|
+
rot.s() = work_matrix.coeff(q,p) / n;
|
402
|
+
work_matrix.applyOnTheLeft(p,q,rot);
|
403
|
+
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
|
404
|
+
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
|
405
|
+
{
|
406
|
+
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
407
|
+
work_matrix.col(q) *= z;
|
408
|
+
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
|
409
|
+
}
|
410
|
+
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
|
411
|
+
{
|
412
|
+
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
413
|
+
work_matrix.row(q) *= z;
|
414
|
+
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
415
|
+
}
|
416
|
+
}
|
417
|
+
|
418
|
+
// update largest diagonal entry
|
419
|
+
maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q))));
|
420
|
+
// and check whether the 2x2 block is already diagonal
|
421
|
+
RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
|
422
|
+
return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold;
|
423
|
+
}
|
424
|
+
};
|
425
|
+
|
426
|
+
template<typename _MatrixType, int QRPreconditioner>
|
427
|
+
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
|
428
|
+
{
|
429
|
+
typedef _MatrixType MatrixType;
|
430
|
+
};
|
431
|
+
|
432
|
+
} // end namespace internal
|
433
|
+
|
434
|
+
/** \ingroup SVD_Module
|
435
|
+
*
|
436
|
+
*
|
437
|
+
* \class JacobiSVD
|
438
|
+
*
|
439
|
+
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
440
|
+
*
|
441
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
|
442
|
+
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
|
443
|
+
* for the R-SVD step for non-square matrices. See discussion of possible values below.
|
444
|
+
*
|
445
|
+
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
446
|
+
* \f[ A = U S V^* \f]
|
447
|
+
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
448
|
+
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
449
|
+
* and right \em singular \em vectors of \a A respectively.
|
450
|
+
*
|
451
|
+
* Singular values are always sorted in decreasing order.
|
452
|
+
*
|
453
|
+
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
|
454
|
+
*
|
455
|
+
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
456
|
+
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
457
|
+
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
458
|
+
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
459
|
+
*
|
460
|
+
* Here's an example demonstrating basic usage:
|
461
|
+
* \include JacobiSVD_basic.cpp
|
462
|
+
* Output: \verbinclude JacobiSVD_basic.out
|
463
|
+
*
|
464
|
+
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
|
465
|
+
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
|
466
|
+
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
|
467
|
+
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
|
468
|
+
*
|
469
|
+
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
470
|
+
* terminate in finite (and reasonable) time.
|
471
|
+
*
|
472
|
+
* The possible values for QRPreconditioner are:
|
473
|
+
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
474
|
+
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
475
|
+
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
476
|
+
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
|
477
|
+
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
|
478
|
+
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
|
479
|
+
* process is more reliable than the optimized bidiagonal SVD iterations.
|
480
|
+
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
|
481
|
+
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
|
482
|
+
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
|
483
|
+
* if QR preconditioning is needed before applying it anyway.
|
484
|
+
*
|
485
|
+
* \sa MatrixBase::jacobiSvd()
|
486
|
+
*/
|
487
|
+
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
488
|
+
: public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
|
489
|
+
{
|
490
|
+
typedef SVDBase<JacobiSVD> Base;
|
491
|
+
public:
|
492
|
+
|
493
|
+
typedef _MatrixType MatrixType;
|
494
|
+
typedef typename MatrixType::Scalar Scalar;
|
495
|
+
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
496
|
+
enum {
|
497
|
+
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
498
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
499
|
+
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
500
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
501
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
502
|
+
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
503
|
+
MatrixOptions = MatrixType::Options
|
504
|
+
};
|
505
|
+
|
506
|
+
typedef typename Base::MatrixUType MatrixUType;
|
507
|
+
typedef typename Base::MatrixVType MatrixVType;
|
508
|
+
typedef typename Base::SingularValuesType SingularValuesType;
|
509
|
+
|
510
|
+
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
511
|
+
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
512
|
+
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
513
|
+
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
514
|
+
WorkMatrixType;
|
515
|
+
|
516
|
+
/** \brief Default Constructor.
|
517
|
+
*
|
518
|
+
* The default constructor is useful in cases in which the user intends to
|
519
|
+
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
520
|
+
*/
|
521
|
+
JacobiSVD()
|
522
|
+
{}
|
523
|
+
|
524
|
+
|
525
|
+
/** \brief Default Constructor with memory preallocation
|
526
|
+
*
|
527
|
+
* Like the default constructor but with preallocation of the internal data
|
528
|
+
* according to the specified problem size.
|
529
|
+
* \sa JacobiSVD()
|
530
|
+
*/
|
531
|
+
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
532
|
+
{
|
533
|
+
allocate(rows, cols, computationOptions);
|
534
|
+
}
|
535
|
+
|
536
|
+
/** \brief Constructor performing the decomposition of given matrix.
|
537
|
+
*
|
538
|
+
* \param matrix the matrix to decompose
|
539
|
+
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
540
|
+
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
541
|
+
* #ComputeFullV, #ComputeThinV.
|
542
|
+
*
|
543
|
+
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
544
|
+
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
545
|
+
*/
|
546
|
+
explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
547
|
+
{
|
548
|
+
compute(matrix, computationOptions);
|
549
|
+
}
|
550
|
+
|
551
|
+
/** \brief Method performing the decomposition of given matrix using custom options.
|
552
|
+
*
|
553
|
+
* \param matrix the matrix to decompose
|
554
|
+
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
555
|
+
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
556
|
+
* #ComputeFullV, #ComputeThinV.
|
557
|
+
*
|
558
|
+
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
559
|
+
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
560
|
+
*/
|
561
|
+
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
562
|
+
|
563
|
+
/** \brief Method performing the decomposition of given matrix using current options.
|
564
|
+
*
|
565
|
+
* \param matrix the matrix to decompose
|
566
|
+
*
|
567
|
+
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
568
|
+
*/
|
569
|
+
JacobiSVD& compute(const MatrixType& matrix)
|
570
|
+
{
|
571
|
+
return compute(matrix, m_computationOptions);
|
572
|
+
}
|
573
|
+
|
574
|
+
using Base::computeU;
|
575
|
+
using Base::computeV;
|
576
|
+
using Base::rows;
|
577
|
+
using Base::cols;
|
578
|
+
using Base::rank;
|
579
|
+
|
580
|
+
private:
|
581
|
+
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
582
|
+
|
583
|
+
protected:
|
584
|
+
using Base::m_matrixU;
|
585
|
+
using Base::m_matrixV;
|
586
|
+
using Base::m_singularValues;
|
587
|
+
using Base::m_isInitialized;
|
588
|
+
using Base::m_isAllocated;
|
589
|
+
using Base::m_usePrescribedThreshold;
|
590
|
+
using Base::m_computeFullU;
|
591
|
+
using Base::m_computeThinU;
|
592
|
+
using Base::m_computeFullV;
|
593
|
+
using Base::m_computeThinV;
|
594
|
+
using Base::m_computationOptions;
|
595
|
+
using Base::m_nonzeroSingularValues;
|
596
|
+
using Base::m_rows;
|
597
|
+
using Base::m_cols;
|
598
|
+
using Base::m_diagSize;
|
599
|
+
using Base::m_prescribedThreshold;
|
600
|
+
WorkMatrixType m_workMatrix;
|
601
|
+
|
602
|
+
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
603
|
+
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
604
|
+
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
605
|
+
friend struct internal::qr_preconditioner_impl;
|
606
|
+
|
607
|
+
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
608
|
+
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
609
|
+
MatrixType m_scaledMatrix;
|
610
|
+
};
|
611
|
+
|
612
|
+
template<typename MatrixType, int QRPreconditioner>
|
613
|
+
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
614
|
+
{
|
615
|
+
eigen_assert(rows >= 0 && cols >= 0);
|
616
|
+
|
617
|
+
if (m_isAllocated &&
|
618
|
+
rows == m_rows &&
|
619
|
+
cols == m_cols &&
|
620
|
+
computationOptions == m_computationOptions)
|
621
|
+
{
|
622
|
+
return;
|
623
|
+
}
|
624
|
+
|
625
|
+
m_rows = rows;
|
626
|
+
m_cols = cols;
|
627
|
+
m_isInitialized = false;
|
628
|
+
m_isAllocated = true;
|
629
|
+
m_computationOptions = computationOptions;
|
630
|
+
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
631
|
+
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
632
|
+
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
633
|
+
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
634
|
+
eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
|
635
|
+
eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
|
636
|
+
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
637
|
+
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
|
638
|
+
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
639
|
+
{
|
640
|
+
eigen_assert(!(m_computeThinU || m_computeThinV) &&
|
641
|
+
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
642
|
+
"Use the ColPivHouseholderQR preconditioner instead.");
|
643
|
+
}
|
644
|
+
m_diagSize = (std::min)(m_rows, m_cols);
|
645
|
+
m_singularValues.resize(m_diagSize);
|
646
|
+
if(RowsAtCompileTime==Dynamic)
|
647
|
+
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
648
|
+
: m_computeThinU ? m_diagSize
|
649
|
+
: 0);
|
650
|
+
if(ColsAtCompileTime==Dynamic)
|
651
|
+
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
652
|
+
: m_computeThinV ? m_diagSize
|
653
|
+
: 0);
|
654
|
+
m_workMatrix.resize(m_diagSize, m_diagSize);
|
655
|
+
|
656
|
+
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
|
657
|
+
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
|
658
|
+
if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
|
659
|
+
}
|
660
|
+
|
661
|
+
template<typename MatrixType, int QRPreconditioner>
|
662
|
+
JacobiSVD<MatrixType, QRPreconditioner>&
|
663
|
+
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
664
|
+
{
|
665
|
+
using std::abs;
|
666
|
+
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
667
|
+
|
668
|
+
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
669
|
+
// only worsening the precision of U and V as we accumulate more rotations
|
670
|
+
const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
|
671
|
+
|
672
|
+
// limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
|
673
|
+
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
674
|
+
|
675
|
+
// Scaling factor to reduce over/under-flows
|
676
|
+
RealScalar scale = matrix.cwiseAbs().maxCoeff();
|
677
|
+
if(scale==RealScalar(0)) scale = RealScalar(1);
|
678
|
+
|
679
|
+
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
680
|
+
|
681
|
+
if(m_rows!=m_cols)
|
682
|
+
{
|
683
|
+
m_scaledMatrix = matrix / scale;
|
684
|
+
m_qr_precond_morecols.run(*this, m_scaledMatrix);
|
685
|
+
m_qr_precond_morerows.run(*this, m_scaledMatrix);
|
686
|
+
}
|
687
|
+
else
|
688
|
+
{
|
689
|
+
m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
|
690
|
+
if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
|
691
|
+
if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
|
692
|
+
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
693
|
+
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
694
|
+
}
|
695
|
+
|
696
|
+
/*** step 2. The main Jacobi SVD iteration. ***/
|
697
|
+
RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff();
|
698
|
+
|
699
|
+
bool finished = false;
|
700
|
+
while(!finished)
|
701
|
+
{
|
702
|
+
finished = true;
|
703
|
+
|
704
|
+
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
|
705
|
+
|
706
|
+
for(Index p = 1; p < m_diagSize; ++p)
|
707
|
+
{
|
708
|
+
for(Index q = 0; q < p; ++q)
|
709
|
+
{
|
710
|
+
// if this 2x2 sub-matrix is not diagonal already...
|
711
|
+
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
|
712
|
+
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
|
713
|
+
RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
|
714
|
+
if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
|
715
|
+
{
|
716
|
+
finished = false;
|
717
|
+
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
718
|
+
// the complex to real operation returns true if the updated 2x2 block is not already diagonal
|
719
|
+
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
|
720
|
+
{
|
721
|
+
JacobiRotation<RealScalar> j_left, j_right;
|
722
|
+
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
723
|
+
|
724
|
+
// accumulate resulting Jacobi rotations
|
725
|
+
m_workMatrix.applyOnTheLeft(p,q,j_left);
|
726
|
+
if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
|
727
|
+
|
728
|
+
m_workMatrix.applyOnTheRight(p,q,j_right);
|
729
|
+
if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
|
730
|
+
|
731
|
+
// keep track of the largest diagonal coefficient
|
732
|
+
maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q))));
|
733
|
+
}
|
734
|
+
}
|
735
|
+
}
|
736
|
+
}
|
737
|
+
}
|
738
|
+
|
739
|
+
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
|
740
|
+
|
741
|
+
for(Index i = 0; i < m_diagSize; ++i)
|
742
|
+
{
|
743
|
+
// For a complex matrix, some diagonal coefficients might note have been
|
744
|
+
// treated by svd_precondition_2x2_block_to_be_real, and the imaginary part
|
745
|
+
// of some diagonal entry might not be null.
|
746
|
+
if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero)
|
747
|
+
{
|
748
|
+
RealScalar a = abs(m_workMatrix.coeff(i,i));
|
749
|
+
m_singularValues.coeffRef(i) = abs(a);
|
750
|
+
if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
|
751
|
+
}
|
752
|
+
else
|
753
|
+
{
|
754
|
+
// m_workMatrix.coeff(i,i) is already real, no difficulty:
|
755
|
+
RealScalar a = numext::real(m_workMatrix.coeff(i,i));
|
756
|
+
m_singularValues.coeffRef(i) = abs(a);
|
757
|
+
if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i);
|
758
|
+
}
|
759
|
+
}
|
760
|
+
|
761
|
+
m_singularValues *= scale;
|
762
|
+
|
763
|
+
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
|
764
|
+
|
765
|
+
m_nonzeroSingularValues = m_diagSize;
|
766
|
+
for(Index i = 0; i < m_diagSize; i++)
|
767
|
+
{
|
768
|
+
Index pos;
|
769
|
+
RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
|
770
|
+
if(maxRemainingSingularValue == RealScalar(0))
|
771
|
+
{
|
772
|
+
m_nonzeroSingularValues = i;
|
773
|
+
break;
|
774
|
+
}
|
775
|
+
if(pos)
|
776
|
+
{
|
777
|
+
pos += i;
|
778
|
+
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
|
779
|
+
if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
|
780
|
+
if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
781
|
+
}
|
782
|
+
}
|
783
|
+
|
784
|
+
m_isInitialized = true;
|
785
|
+
return *this;
|
786
|
+
}
|
787
|
+
|
788
|
+
/** \svd_module
|
789
|
+
*
|
790
|
+
* \return the singular value decomposition of \c *this computed by two-sided
|
791
|
+
* Jacobi transformations.
|
792
|
+
*
|
793
|
+
* \sa class JacobiSVD
|
794
|
+
*/
|
795
|
+
template<typename Derived>
|
796
|
+
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
|
797
|
+
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
|
798
|
+
{
|
799
|
+
return JacobiSVD<PlainObject>(*this, computationOptions);
|
800
|
+
}
|
801
|
+
|
802
|
+
} // end namespace Eigen
|
803
|
+
|
804
|
+
#endif // EIGEN_JACOBISVD_H
|