tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,773 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
+ // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+
12
+ #ifndef EIGEN_SPARSE_LU_H
13
+ #define EIGEN_SPARSE_LU_H
14
+
15
+ namespace Eigen {
16
+
17
+ template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18
+ template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19
+ template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
+
21
+ /** \ingroup SparseLU_Module
22
+ * \class SparseLU
23
+ *
24
+ * \brief Sparse supernodal LU factorization for general matrices
25
+ *
26
+ * This class implements the supernodal LU factorization for general matrices.
27
+ * It uses the main techniques from the sequential SuperLU package
28
+ * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
29
+ * and complex arithmetics with single and double precision, depending on the
30
+ * scalar type of your input matrix.
31
+ * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
32
+ * It benefits directly from the built-in high-performant Eigen BLAS routines.
33
+ * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
34
+ * enable a better optimization from the compiler. For best performance,
35
+ * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
36
+ *
37
+ * An important parameter of this class is the ordering method. It is used to reorder the columns
38
+ * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
39
+ * numerical factorization. The cheapest method available is COLAMD.
40
+ * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
41
+ * built-in and external ordering methods.
42
+ *
43
+ * Simple example with key steps
44
+ * \code
45
+ * VectorXd x(n), b(n);
46
+ * SparseMatrix<double, ColMajor> A;
47
+ * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver;
48
+ * // fill A and b;
49
+ * // Compute the ordering permutation vector from the structural pattern of A
50
+ * solver.analyzePattern(A);
51
+ * // Compute the numerical factorization
52
+ * solver.factorize(A);
53
+ * //Use the factors to solve the linear system
54
+ * x = solver.solve(b);
55
+ * \endcode
56
+ *
57
+ * \warning The input matrix A should be in a \b compressed and \b column-major form.
58
+ * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
59
+ *
60
+ * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
61
+ * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
62
+ * If this is the case for your matrices, you can try the basic scaling method at
63
+ * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
64
+ *
65
+ * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
66
+ * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
67
+ *
68
+ * \implsparsesolverconcept
69
+ *
70
+ * \sa \ref TutorialSparseSolverConcept
71
+ * \sa \ref OrderingMethods_Module
72
+ */
73
+ template <typename _MatrixType, typename _OrderingType>
74
+ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
75
+ {
76
+ protected:
77
+ typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
78
+ using APIBase::m_isInitialized;
79
+ public:
80
+ using APIBase::_solve_impl;
81
+
82
+ typedef _MatrixType MatrixType;
83
+ typedef _OrderingType OrderingType;
84
+ typedef typename MatrixType::Scalar Scalar;
85
+ typedef typename MatrixType::RealScalar RealScalar;
86
+ typedef typename MatrixType::StorageIndex StorageIndex;
87
+ typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
88
+ typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
89
+ typedef Matrix<Scalar,Dynamic,1> ScalarVector;
90
+ typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
91
+ typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
92
+ typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
93
+
94
+ enum {
95
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
96
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
97
+ };
98
+
99
+ public:
100
+ SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
101
+ {
102
+ initperfvalues();
103
+ }
104
+ explicit SparseLU(const MatrixType& matrix)
105
+ : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
106
+ {
107
+ initperfvalues();
108
+ compute(matrix);
109
+ }
110
+
111
+ ~SparseLU()
112
+ {
113
+ // Free all explicit dynamic pointers
114
+ }
115
+
116
+ void analyzePattern (const MatrixType& matrix);
117
+ void factorize (const MatrixType& matrix);
118
+ void simplicialfactorize(const MatrixType& matrix);
119
+
120
+ /**
121
+ * Compute the symbolic and numeric factorization of the input sparse matrix.
122
+ * The input matrix should be in column-major storage.
123
+ */
124
+ void compute (const MatrixType& matrix)
125
+ {
126
+ // Analyze
127
+ analyzePattern(matrix);
128
+ //Factorize
129
+ factorize(matrix);
130
+ }
131
+
132
+ inline Index rows() const { return m_mat.rows(); }
133
+ inline Index cols() const { return m_mat.cols(); }
134
+ /** Indicate that the pattern of the input matrix is symmetric */
135
+ void isSymmetric(bool sym)
136
+ {
137
+ m_symmetricmode = sym;
138
+ }
139
+
140
+ /** \returns an expression of the matrix L, internally stored as supernodes
141
+ * The only operation available with this expression is the triangular solve
142
+ * \code
143
+ * y = b; matrixL().solveInPlace(y);
144
+ * \endcode
145
+ */
146
+ SparseLUMatrixLReturnType<SCMatrix> matrixL() const
147
+ {
148
+ return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
149
+ }
150
+ /** \returns an expression of the matrix U,
151
+ * The only operation available with this expression is the triangular solve
152
+ * \code
153
+ * y = b; matrixU().solveInPlace(y);
154
+ * \endcode
155
+ */
156
+ SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
157
+ {
158
+ return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
159
+ }
160
+
161
+ /**
162
+ * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
163
+ * \sa colsPermutation()
164
+ */
165
+ inline const PermutationType& rowsPermutation() const
166
+ {
167
+ return m_perm_r;
168
+ }
169
+ /**
170
+ * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
171
+ * \sa rowsPermutation()
172
+ */
173
+ inline const PermutationType& colsPermutation() const
174
+ {
175
+ return m_perm_c;
176
+ }
177
+ /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
178
+ void setPivotThreshold(const RealScalar& thresh)
179
+ {
180
+ m_diagpivotthresh = thresh;
181
+ }
182
+
183
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
184
+ /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
185
+ *
186
+ * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
187
+ *
188
+ * \sa compute()
189
+ */
190
+ template<typename Rhs>
191
+ inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
192
+ #endif // EIGEN_PARSED_BY_DOXYGEN
193
+
194
+ /** \brief Reports whether previous computation was successful.
195
+ *
196
+ * \returns \c Success if computation was succesful,
197
+ * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
198
+ * \c InvalidInput if the input matrix is invalid
199
+ *
200
+ * \sa iparm()
201
+ */
202
+ ComputationInfo info() const
203
+ {
204
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
205
+ return m_info;
206
+ }
207
+
208
+ /**
209
+ * \returns A string describing the type of error
210
+ */
211
+ std::string lastErrorMessage() const
212
+ {
213
+ return m_lastError;
214
+ }
215
+
216
+ template<typename Rhs, typename Dest>
217
+ bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
218
+ {
219
+ Dest& X(X_base.derived());
220
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
221
+ EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
222
+ THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
223
+
224
+ // Permute the right hand side to form X = Pr*B
225
+ // on return, X is overwritten by the computed solution
226
+ X.resize(B.rows(),B.cols());
227
+
228
+ // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
229
+ for(Index j = 0; j < B.cols(); ++j)
230
+ X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
231
+
232
+ //Forward substitution with L
233
+ this->matrixL().solveInPlace(X);
234
+ this->matrixU().solveInPlace(X);
235
+
236
+ // Permute back the solution
237
+ for (Index j = 0; j < B.cols(); ++j)
238
+ X.col(j) = colsPermutation().inverse() * X.col(j);
239
+
240
+ return true;
241
+ }
242
+
243
+ /**
244
+ * \returns the absolute value of the determinant of the matrix of which
245
+ * *this is the QR decomposition.
246
+ *
247
+ * \warning a determinant can be very big or small, so for matrices
248
+ * of large enough dimension, there is a risk of overflow/underflow.
249
+ * One way to work around that is to use logAbsDeterminant() instead.
250
+ *
251
+ * \sa logAbsDeterminant(), signDeterminant()
252
+ */
253
+ Scalar absDeterminant()
254
+ {
255
+ using std::abs;
256
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
257
+ // Initialize with the determinant of the row matrix
258
+ Scalar det = Scalar(1.);
259
+ // Note that the diagonal blocks of U are stored in supernodes,
260
+ // which are available in the L part :)
261
+ for (Index j = 0; j < this->cols(); ++j)
262
+ {
263
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
264
+ {
265
+ if(it.index() == j)
266
+ {
267
+ det *= abs(it.value());
268
+ break;
269
+ }
270
+ }
271
+ }
272
+ return det;
273
+ }
274
+
275
+ /** \returns the natural log of the absolute value of the determinant of the matrix
276
+ * of which **this is the QR decomposition
277
+ *
278
+ * \note This method is useful to work around the risk of overflow/underflow that's
279
+ * inherent to the determinant computation.
280
+ *
281
+ * \sa absDeterminant(), signDeterminant()
282
+ */
283
+ Scalar logAbsDeterminant() const
284
+ {
285
+ using std::log;
286
+ using std::abs;
287
+
288
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
289
+ Scalar det = Scalar(0.);
290
+ for (Index j = 0; j < this->cols(); ++j)
291
+ {
292
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
293
+ {
294
+ if(it.row() < j) continue;
295
+ if(it.row() == j)
296
+ {
297
+ det += log(abs(it.value()));
298
+ break;
299
+ }
300
+ }
301
+ }
302
+ return det;
303
+ }
304
+
305
+ /** \returns A number representing the sign of the determinant
306
+ *
307
+ * \sa absDeterminant(), logAbsDeterminant()
308
+ */
309
+ Scalar signDeterminant()
310
+ {
311
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
312
+ // Initialize with the determinant of the row matrix
313
+ Index det = 1;
314
+ // Note that the diagonal blocks of U are stored in supernodes,
315
+ // which are available in the L part :)
316
+ for (Index j = 0; j < this->cols(); ++j)
317
+ {
318
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
319
+ {
320
+ if(it.index() == j)
321
+ {
322
+ if(it.value()<0)
323
+ det = -det;
324
+ else if(it.value()==0)
325
+ return 0;
326
+ break;
327
+ }
328
+ }
329
+ }
330
+ return det * m_detPermR * m_detPermC;
331
+ }
332
+
333
+ /** \returns The determinant of the matrix.
334
+ *
335
+ * \sa absDeterminant(), logAbsDeterminant()
336
+ */
337
+ Scalar determinant()
338
+ {
339
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
340
+ // Initialize with the determinant of the row matrix
341
+ Scalar det = Scalar(1.);
342
+ // Note that the diagonal blocks of U are stored in supernodes,
343
+ // which are available in the L part :)
344
+ for (Index j = 0; j < this->cols(); ++j)
345
+ {
346
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
347
+ {
348
+ if(it.index() == j)
349
+ {
350
+ det *= it.value();
351
+ break;
352
+ }
353
+ }
354
+ }
355
+ return (m_detPermR * m_detPermC) > 0 ? det : -det;
356
+ }
357
+
358
+ protected:
359
+ // Functions
360
+ void initperfvalues()
361
+ {
362
+ m_perfv.panel_size = 16;
363
+ m_perfv.relax = 1;
364
+ m_perfv.maxsuper = 128;
365
+ m_perfv.rowblk = 16;
366
+ m_perfv.colblk = 8;
367
+ m_perfv.fillfactor = 20;
368
+ }
369
+
370
+ // Variables
371
+ mutable ComputationInfo m_info;
372
+ bool m_factorizationIsOk;
373
+ bool m_analysisIsOk;
374
+ std::string m_lastError;
375
+ NCMatrix m_mat; // The input (permuted ) matrix
376
+ SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
377
+ MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
378
+ PermutationType m_perm_c; // Column permutation
379
+ PermutationType m_perm_r ; // Row permutation
380
+ IndexVector m_etree; // Column elimination tree
381
+
382
+ typename Base::GlobalLU_t m_glu;
383
+
384
+ // SparseLU options
385
+ bool m_symmetricmode;
386
+ // values for performance
387
+ internal::perfvalues m_perfv;
388
+ RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
389
+ Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
390
+ Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
391
+ private:
392
+ // Disable copy constructor
393
+ SparseLU (const SparseLU& );
394
+
395
+ }; // End class SparseLU
396
+
397
+
398
+
399
+ // Functions needed by the anaysis phase
400
+ /**
401
+ * Compute the column permutation to minimize the fill-in
402
+ *
403
+ * - Apply this permutation to the input matrix -
404
+ *
405
+ * - Compute the column elimination tree on the permuted matrix
406
+ *
407
+ * - Postorder the elimination tree and the column permutation
408
+ *
409
+ */
410
+ template <typename MatrixType, typename OrderingType>
411
+ void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
412
+ {
413
+
414
+ //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
415
+
416
+ // Firstly, copy the whole input matrix.
417
+ m_mat = mat;
418
+
419
+ // Compute fill-in ordering
420
+ OrderingType ord;
421
+ ord(m_mat,m_perm_c);
422
+
423
+ // Apply the permutation to the column of the input matrix
424
+ if (m_perm_c.size())
425
+ {
426
+ m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
427
+ // Then, permute only the column pointers
428
+ ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
429
+
430
+ // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
431
+ if(!mat.isCompressed())
432
+ IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
433
+
434
+ // Apply the permutation and compute the nnz per column.
435
+ for (Index i = 0; i < mat.cols(); i++)
436
+ {
437
+ m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
438
+ m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
439
+ }
440
+ }
441
+
442
+ // Compute the column elimination tree of the permuted matrix
443
+ IndexVector firstRowElt;
444
+ internal::coletree(m_mat, m_etree,firstRowElt);
445
+
446
+ // In symmetric mode, do not do postorder here
447
+ if (!m_symmetricmode) {
448
+ IndexVector post, iwork;
449
+ // Post order etree
450
+ internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
451
+
452
+
453
+ // Renumber etree in postorder
454
+ Index m = m_mat.cols();
455
+ iwork.resize(m+1);
456
+ for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
457
+ m_etree = iwork;
458
+
459
+ // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
460
+ PermutationType post_perm(m);
461
+ for (Index i = 0; i < m; i++)
462
+ post_perm.indices()(i) = post(i);
463
+
464
+ // Combine the two permutations : postorder the permutation for future use
465
+ if(m_perm_c.size()) {
466
+ m_perm_c = post_perm * m_perm_c;
467
+ }
468
+
469
+ } // end postordering
470
+
471
+ m_analysisIsOk = true;
472
+ }
473
+
474
+ // Functions needed by the numerical factorization phase
475
+
476
+
477
+ /**
478
+ * - Numerical factorization
479
+ * - Interleaved with the symbolic factorization
480
+ * On exit, info is
481
+ *
482
+ * = 0: successful factorization
483
+ *
484
+ * > 0: if info = i, and i is
485
+ *
486
+ * <= A->ncol: U(i,i) is exactly zero. The factorization has
487
+ * been completed, but the factor U is exactly singular,
488
+ * and division by zero will occur if it is used to solve a
489
+ * system of equations.
490
+ *
491
+ * > A->ncol: number of bytes allocated when memory allocation
492
+ * failure occurred, plus A->ncol. If lwork = -1, it is
493
+ * the estimated amount of space needed, plus A->ncol.
494
+ */
495
+ template <typename MatrixType, typename OrderingType>
496
+ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
497
+ {
498
+ using internal::emptyIdxLU;
499
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
500
+ eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
501
+
502
+ m_isInitialized = true;
503
+
504
+
505
+ // Apply the column permutation computed in analyzepattern()
506
+ // m_mat = matrix * m_perm_c.inverse();
507
+ m_mat = matrix;
508
+ if (m_perm_c.size())
509
+ {
510
+ m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
511
+ //Then, permute only the column pointers
512
+ const StorageIndex * outerIndexPtr;
513
+ if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
514
+ else
515
+ {
516
+ StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
517
+ for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
518
+ outerIndexPtr = outerIndexPtr_t;
519
+ }
520
+ for (Index i = 0; i < matrix.cols(); i++)
521
+ {
522
+ m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
523
+ m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
524
+ }
525
+ if(!matrix.isCompressed()) delete[] outerIndexPtr;
526
+ }
527
+ else
528
+ { //FIXME This should not be needed if the empty permutation is handled transparently
529
+ m_perm_c.resize(matrix.cols());
530
+ for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
531
+ }
532
+
533
+ Index m = m_mat.rows();
534
+ Index n = m_mat.cols();
535
+ Index nnz = m_mat.nonZeros();
536
+ Index maxpanel = m_perfv.panel_size * m;
537
+ // Allocate working storage common to the factor routines
538
+ Index lwork = 0;
539
+ Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
540
+ if (info)
541
+ {
542
+ m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
543
+ m_factorizationIsOk = false;
544
+ return ;
545
+ }
546
+
547
+ // Set up pointers for integer working arrays
548
+ IndexVector segrep(m); segrep.setZero();
549
+ IndexVector parent(m); parent.setZero();
550
+ IndexVector xplore(m); xplore.setZero();
551
+ IndexVector repfnz(maxpanel);
552
+ IndexVector panel_lsub(maxpanel);
553
+ IndexVector xprune(n); xprune.setZero();
554
+ IndexVector marker(m*internal::LUNoMarker); marker.setZero();
555
+
556
+ repfnz.setConstant(-1);
557
+ panel_lsub.setConstant(-1);
558
+
559
+ // Set up pointers for scalar working arrays
560
+ ScalarVector dense;
561
+ dense.setZero(maxpanel);
562
+ ScalarVector tempv;
563
+ tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
564
+
565
+ // Compute the inverse of perm_c
566
+ PermutationType iperm_c(m_perm_c.inverse());
567
+
568
+ // Identify initial relaxed snodes
569
+ IndexVector relax_end(n);
570
+ if ( m_symmetricmode == true )
571
+ Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
572
+ else
573
+ Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
574
+
575
+
576
+ m_perm_r.resize(m);
577
+ m_perm_r.indices().setConstant(-1);
578
+ marker.setConstant(-1);
579
+ m_detPermR = 1; // Record the determinant of the row permutation
580
+
581
+ m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
582
+ m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
583
+
584
+ // Work on one 'panel' at a time. A panel is one of the following :
585
+ // (a) a relaxed supernode at the bottom of the etree, or
586
+ // (b) panel_size contiguous columns, <panel_size> defined by the user
587
+ Index jcol;
588
+ IndexVector panel_histo(n);
589
+ Index pivrow; // Pivotal row number in the original row matrix
590
+ Index nseg1; // Number of segments in U-column above panel row jcol
591
+ Index nseg; // Number of segments in each U-column
592
+ Index irep;
593
+ Index i, k, jj;
594
+ for (jcol = 0; jcol < n; )
595
+ {
596
+ // Adjust panel size so that a panel won't overlap with the next relaxed snode.
597
+ Index panel_size = m_perfv.panel_size; // upper bound on panel width
598
+ for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
599
+ {
600
+ if (relax_end(k) != emptyIdxLU)
601
+ {
602
+ panel_size = k - jcol;
603
+ break;
604
+ }
605
+ }
606
+ if (k == n)
607
+ panel_size = n - jcol;
608
+
609
+ // Symbolic outer factorization on a panel of columns
610
+ Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
611
+
612
+ // Numeric sup-panel updates in topological order
613
+ Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
614
+
615
+ // Sparse LU within the panel, and below the panel diagonal
616
+ for ( jj = jcol; jj< jcol + panel_size; jj++)
617
+ {
618
+ k = (jj - jcol) * m; // Column index for w-wide arrays
619
+
620
+ nseg = nseg1; // begin after all the panel segments
621
+ //Depth-first-search for the current column
622
+ VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
623
+ VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
624
+ info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
625
+ if ( info )
626
+ {
627
+ m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
628
+ m_info = NumericalIssue;
629
+ m_factorizationIsOk = false;
630
+ return;
631
+ }
632
+ // Numeric updates to this column
633
+ VectorBlock<ScalarVector> dense_k(dense, k, m);
634
+ VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
635
+ info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
636
+ if ( info )
637
+ {
638
+ m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
639
+ m_info = NumericalIssue;
640
+ m_factorizationIsOk = false;
641
+ return;
642
+ }
643
+
644
+ // Copy the U-segments to ucol(*)
645
+ info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
646
+ if ( info )
647
+ {
648
+ m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
649
+ m_info = NumericalIssue;
650
+ m_factorizationIsOk = false;
651
+ return;
652
+ }
653
+
654
+ // Form the L-segment
655
+ info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
656
+ if ( info )
657
+ {
658
+ m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
659
+ std::ostringstream returnInfo;
660
+ returnInfo << info;
661
+ m_lastError += returnInfo.str();
662
+ m_info = NumericalIssue;
663
+ m_factorizationIsOk = false;
664
+ return;
665
+ }
666
+
667
+ // Update the determinant of the row permutation matrix
668
+ // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
669
+ if (pivrow != jj) m_detPermR = -m_detPermR;
670
+
671
+ // Prune columns (0:jj-1) using column jj
672
+ Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
673
+
674
+ // Reset repfnz for this column
675
+ for (i = 0; i < nseg; i++)
676
+ {
677
+ irep = segrep(i);
678
+ repfnz_k(irep) = emptyIdxLU;
679
+ }
680
+ } // end SparseLU within the panel
681
+ jcol += panel_size; // Move to the next panel
682
+ } // end for -- end elimination
683
+
684
+ m_detPermR = m_perm_r.determinant();
685
+ m_detPermC = m_perm_c.determinant();
686
+
687
+ // Count the number of nonzeros in factors
688
+ Base::countnz(n, m_nnzL, m_nnzU, m_glu);
689
+ // Apply permutation to the L subscripts
690
+ Base::fixupL(n, m_perm_r.indices(), m_glu);
691
+
692
+ // Create supernode matrix L
693
+ m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
694
+ // Create the column major upper sparse matrix U;
695
+ new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
696
+
697
+ m_info = Success;
698
+ m_factorizationIsOk = true;
699
+ }
700
+
701
+ template<typename MappedSupernodalType>
702
+ struct SparseLUMatrixLReturnType : internal::no_assignment_operator
703
+ {
704
+ typedef typename MappedSupernodalType::Scalar Scalar;
705
+ explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
706
+ { }
707
+ Index rows() { return m_mapL.rows(); }
708
+ Index cols() { return m_mapL.cols(); }
709
+ template<typename Dest>
710
+ void solveInPlace( MatrixBase<Dest> &X) const
711
+ {
712
+ m_mapL.solveInPlace(X);
713
+ }
714
+ const MappedSupernodalType& m_mapL;
715
+ };
716
+
717
+ template<typename MatrixLType, typename MatrixUType>
718
+ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
719
+ {
720
+ typedef typename MatrixLType::Scalar Scalar;
721
+ SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
722
+ : m_mapL(mapL),m_mapU(mapU)
723
+ { }
724
+ Index rows() { return m_mapL.rows(); }
725
+ Index cols() { return m_mapL.cols(); }
726
+
727
+ template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
728
+ {
729
+ Index nrhs = X.cols();
730
+ Index n = X.rows();
731
+ // Backward solve with U
732
+ for (Index k = m_mapL.nsuper(); k >= 0; k--)
733
+ {
734
+ Index fsupc = m_mapL.supToCol()[k];
735
+ Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
736
+ Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
737
+ Index luptr = m_mapL.colIndexPtr()[fsupc];
738
+
739
+ if (nsupc == 1)
740
+ {
741
+ for (Index j = 0; j < nrhs; j++)
742
+ {
743
+ X(fsupc, j) /= m_mapL.valuePtr()[luptr];
744
+ }
745
+ }
746
+ else
747
+ {
748
+ Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
749
+ Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
750
+ U = A.template triangularView<Upper>().solve(U);
751
+ }
752
+
753
+ for (Index j = 0; j < nrhs; ++j)
754
+ {
755
+ for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
756
+ {
757
+ typename MatrixUType::InnerIterator it(m_mapU, jcol);
758
+ for ( ; it; ++it)
759
+ {
760
+ Index irow = it.index();
761
+ X(irow, j) -= X(jcol, j) * it.value();
762
+ }
763
+ }
764
+ }
765
+ } // End For U-solve
766
+ }
767
+ const MatrixLType& m_mapL;
768
+ const MatrixUType& m_mapU;
769
+ };
770
+
771
+ } // End namespace Eigen
772
+
773
+ #endif