tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,246 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_CONJUGATE_GRADIENT_H
11
+ #define EIGEN_CONJUGATE_GRADIENT_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+ /** \internal Low-level conjugate gradient algorithm
18
+ * \param mat The matrix A
19
+ * \param rhs The right hand side vector b
20
+ * \param x On input and initial solution, on output the computed solution.
21
+ * \param precond A preconditioner being able to efficiently solve for an
22
+ * approximation of Ax=b (regardless of b)
23
+ * \param iters On input the max number of iteration, on output the number of performed iterations.
24
+ * \param tol_error On input the tolerance error, on output an estimation of the relative error.
25
+ */
26
+ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
27
+ EIGEN_DONT_INLINE
28
+ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
29
+ const Preconditioner& precond, Index& iters,
30
+ typename Dest::RealScalar& tol_error)
31
+ {
32
+ using std::sqrt;
33
+ using std::abs;
34
+ typedef typename Dest::RealScalar RealScalar;
35
+ typedef typename Dest::Scalar Scalar;
36
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
37
+
38
+ RealScalar tol = tol_error;
39
+ Index maxIters = iters;
40
+
41
+ Index n = mat.cols();
42
+
43
+ VectorType residual = rhs - mat * x; //initial residual
44
+
45
+ RealScalar rhsNorm2 = rhs.squaredNorm();
46
+ if(rhsNorm2 == 0)
47
+ {
48
+ x.setZero();
49
+ iters = 0;
50
+ tol_error = 0;
51
+ return;
52
+ }
53
+ const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
54
+ RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);
55
+ RealScalar residualNorm2 = residual.squaredNorm();
56
+ if (residualNorm2 < threshold)
57
+ {
58
+ iters = 0;
59
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
60
+ return;
61
+ }
62
+
63
+ VectorType p(n);
64
+ p = precond.solve(residual); // initial search direction
65
+
66
+ VectorType z(n), tmp(n);
67
+ RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
68
+ Index i = 0;
69
+ while(i < maxIters)
70
+ {
71
+ tmp.noalias() = mat * p; // the bottleneck of the algorithm
72
+
73
+ Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
74
+ x += alpha * p; // update solution
75
+ residual -= alpha * tmp; // update residual
76
+
77
+ residualNorm2 = residual.squaredNorm();
78
+ if(residualNorm2 < threshold)
79
+ break;
80
+
81
+ z = precond.solve(residual); // approximately solve for "A z = residual"
82
+
83
+ RealScalar absOld = absNew;
84
+ absNew = numext::real(residual.dot(z)); // update the absolute value of r
85
+ RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
86
+ p = z + beta * p; // update search direction
87
+ i++;
88
+ }
89
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
90
+ iters = i;
91
+ }
92
+
93
+ }
94
+
95
+ template< typename _MatrixType, int _UpLo=Lower,
96
+ typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
97
+ class ConjugateGradient;
98
+
99
+ namespace internal {
100
+
101
+ template< typename _MatrixType, int _UpLo, typename _Preconditioner>
102
+ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
103
+ {
104
+ typedef _MatrixType MatrixType;
105
+ typedef _Preconditioner Preconditioner;
106
+ };
107
+
108
+ }
109
+
110
+ /** \ingroup IterativeLinearSolvers_Module
111
+ * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
112
+ *
113
+ * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
114
+ * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
115
+ *
116
+ * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
117
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
118
+ * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
119
+ * Default is \c Lower, best performance is \c Lower|Upper.
120
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
121
+ *
122
+ * \implsparsesolverconcept
123
+ *
124
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
125
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
126
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
127
+ *
128
+ * The tolerance corresponds to the relative residual error: |Ax-b|/|b|
129
+ *
130
+ * \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is
131
+ * achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this
132
+ * case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
133
+ * See \ref TopicMultiThreading for details.
134
+ *
135
+ * This class can be used as the direct solver classes. Here is a typical usage example:
136
+ \code
137
+ int n = 10000;
138
+ VectorXd x(n), b(n);
139
+ SparseMatrix<double> A(n,n);
140
+ // fill A and b
141
+ ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
142
+ cg.compute(A);
143
+ x = cg.solve(b);
144
+ std::cout << "#iterations: " << cg.iterations() << std::endl;
145
+ std::cout << "estimated error: " << cg.error() << std::endl;
146
+ // update b, and solve again
147
+ x = cg.solve(b);
148
+ \endcode
149
+ *
150
+ * By default the iterations start with x=0 as an initial guess of the solution.
151
+ * One can control the start using the solveWithGuess() method.
152
+ *
153
+ * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
154
+ *
155
+ * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
156
+ */
157
+ template< typename _MatrixType, int _UpLo, typename _Preconditioner>
158
+ class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
159
+ {
160
+ typedef IterativeSolverBase<ConjugateGradient> Base;
161
+ using Base::matrix;
162
+ using Base::m_error;
163
+ using Base::m_iterations;
164
+ using Base::m_info;
165
+ using Base::m_isInitialized;
166
+ public:
167
+ typedef _MatrixType MatrixType;
168
+ typedef typename MatrixType::Scalar Scalar;
169
+ typedef typename MatrixType::RealScalar RealScalar;
170
+ typedef _Preconditioner Preconditioner;
171
+
172
+ enum {
173
+ UpLo = _UpLo
174
+ };
175
+
176
+ public:
177
+
178
+ /** Default constructor. */
179
+ ConjugateGradient() : Base() {}
180
+
181
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
182
+ *
183
+ * This constructor is a shortcut for the default constructor followed
184
+ * by a call to compute().
185
+ *
186
+ * \warning this class stores a reference to the matrix A as well as some
187
+ * precomputed values that depend on it. Therefore, if \a A is changed
188
+ * this class becomes invalid. Call compute() to update it with the new
189
+ * matrix A, or modify a copy of A.
190
+ */
191
+ template<typename MatrixDerived>
192
+ explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
193
+
194
+ ~ConjugateGradient() {}
195
+
196
+ /** \internal */
197
+ template<typename Rhs,typename Dest>
198
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
199
+ {
200
+ typedef typename Base::MatrixWrapper MatrixWrapper;
201
+ typedef typename Base::ActualMatrixType ActualMatrixType;
202
+ enum {
203
+ TransposeInput = (!MatrixWrapper::MatrixFree)
204
+ && (UpLo==(Lower|Upper))
205
+ && (!MatrixType::IsRowMajor)
206
+ && (!NumTraits<Scalar>::IsComplex)
207
+ };
208
+ typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
209
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
210
+ typedef typename internal::conditional<UpLo==(Lower|Upper),
211
+ RowMajorWrapper,
212
+ typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
213
+ >::type SelfAdjointWrapper;
214
+ m_iterations = Base::maxIterations();
215
+ m_error = Base::m_tolerance;
216
+
217
+ for(Index j=0; j<b.cols(); ++j)
218
+ {
219
+ m_iterations = Base::maxIterations();
220
+ m_error = Base::m_tolerance;
221
+
222
+ typename Dest::ColXpr xj(x,j);
223
+ RowMajorWrapper row_mat(matrix());
224
+ internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
225
+ }
226
+
227
+ m_isInitialized = true;
228
+ m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
229
+ }
230
+
231
+ /** \internal */
232
+ using Base::_solve_impl;
233
+ template<typename Rhs,typename Dest>
234
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
235
+ {
236
+ x.setZero();
237
+ _solve_with_guess_impl(b.derived(),x);
238
+ }
239
+
240
+ protected:
241
+
242
+ };
243
+
244
+ } // end namespace Eigen
245
+
246
+ #endif // EIGEN_CONJUGATE_GRADIENT_H
@@ -0,0 +1,400 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
+ // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
12
+ #define EIGEN_INCOMPLETE_CHOlESKY_H
13
+
14
+ #include <vector>
15
+ #include <list>
16
+
17
+ namespace Eigen {
18
+ /**
19
+ * \brief Modified Incomplete Cholesky with dual threshold
20
+ *
21
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
22
+ * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
23
+ *
24
+ * \tparam Scalar the scalar type of the input matrices
25
+ * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
26
+ * or Upper. Default is Lower.
27
+ * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
28
+ * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
29
+ *
30
+ * \implsparsesolverconcept
31
+ *
32
+ * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
33
+ * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
34
+ * fill-in reducing permutation as computed by the ordering method.
35
+ *
36
+ * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
37
+ * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
38
+ * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
39
+ * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
40
+ * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
41
+ * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
42
+ *
43
+ */
44
+ template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
45
+ #ifndef EIGEN_MPL2_ONLY
46
+ AMDOrdering<int>
47
+ #else
48
+ NaturalOrdering<int>
49
+ #endif
50
+ >
51
+ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
52
+ {
53
+ protected:
54
+ typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
55
+ using Base::m_isInitialized;
56
+ public:
57
+ typedef typename NumTraits<Scalar>::Real RealScalar;
58
+ typedef _OrderingType OrderingType;
59
+ typedef typename OrderingType::PermutationType PermutationType;
60
+ typedef typename PermutationType::StorageIndex StorageIndex;
61
+ typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
62
+ typedef Matrix<Scalar,Dynamic,1> VectorSx;
63
+ typedef Matrix<RealScalar,Dynamic,1> VectorRx;
64
+ typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
65
+ typedef std::vector<std::list<StorageIndex> > VectorList;
66
+ enum { UpLo = _UpLo };
67
+ enum {
68
+ ColsAtCompileTime = Dynamic,
69
+ MaxColsAtCompileTime = Dynamic
70
+ };
71
+ public:
72
+
73
+ /** Default constructor leaving the object in a partly non-initialized stage.
74
+ *
75
+ * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
76
+ *
77
+ * \sa IncompleteCholesky(const MatrixType&)
78
+ */
79
+ IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
80
+
81
+ /** Constructor computing the incomplete factorization for the given matrix \a matrix.
82
+ */
83
+ template<typename MatrixType>
84
+ IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
85
+ {
86
+ compute(matrix);
87
+ }
88
+
89
+ /** \returns number of rows of the factored matrix */
90
+ Index rows() const { return m_L.rows(); }
91
+
92
+ /** \returns number of columns of the factored matrix */
93
+ Index cols() const { return m_L.cols(); }
94
+
95
+
96
+ /** \brief Reports whether previous computation was successful.
97
+ *
98
+ * It triggers an assertion if \c *this has not been initialized through the respective constructor,
99
+ * or a call to compute() or analyzePattern().
100
+ *
101
+ * \returns \c Success if computation was successful,
102
+ * \c NumericalIssue if the matrix appears to be negative.
103
+ */
104
+ ComputationInfo info() const
105
+ {
106
+ eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
107
+ return m_info;
108
+ }
109
+
110
+ /** \brief Set the initial shift parameter \f$ \sigma \f$.
111
+ */
112
+ void setInitialShift(RealScalar shift) { m_initialShift = shift; }
113
+
114
+ /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
115
+ */
116
+ template<typename MatrixType>
117
+ void analyzePattern(const MatrixType& mat)
118
+ {
119
+ OrderingType ord;
120
+ PermutationType pinv;
121
+ ord(mat.template selfadjointView<UpLo>(), pinv);
122
+ if(pinv.size()>0) m_perm = pinv.inverse();
123
+ else m_perm.resize(0);
124
+ m_L.resize(mat.rows(), mat.cols());
125
+ m_analysisIsOk = true;
126
+ m_isInitialized = true;
127
+ m_info = Success;
128
+ }
129
+
130
+ /** \brief Performs the numerical factorization of the input matrix \a mat
131
+ *
132
+ * The method analyzePattern() or compute() must have been called beforehand
133
+ * with a matrix having the same pattern.
134
+ *
135
+ * \sa compute(), analyzePattern()
136
+ */
137
+ template<typename MatrixType>
138
+ void factorize(const MatrixType& mat);
139
+
140
+ /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
141
+ *
142
+ * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
143
+ *
144
+ * \sa analyzePattern(), factorize()
145
+ */
146
+ template<typename MatrixType>
147
+ void compute(const MatrixType& mat)
148
+ {
149
+ analyzePattern(mat);
150
+ factorize(mat);
151
+ }
152
+
153
+ // internal
154
+ template<typename Rhs, typename Dest>
155
+ void _solve_impl(const Rhs& b, Dest& x) const
156
+ {
157
+ eigen_assert(m_factorizationIsOk && "factorize() should be called first");
158
+ if (m_perm.rows() == b.rows()) x = m_perm * b;
159
+ else x = b;
160
+ x = m_scale.asDiagonal() * x;
161
+ x = m_L.template triangularView<Lower>().solve(x);
162
+ x = m_L.adjoint().template triangularView<Upper>().solve(x);
163
+ x = m_scale.asDiagonal() * x;
164
+ if (m_perm.rows() == b.rows())
165
+ x = m_perm.inverse() * x;
166
+ }
167
+
168
+ /** \returns the sparse lower triangular factor L */
169
+ const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
170
+
171
+ /** \returns a vector representing the scaling factor S */
172
+ const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
173
+
174
+ /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
175
+ const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
176
+
177
+ protected:
178
+ FactorType m_L; // The lower part stored in CSC
179
+ VectorRx m_scale; // The vector for scaling the matrix
180
+ RealScalar m_initialShift; // The initial shift parameter
181
+ bool m_analysisIsOk;
182
+ bool m_factorizationIsOk;
183
+ ComputationInfo m_info;
184
+ PermutationType m_perm;
185
+
186
+ private:
187
+ inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
188
+ };
189
+
190
+ // Based on the following paper:
191
+ // C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
192
+ // Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
193
+ // http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
194
+ template<typename Scalar, int _UpLo, typename OrderingType>
195
+ template<typename _MatrixType>
196
+ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
197
+ {
198
+ using std::sqrt;
199
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
200
+
201
+ // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
202
+
203
+ // Apply the fill-reducing permutation computed in analyzePattern()
204
+ if (m_perm.rows() == mat.rows() ) // To detect the null permutation
205
+ {
206
+ // The temporary is needed to make sure that the diagonal entry is properly sorted
207
+ FactorType tmp(mat.rows(), mat.cols());
208
+ tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
209
+ m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
210
+ }
211
+ else
212
+ {
213
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
214
+ }
215
+
216
+ Index n = m_L.cols();
217
+ Index nnz = m_L.nonZeros();
218
+ Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
219
+ Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
220
+ Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
221
+ VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
222
+ VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
223
+ VectorSx col_vals(n); // Store a nonzero values in each column
224
+ VectorIx col_irow(n); // Row indices of nonzero elements in each column
225
+ VectorIx col_pattern(n);
226
+ col_pattern.fill(-1);
227
+ StorageIndex col_nnz;
228
+
229
+
230
+ // Computes the scaling factors
231
+ m_scale.resize(n);
232
+ m_scale.setZero();
233
+ for (Index j = 0; j < n; j++)
234
+ for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
235
+ {
236
+ m_scale(j) += numext::abs2(vals(k));
237
+ if(rowIdx[k]!=j)
238
+ m_scale(rowIdx[k]) += numext::abs2(vals(k));
239
+ }
240
+
241
+ m_scale = m_scale.cwiseSqrt().cwiseSqrt();
242
+
243
+ for (Index j = 0; j < n; ++j)
244
+ if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
245
+ m_scale(j) = RealScalar(1)/m_scale(j);
246
+ else
247
+ m_scale(j) = 1;
248
+
249
+ // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
250
+
251
+ // Scale and compute the shift for the matrix
252
+ RealScalar mindiag = NumTraits<RealScalar>::highest();
253
+ for (Index j = 0; j < n; j++)
254
+ {
255
+ for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
256
+ vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
257
+ eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
258
+ mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
259
+ }
260
+
261
+ FactorType L_save = m_L;
262
+
263
+ RealScalar shift = 0;
264
+ if(mindiag <= RealScalar(0.))
265
+ shift = m_initialShift - mindiag;
266
+
267
+ m_info = NumericalIssue;
268
+
269
+ // Try to perform the incomplete factorization using the current shift
270
+ int iter = 0;
271
+ do
272
+ {
273
+ // Apply the shift to the diagonal elements of the matrix
274
+ for (Index j = 0; j < n; j++)
275
+ vals[colPtr[j]] += shift;
276
+
277
+ // jki version of the Cholesky factorization
278
+ Index j=0;
279
+ for (; j < n; ++j)
280
+ {
281
+ // Left-looking factorization of the j-th column
282
+ // First, load the j-th column into col_vals
283
+ Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
284
+ col_nnz = 0;
285
+ for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
286
+ {
287
+ StorageIndex l = rowIdx[i];
288
+ col_vals(col_nnz) = vals[i];
289
+ col_irow(col_nnz) = l;
290
+ col_pattern(l) = col_nnz;
291
+ col_nnz++;
292
+ }
293
+ {
294
+ typename std::list<StorageIndex>::iterator k;
295
+ // Browse all previous columns that will update column j
296
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
297
+ {
298
+ Index jk = firstElt(*k); // First element to use in the column
299
+ eigen_internal_assert(rowIdx[jk]==j);
300
+ Scalar v_j_jk = numext::conj(vals[jk]);
301
+
302
+ jk += 1;
303
+ for (Index i = jk; i < colPtr[*k+1]; i++)
304
+ {
305
+ StorageIndex l = rowIdx[i];
306
+ if(col_pattern[l]<0)
307
+ {
308
+ col_vals(col_nnz) = vals[i] * v_j_jk;
309
+ col_irow[col_nnz] = l;
310
+ col_pattern(l) = col_nnz;
311
+ col_nnz++;
312
+ }
313
+ else
314
+ col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
315
+ }
316
+ updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
317
+ }
318
+ }
319
+
320
+ // Scale the current column
321
+ if(numext::real(diag) <= 0)
322
+ {
323
+ if(++iter>=10)
324
+ return;
325
+
326
+ // increase shift
327
+ shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
328
+ // restore m_L, col_pattern, and listCol
329
+ vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
330
+ rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
331
+ colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
332
+ col_pattern.fill(-1);
333
+ for(Index i=0; i<n; ++i)
334
+ listCol[i].clear();
335
+
336
+ break;
337
+ }
338
+
339
+ RealScalar rdiag = sqrt(numext::real(diag));
340
+ vals[colPtr[j]] = rdiag;
341
+ for (Index k = 0; k<col_nnz; ++k)
342
+ {
343
+ Index i = col_irow[k];
344
+ //Scale
345
+ col_vals(k) /= rdiag;
346
+ //Update the remaining diagonals with col_vals
347
+ vals[colPtr[i]] -= numext::abs2(col_vals(k));
348
+ }
349
+ // Select the largest p elements
350
+ // p is the original number of elements in the column (without the diagonal)
351
+ Index p = colPtr[j+1] - colPtr[j] - 1 ;
352
+ Ref<VectorSx> cvals = col_vals.head(col_nnz);
353
+ Ref<VectorIx> cirow = col_irow.head(col_nnz);
354
+ internal::QuickSplit(cvals,cirow, p);
355
+ // Insert the largest p elements in the matrix
356
+ Index cpt = 0;
357
+ for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
358
+ {
359
+ vals[i] = col_vals(cpt);
360
+ rowIdx[i] = col_irow(cpt);
361
+ // restore col_pattern:
362
+ col_pattern(col_irow(cpt)) = -1;
363
+ cpt++;
364
+ }
365
+ // Get the first smallest row index and put it after the diagonal element
366
+ Index jk = colPtr(j)+1;
367
+ updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
368
+ }
369
+
370
+ if(j==n)
371
+ {
372
+ m_factorizationIsOk = true;
373
+ m_info = Success;
374
+ }
375
+ } while(m_info!=Success);
376
+ }
377
+
378
+ template<typename Scalar, int _UpLo, typename OrderingType>
379
+ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
380
+ {
381
+ if (jk < colPtr(col+1) )
382
+ {
383
+ Index p = colPtr(col+1) - jk;
384
+ Index minpos;
385
+ rowIdx.segment(jk,p).minCoeff(&minpos);
386
+ minpos += jk;
387
+ if (rowIdx(minpos) != rowIdx(jk))
388
+ {
389
+ //Swap
390
+ std::swap(rowIdx(jk),rowIdx(minpos));
391
+ std::swap(vals(jk),vals(minpos));
392
+ }
393
+ firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
394
+ listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
395
+ }
396
+ }
397
+
398
+ } // end namespace Eigen
399
+
400
+ #endif