tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,246 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_CONJUGATE_GRADIENT_H
|
11
|
+
#define EIGEN_CONJUGATE_GRADIENT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
|
17
|
+
/** \internal Low-level conjugate gradient algorithm
|
18
|
+
* \param mat The matrix A
|
19
|
+
* \param rhs The right hand side vector b
|
20
|
+
* \param x On input and initial solution, on output the computed solution.
|
21
|
+
* \param precond A preconditioner being able to efficiently solve for an
|
22
|
+
* approximation of Ax=b (regardless of b)
|
23
|
+
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
24
|
+
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
25
|
+
*/
|
26
|
+
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
27
|
+
EIGEN_DONT_INLINE
|
28
|
+
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
29
|
+
const Preconditioner& precond, Index& iters,
|
30
|
+
typename Dest::RealScalar& tol_error)
|
31
|
+
{
|
32
|
+
using std::sqrt;
|
33
|
+
using std::abs;
|
34
|
+
typedef typename Dest::RealScalar RealScalar;
|
35
|
+
typedef typename Dest::Scalar Scalar;
|
36
|
+
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
37
|
+
|
38
|
+
RealScalar tol = tol_error;
|
39
|
+
Index maxIters = iters;
|
40
|
+
|
41
|
+
Index n = mat.cols();
|
42
|
+
|
43
|
+
VectorType residual = rhs - mat * x; //initial residual
|
44
|
+
|
45
|
+
RealScalar rhsNorm2 = rhs.squaredNorm();
|
46
|
+
if(rhsNorm2 == 0)
|
47
|
+
{
|
48
|
+
x.setZero();
|
49
|
+
iters = 0;
|
50
|
+
tol_error = 0;
|
51
|
+
return;
|
52
|
+
}
|
53
|
+
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
54
|
+
RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);
|
55
|
+
RealScalar residualNorm2 = residual.squaredNorm();
|
56
|
+
if (residualNorm2 < threshold)
|
57
|
+
{
|
58
|
+
iters = 0;
|
59
|
+
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
60
|
+
return;
|
61
|
+
}
|
62
|
+
|
63
|
+
VectorType p(n);
|
64
|
+
p = precond.solve(residual); // initial search direction
|
65
|
+
|
66
|
+
VectorType z(n), tmp(n);
|
67
|
+
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
|
68
|
+
Index i = 0;
|
69
|
+
while(i < maxIters)
|
70
|
+
{
|
71
|
+
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
72
|
+
|
73
|
+
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
74
|
+
x += alpha * p; // update solution
|
75
|
+
residual -= alpha * tmp; // update residual
|
76
|
+
|
77
|
+
residualNorm2 = residual.squaredNorm();
|
78
|
+
if(residualNorm2 < threshold)
|
79
|
+
break;
|
80
|
+
|
81
|
+
z = precond.solve(residual); // approximately solve for "A z = residual"
|
82
|
+
|
83
|
+
RealScalar absOld = absNew;
|
84
|
+
absNew = numext::real(residual.dot(z)); // update the absolute value of r
|
85
|
+
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
86
|
+
p = z + beta * p; // update search direction
|
87
|
+
i++;
|
88
|
+
}
|
89
|
+
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
90
|
+
iters = i;
|
91
|
+
}
|
92
|
+
|
93
|
+
}
|
94
|
+
|
95
|
+
template< typename _MatrixType, int _UpLo=Lower,
|
96
|
+
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
97
|
+
class ConjugateGradient;
|
98
|
+
|
99
|
+
namespace internal {
|
100
|
+
|
101
|
+
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
102
|
+
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
103
|
+
{
|
104
|
+
typedef _MatrixType MatrixType;
|
105
|
+
typedef _Preconditioner Preconditioner;
|
106
|
+
};
|
107
|
+
|
108
|
+
}
|
109
|
+
|
110
|
+
/** \ingroup IterativeLinearSolvers_Module
|
111
|
+
* \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
|
112
|
+
*
|
113
|
+
* This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
|
114
|
+
* The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
|
115
|
+
*
|
116
|
+
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
117
|
+
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
|
118
|
+
* \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
|
119
|
+
* Default is \c Lower, best performance is \c Lower|Upper.
|
120
|
+
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
121
|
+
*
|
122
|
+
* \implsparsesolverconcept
|
123
|
+
*
|
124
|
+
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
125
|
+
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
126
|
+
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
127
|
+
*
|
128
|
+
* The tolerance corresponds to the relative residual error: |Ax-b|/|b|
|
129
|
+
*
|
130
|
+
* \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is
|
131
|
+
* achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this
|
132
|
+
* case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
|
133
|
+
* See \ref TopicMultiThreading for details.
|
134
|
+
*
|
135
|
+
* This class can be used as the direct solver classes. Here is a typical usage example:
|
136
|
+
\code
|
137
|
+
int n = 10000;
|
138
|
+
VectorXd x(n), b(n);
|
139
|
+
SparseMatrix<double> A(n,n);
|
140
|
+
// fill A and b
|
141
|
+
ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
|
142
|
+
cg.compute(A);
|
143
|
+
x = cg.solve(b);
|
144
|
+
std::cout << "#iterations: " << cg.iterations() << std::endl;
|
145
|
+
std::cout << "estimated error: " << cg.error() << std::endl;
|
146
|
+
// update b, and solve again
|
147
|
+
x = cg.solve(b);
|
148
|
+
\endcode
|
149
|
+
*
|
150
|
+
* By default the iterations start with x=0 as an initial guess of the solution.
|
151
|
+
* One can control the start using the solveWithGuess() method.
|
152
|
+
*
|
153
|
+
* ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
|
154
|
+
*
|
155
|
+
* \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
156
|
+
*/
|
157
|
+
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
158
|
+
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
159
|
+
{
|
160
|
+
typedef IterativeSolverBase<ConjugateGradient> Base;
|
161
|
+
using Base::matrix;
|
162
|
+
using Base::m_error;
|
163
|
+
using Base::m_iterations;
|
164
|
+
using Base::m_info;
|
165
|
+
using Base::m_isInitialized;
|
166
|
+
public:
|
167
|
+
typedef _MatrixType MatrixType;
|
168
|
+
typedef typename MatrixType::Scalar Scalar;
|
169
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
170
|
+
typedef _Preconditioner Preconditioner;
|
171
|
+
|
172
|
+
enum {
|
173
|
+
UpLo = _UpLo
|
174
|
+
};
|
175
|
+
|
176
|
+
public:
|
177
|
+
|
178
|
+
/** Default constructor. */
|
179
|
+
ConjugateGradient() : Base() {}
|
180
|
+
|
181
|
+
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
182
|
+
*
|
183
|
+
* This constructor is a shortcut for the default constructor followed
|
184
|
+
* by a call to compute().
|
185
|
+
*
|
186
|
+
* \warning this class stores a reference to the matrix A as well as some
|
187
|
+
* precomputed values that depend on it. Therefore, if \a A is changed
|
188
|
+
* this class becomes invalid. Call compute() to update it with the new
|
189
|
+
* matrix A, or modify a copy of A.
|
190
|
+
*/
|
191
|
+
template<typename MatrixDerived>
|
192
|
+
explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
193
|
+
|
194
|
+
~ConjugateGradient() {}
|
195
|
+
|
196
|
+
/** \internal */
|
197
|
+
template<typename Rhs,typename Dest>
|
198
|
+
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
199
|
+
{
|
200
|
+
typedef typename Base::MatrixWrapper MatrixWrapper;
|
201
|
+
typedef typename Base::ActualMatrixType ActualMatrixType;
|
202
|
+
enum {
|
203
|
+
TransposeInput = (!MatrixWrapper::MatrixFree)
|
204
|
+
&& (UpLo==(Lower|Upper))
|
205
|
+
&& (!MatrixType::IsRowMajor)
|
206
|
+
&& (!NumTraits<Scalar>::IsComplex)
|
207
|
+
};
|
208
|
+
typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
|
209
|
+
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
|
210
|
+
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
211
|
+
RowMajorWrapper,
|
212
|
+
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
|
213
|
+
>::type SelfAdjointWrapper;
|
214
|
+
m_iterations = Base::maxIterations();
|
215
|
+
m_error = Base::m_tolerance;
|
216
|
+
|
217
|
+
for(Index j=0; j<b.cols(); ++j)
|
218
|
+
{
|
219
|
+
m_iterations = Base::maxIterations();
|
220
|
+
m_error = Base::m_tolerance;
|
221
|
+
|
222
|
+
typename Dest::ColXpr xj(x,j);
|
223
|
+
RowMajorWrapper row_mat(matrix());
|
224
|
+
internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
225
|
+
}
|
226
|
+
|
227
|
+
m_isInitialized = true;
|
228
|
+
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
229
|
+
}
|
230
|
+
|
231
|
+
/** \internal */
|
232
|
+
using Base::_solve_impl;
|
233
|
+
template<typename Rhs,typename Dest>
|
234
|
+
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
235
|
+
{
|
236
|
+
x.setZero();
|
237
|
+
_solve_with_guess_impl(b.derived(),x);
|
238
|
+
}
|
239
|
+
|
240
|
+
protected:
|
241
|
+
|
242
|
+
};
|
243
|
+
|
244
|
+
} // end namespace Eigen
|
245
|
+
|
246
|
+
#endif // EIGEN_CONJUGATE_GRADIENT_H
|
@@ -0,0 +1,400 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
|
12
|
+
#define EIGEN_INCOMPLETE_CHOlESKY_H
|
13
|
+
|
14
|
+
#include <vector>
|
15
|
+
#include <list>
|
16
|
+
|
17
|
+
namespace Eigen {
|
18
|
+
/**
|
19
|
+
* \brief Modified Incomplete Cholesky with dual threshold
|
20
|
+
*
|
21
|
+
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
|
22
|
+
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
|
23
|
+
*
|
24
|
+
* \tparam Scalar the scalar type of the input matrices
|
25
|
+
* \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
|
26
|
+
* or Upper. Default is Lower.
|
27
|
+
* \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
|
28
|
+
* unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
|
29
|
+
*
|
30
|
+
* \implsparsesolverconcept
|
31
|
+
*
|
32
|
+
* It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
|
33
|
+
* where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
|
34
|
+
* fill-in reducing permutation as computed by the ordering method.
|
35
|
+
*
|
36
|
+
* \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
|
37
|
+
* and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
|
38
|
+
* on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
|
39
|
+
* \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
|
40
|
+
* If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
|
41
|
+
* the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
|
42
|
+
*
|
43
|
+
*/
|
44
|
+
template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
|
45
|
+
#ifndef EIGEN_MPL2_ONLY
|
46
|
+
AMDOrdering<int>
|
47
|
+
#else
|
48
|
+
NaturalOrdering<int>
|
49
|
+
#endif
|
50
|
+
>
|
51
|
+
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
|
52
|
+
{
|
53
|
+
protected:
|
54
|
+
typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
|
55
|
+
using Base::m_isInitialized;
|
56
|
+
public:
|
57
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
58
|
+
typedef _OrderingType OrderingType;
|
59
|
+
typedef typename OrderingType::PermutationType PermutationType;
|
60
|
+
typedef typename PermutationType::StorageIndex StorageIndex;
|
61
|
+
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
|
62
|
+
typedef Matrix<Scalar,Dynamic,1> VectorSx;
|
63
|
+
typedef Matrix<RealScalar,Dynamic,1> VectorRx;
|
64
|
+
typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
|
65
|
+
typedef std::vector<std::list<StorageIndex> > VectorList;
|
66
|
+
enum { UpLo = _UpLo };
|
67
|
+
enum {
|
68
|
+
ColsAtCompileTime = Dynamic,
|
69
|
+
MaxColsAtCompileTime = Dynamic
|
70
|
+
};
|
71
|
+
public:
|
72
|
+
|
73
|
+
/** Default constructor leaving the object in a partly non-initialized stage.
|
74
|
+
*
|
75
|
+
* You must call compute() or the pair analyzePattern()/factorize() to make it valid.
|
76
|
+
*
|
77
|
+
* \sa IncompleteCholesky(const MatrixType&)
|
78
|
+
*/
|
79
|
+
IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
|
80
|
+
|
81
|
+
/** Constructor computing the incomplete factorization for the given matrix \a matrix.
|
82
|
+
*/
|
83
|
+
template<typename MatrixType>
|
84
|
+
IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
|
85
|
+
{
|
86
|
+
compute(matrix);
|
87
|
+
}
|
88
|
+
|
89
|
+
/** \returns number of rows of the factored matrix */
|
90
|
+
Index rows() const { return m_L.rows(); }
|
91
|
+
|
92
|
+
/** \returns number of columns of the factored matrix */
|
93
|
+
Index cols() const { return m_L.cols(); }
|
94
|
+
|
95
|
+
|
96
|
+
/** \brief Reports whether previous computation was successful.
|
97
|
+
*
|
98
|
+
* It triggers an assertion if \c *this has not been initialized through the respective constructor,
|
99
|
+
* or a call to compute() or analyzePattern().
|
100
|
+
*
|
101
|
+
* \returns \c Success if computation was successful,
|
102
|
+
* \c NumericalIssue if the matrix appears to be negative.
|
103
|
+
*/
|
104
|
+
ComputationInfo info() const
|
105
|
+
{
|
106
|
+
eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
|
107
|
+
return m_info;
|
108
|
+
}
|
109
|
+
|
110
|
+
/** \brief Set the initial shift parameter \f$ \sigma \f$.
|
111
|
+
*/
|
112
|
+
void setInitialShift(RealScalar shift) { m_initialShift = shift; }
|
113
|
+
|
114
|
+
/** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
|
115
|
+
*/
|
116
|
+
template<typename MatrixType>
|
117
|
+
void analyzePattern(const MatrixType& mat)
|
118
|
+
{
|
119
|
+
OrderingType ord;
|
120
|
+
PermutationType pinv;
|
121
|
+
ord(mat.template selfadjointView<UpLo>(), pinv);
|
122
|
+
if(pinv.size()>0) m_perm = pinv.inverse();
|
123
|
+
else m_perm.resize(0);
|
124
|
+
m_L.resize(mat.rows(), mat.cols());
|
125
|
+
m_analysisIsOk = true;
|
126
|
+
m_isInitialized = true;
|
127
|
+
m_info = Success;
|
128
|
+
}
|
129
|
+
|
130
|
+
/** \brief Performs the numerical factorization of the input matrix \a mat
|
131
|
+
*
|
132
|
+
* The method analyzePattern() or compute() must have been called beforehand
|
133
|
+
* with a matrix having the same pattern.
|
134
|
+
*
|
135
|
+
* \sa compute(), analyzePattern()
|
136
|
+
*/
|
137
|
+
template<typename MatrixType>
|
138
|
+
void factorize(const MatrixType& mat);
|
139
|
+
|
140
|
+
/** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
|
141
|
+
*
|
142
|
+
* It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
|
143
|
+
*
|
144
|
+
* \sa analyzePattern(), factorize()
|
145
|
+
*/
|
146
|
+
template<typename MatrixType>
|
147
|
+
void compute(const MatrixType& mat)
|
148
|
+
{
|
149
|
+
analyzePattern(mat);
|
150
|
+
factorize(mat);
|
151
|
+
}
|
152
|
+
|
153
|
+
// internal
|
154
|
+
template<typename Rhs, typename Dest>
|
155
|
+
void _solve_impl(const Rhs& b, Dest& x) const
|
156
|
+
{
|
157
|
+
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
|
158
|
+
if (m_perm.rows() == b.rows()) x = m_perm * b;
|
159
|
+
else x = b;
|
160
|
+
x = m_scale.asDiagonal() * x;
|
161
|
+
x = m_L.template triangularView<Lower>().solve(x);
|
162
|
+
x = m_L.adjoint().template triangularView<Upper>().solve(x);
|
163
|
+
x = m_scale.asDiagonal() * x;
|
164
|
+
if (m_perm.rows() == b.rows())
|
165
|
+
x = m_perm.inverse() * x;
|
166
|
+
}
|
167
|
+
|
168
|
+
/** \returns the sparse lower triangular factor L */
|
169
|
+
const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
|
170
|
+
|
171
|
+
/** \returns a vector representing the scaling factor S */
|
172
|
+
const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
|
173
|
+
|
174
|
+
/** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
|
175
|
+
const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
|
176
|
+
|
177
|
+
protected:
|
178
|
+
FactorType m_L; // The lower part stored in CSC
|
179
|
+
VectorRx m_scale; // The vector for scaling the matrix
|
180
|
+
RealScalar m_initialShift; // The initial shift parameter
|
181
|
+
bool m_analysisIsOk;
|
182
|
+
bool m_factorizationIsOk;
|
183
|
+
ComputationInfo m_info;
|
184
|
+
PermutationType m_perm;
|
185
|
+
|
186
|
+
private:
|
187
|
+
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
|
188
|
+
};
|
189
|
+
|
190
|
+
// Based on the following paper:
|
191
|
+
// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
|
192
|
+
// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
|
193
|
+
// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
|
194
|
+
template<typename Scalar, int _UpLo, typename OrderingType>
|
195
|
+
template<typename _MatrixType>
|
196
|
+
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
|
197
|
+
{
|
198
|
+
using std::sqrt;
|
199
|
+
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
200
|
+
|
201
|
+
// Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
202
|
+
|
203
|
+
// Apply the fill-reducing permutation computed in analyzePattern()
|
204
|
+
if (m_perm.rows() == mat.rows() ) // To detect the null permutation
|
205
|
+
{
|
206
|
+
// The temporary is needed to make sure that the diagonal entry is properly sorted
|
207
|
+
FactorType tmp(mat.rows(), mat.cols());
|
208
|
+
tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
|
209
|
+
m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
|
210
|
+
}
|
211
|
+
else
|
212
|
+
{
|
213
|
+
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
|
214
|
+
}
|
215
|
+
|
216
|
+
Index n = m_L.cols();
|
217
|
+
Index nnz = m_L.nonZeros();
|
218
|
+
Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
|
219
|
+
Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
|
220
|
+
Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
|
221
|
+
VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
|
222
|
+
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
|
223
|
+
VectorSx col_vals(n); // Store a nonzero values in each column
|
224
|
+
VectorIx col_irow(n); // Row indices of nonzero elements in each column
|
225
|
+
VectorIx col_pattern(n);
|
226
|
+
col_pattern.fill(-1);
|
227
|
+
StorageIndex col_nnz;
|
228
|
+
|
229
|
+
|
230
|
+
// Computes the scaling factors
|
231
|
+
m_scale.resize(n);
|
232
|
+
m_scale.setZero();
|
233
|
+
for (Index j = 0; j < n; j++)
|
234
|
+
for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
|
235
|
+
{
|
236
|
+
m_scale(j) += numext::abs2(vals(k));
|
237
|
+
if(rowIdx[k]!=j)
|
238
|
+
m_scale(rowIdx[k]) += numext::abs2(vals(k));
|
239
|
+
}
|
240
|
+
|
241
|
+
m_scale = m_scale.cwiseSqrt().cwiseSqrt();
|
242
|
+
|
243
|
+
for (Index j = 0; j < n; ++j)
|
244
|
+
if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
|
245
|
+
m_scale(j) = RealScalar(1)/m_scale(j);
|
246
|
+
else
|
247
|
+
m_scale(j) = 1;
|
248
|
+
|
249
|
+
// TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
|
250
|
+
|
251
|
+
// Scale and compute the shift for the matrix
|
252
|
+
RealScalar mindiag = NumTraits<RealScalar>::highest();
|
253
|
+
for (Index j = 0; j < n; j++)
|
254
|
+
{
|
255
|
+
for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
|
256
|
+
vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
|
257
|
+
eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
|
258
|
+
mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
|
259
|
+
}
|
260
|
+
|
261
|
+
FactorType L_save = m_L;
|
262
|
+
|
263
|
+
RealScalar shift = 0;
|
264
|
+
if(mindiag <= RealScalar(0.))
|
265
|
+
shift = m_initialShift - mindiag;
|
266
|
+
|
267
|
+
m_info = NumericalIssue;
|
268
|
+
|
269
|
+
// Try to perform the incomplete factorization using the current shift
|
270
|
+
int iter = 0;
|
271
|
+
do
|
272
|
+
{
|
273
|
+
// Apply the shift to the diagonal elements of the matrix
|
274
|
+
for (Index j = 0; j < n; j++)
|
275
|
+
vals[colPtr[j]] += shift;
|
276
|
+
|
277
|
+
// jki version of the Cholesky factorization
|
278
|
+
Index j=0;
|
279
|
+
for (; j < n; ++j)
|
280
|
+
{
|
281
|
+
// Left-looking factorization of the j-th column
|
282
|
+
// First, load the j-th column into col_vals
|
283
|
+
Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
|
284
|
+
col_nnz = 0;
|
285
|
+
for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
|
286
|
+
{
|
287
|
+
StorageIndex l = rowIdx[i];
|
288
|
+
col_vals(col_nnz) = vals[i];
|
289
|
+
col_irow(col_nnz) = l;
|
290
|
+
col_pattern(l) = col_nnz;
|
291
|
+
col_nnz++;
|
292
|
+
}
|
293
|
+
{
|
294
|
+
typename std::list<StorageIndex>::iterator k;
|
295
|
+
// Browse all previous columns that will update column j
|
296
|
+
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
|
297
|
+
{
|
298
|
+
Index jk = firstElt(*k); // First element to use in the column
|
299
|
+
eigen_internal_assert(rowIdx[jk]==j);
|
300
|
+
Scalar v_j_jk = numext::conj(vals[jk]);
|
301
|
+
|
302
|
+
jk += 1;
|
303
|
+
for (Index i = jk; i < colPtr[*k+1]; i++)
|
304
|
+
{
|
305
|
+
StorageIndex l = rowIdx[i];
|
306
|
+
if(col_pattern[l]<0)
|
307
|
+
{
|
308
|
+
col_vals(col_nnz) = vals[i] * v_j_jk;
|
309
|
+
col_irow[col_nnz] = l;
|
310
|
+
col_pattern(l) = col_nnz;
|
311
|
+
col_nnz++;
|
312
|
+
}
|
313
|
+
else
|
314
|
+
col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
|
315
|
+
}
|
316
|
+
updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
|
317
|
+
}
|
318
|
+
}
|
319
|
+
|
320
|
+
// Scale the current column
|
321
|
+
if(numext::real(diag) <= 0)
|
322
|
+
{
|
323
|
+
if(++iter>=10)
|
324
|
+
return;
|
325
|
+
|
326
|
+
// increase shift
|
327
|
+
shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
|
328
|
+
// restore m_L, col_pattern, and listCol
|
329
|
+
vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
|
330
|
+
rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
|
331
|
+
colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
|
332
|
+
col_pattern.fill(-1);
|
333
|
+
for(Index i=0; i<n; ++i)
|
334
|
+
listCol[i].clear();
|
335
|
+
|
336
|
+
break;
|
337
|
+
}
|
338
|
+
|
339
|
+
RealScalar rdiag = sqrt(numext::real(diag));
|
340
|
+
vals[colPtr[j]] = rdiag;
|
341
|
+
for (Index k = 0; k<col_nnz; ++k)
|
342
|
+
{
|
343
|
+
Index i = col_irow[k];
|
344
|
+
//Scale
|
345
|
+
col_vals(k) /= rdiag;
|
346
|
+
//Update the remaining diagonals with col_vals
|
347
|
+
vals[colPtr[i]] -= numext::abs2(col_vals(k));
|
348
|
+
}
|
349
|
+
// Select the largest p elements
|
350
|
+
// p is the original number of elements in the column (without the diagonal)
|
351
|
+
Index p = colPtr[j+1] - colPtr[j] - 1 ;
|
352
|
+
Ref<VectorSx> cvals = col_vals.head(col_nnz);
|
353
|
+
Ref<VectorIx> cirow = col_irow.head(col_nnz);
|
354
|
+
internal::QuickSplit(cvals,cirow, p);
|
355
|
+
// Insert the largest p elements in the matrix
|
356
|
+
Index cpt = 0;
|
357
|
+
for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
|
358
|
+
{
|
359
|
+
vals[i] = col_vals(cpt);
|
360
|
+
rowIdx[i] = col_irow(cpt);
|
361
|
+
// restore col_pattern:
|
362
|
+
col_pattern(col_irow(cpt)) = -1;
|
363
|
+
cpt++;
|
364
|
+
}
|
365
|
+
// Get the first smallest row index and put it after the diagonal element
|
366
|
+
Index jk = colPtr(j)+1;
|
367
|
+
updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
|
368
|
+
}
|
369
|
+
|
370
|
+
if(j==n)
|
371
|
+
{
|
372
|
+
m_factorizationIsOk = true;
|
373
|
+
m_info = Success;
|
374
|
+
}
|
375
|
+
} while(m_info!=Success);
|
376
|
+
}
|
377
|
+
|
378
|
+
template<typename Scalar, int _UpLo, typename OrderingType>
|
379
|
+
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
|
380
|
+
{
|
381
|
+
if (jk < colPtr(col+1) )
|
382
|
+
{
|
383
|
+
Index p = colPtr(col+1) - jk;
|
384
|
+
Index minpos;
|
385
|
+
rowIdx.segment(jk,p).minCoeff(&minpos);
|
386
|
+
minpos += jk;
|
387
|
+
if (rowIdx(minpos) != rowIdx(jk))
|
388
|
+
{
|
389
|
+
//Swap
|
390
|
+
std::swap(rowIdx(jk),rowIdx(minpos));
|
391
|
+
std::swap(vals(jk),vals(minpos));
|
392
|
+
}
|
393
|
+
firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
|
394
|
+
listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
|
395
|
+
}
|
396
|
+
}
|
397
|
+
|
398
|
+
} // end namespace Eigen
|
399
|
+
|
400
|
+
#endif
|