tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,101 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_DETERMINANT_H
|
11
|
+
#define EIGEN_DETERMINANT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
|
17
|
+
template<typename Derived>
|
18
|
+
inline const typename Derived::Scalar bruteforce_det3_helper
|
19
|
+
(const MatrixBase<Derived>& matrix, int a, int b, int c)
|
20
|
+
{
|
21
|
+
return matrix.coeff(0,a)
|
22
|
+
* (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
|
23
|
+
}
|
24
|
+
|
25
|
+
template<typename Derived>
|
26
|
+
const typename Derived::Scalar bruteforce_det4_helper
|
27
|
+
(const MatrixBase<Derived>& matrix, int j, int k, int m, int n)
|
28
|
+
{
|
29
|
+
return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1))
|
30
|
+
* (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3));
|
31
|
+
}
|
32
|
+
|
33
|
+
template<typename Derived,
|
34
|
+
int DeterminantType = Derived::RowsAtCompileTime
|
35
|
+
> struct determinant_impl
|
36
|
+
{
|
37
|
+
static inline typename traits<Derived>::Scalar run(const Derived& m)
|
38
|
+
{
|
39
|
+
if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0)
|
40
|
+
return typename traits<Derived>::Scalar(1);
|
41
|
+
return m.partialPivLu().determinant();
|
42
|
+
}
|
43
|
+
};
|
44
|
+
|
45
|
+
template<typename Derived> struct determinant_impl<Derived, 1>
|
46
|
+
{
|
47
|
+
static inline typename traits<Derived>::Scalar run(const Derived& m)
|
48
|
+
{
|
49
|
+
return m.coeff(0,0);
|
50
|
+
}
|
51
|
+
};
|
52
|
+
|
53
|
+
template<typename Derived> struct determinant_impl<Derived, 2>
|
54
|
+
{
|
55
|
+
static inline typename traits<Derived>::Scalar run(const Derived& m)
|
56
|
+
{
|
57
|
+
return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
|
58
|
+
}
|
59
|
+
};
|
60
|
+
|
61
|
+
template<typename Derived> struct determinant_impl<Derived, 3>
|
62
|
+
{
|
63
|
+
static inline typename traits<Derived>::Scalar run(const Derived& m)
|
64
|
+
{
|
65
|
+
return bruteforce_det3_helper(m,0,1,2)
|
66
|
+
- bruteforce_det3_helper(m,1,0,2)
|
67
|
+
+ bruteforce_det3_helper(m,2,0,1);
|
68
|
+
}
|
69
|
+
};
|
70
|
+
|
71
|
+
template<typename Derived> struct determinant_impl<Derived, 4>
|
72
|
+
{
|
73
|
+
static typename traits<Derived>::Scalar run(const Derived& m)
|
74
|
+
{
|
75
|
+
// trick by Martin Costabel to compute 4x4 det with only 30 muls
|
76
|
+
return bruteforce_det4_helper(m,0,1,2,3)
|
77
|
+
- bruteforce_det4_helper(m,0,2,1,3)
|
78
|
+
+ bruteforce_det4_helper(m,0,3,1,2)
|
79
|
+
+ bruteforce_det4_helper(m,1,2,0,3)
|
80
|
+
- bruteforce_det4_helper(m,1,3,0,2)
|
81
|
+
+ bruteforce_det4_helper(m,2,3,0,1);
|
82
|
+
}
|
83
|
+
};
|
84
|
+
|
85
|
+
} // end namespace internal
|
86
|
+
|
87
|
+
/** \lu_module
|
88
|
+
*
|
89
|
+
* \returns the determinant of this matrix
|
90
|
+
*/
|
91
|
+
template<typename Derived>
|
92
|
+
inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
|
93
|
+
{
|
94
|
+
eigen_assert(rows() == cols());
|
95
|
+
typedef typename internal::nested_eval<Derived,Base::RowsAtCompileTime>::type Nested;
|
96
|
+
return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
|
97
|
+
}
|
98
|
+
|
99
|
+
} // end namespace Eigen
|
100
|
+
|
101
|
+
#endif // EIGEN_DETERMINANT_H
|
@@ -0,0 +1,891 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_LU_H
|
11
|
+
#define EIGEN_LU_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
|
17
|
+
: traits<_MatrixType>
|
18
|
+
{
|
19
|
+
typedef MatrixXpr XprKind;
|
20
|
+
typedef SolverStorage StorageKind;
|
21
|
+
enum { Flags = 0 };
|
22
|
+
};
|
23
|
+
|
24
|
+
} // end namespace internal
|
25
|
+
|
26
|
+
/** \ingroup LU_Module
|
27
|
+
*
|
28
|
+
* \class FullPivLU
|
29
|
+
*
|
30
|
+
* \brief LU decomposition of a matrix with complete pivoting, and related features
|
31
|
+
*
|
32
|
+
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
|
33
|
+
*
|
34
|
+
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
|
35
|
+
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
|
36
|
+
* upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
|
37
|
+
* decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
|
38
|
+
* zeros are at the end.
|
39
|
+
*
|
40
|
+
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
41
|
+
* the rank, invertibility, inverse, kernel, and determinant.
|
42
|
+
*
|
43
|
+
* This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
|
44
|
+
* decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
|
45
|
+
* working with the SVD allows to select the smallest singular values of the matrix, something that
|
46
|
+
* the LU decomposition doesn't see.
|
47
|
+
*
|
48
|
+
* The data of the LU decomposition can be directly accessed through the methods matrixLU(),
|
49
|
+
* permutationP(), permutationQ().
|
50
|
+
*
|
51
|
+
* As an exemple, here is how the original matrix can be retrieved:
|
52
|
+
* \include class_FullPivLU.cpp
|
53
|
+
* Output: \verbinclude class_FullPivLU.out
|
54
|
+
*
|
55
|
+
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
56
|
+
*
|
57
|
+
* \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
|
58
|
+
*/
|
59
|
+
template<typename _MatrixType> class FullPivLU
|
60
|
+
: public SolverBase<FullPivLU<_MatrixType> >
|
61
|
+
{
|
62
|
+
public:
|
63
|
+
typedef _MatrixType MatrixType;
|
64
|
+
typedef SolverBase<FullPivLU> Base;
|
65
|
+
|
66
|
+
EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
|
67
|
+
// FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
|
68
|
+
enum {
|
69
|
+
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
70
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
71
|
+
};
|
72
|
+
typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
|
73
|
+
typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
|
74
|
+
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
|
75
|
+
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
|
76
|
+
typedef typename MatrixType::PlainObject PlainObject;
|
77
|
+
|
78
|
+
/**
|
79
|
+
* \brief Default Constructor.
|
80
|
+
*
|
81
|
+
* The default constructor is useful in cases in which the user intends to
|
82
|
+
* perform decompositions via LU::compute(const MatrixType&).
|
83
|
+
*/
|
84
|
+
FullPivLU();
|
85
|
+
|
86
|
+
/** \brief Default Constructor with memory preallocation
|
87
|
+
*
|
88
|
+
* Like the default constructor but with preallocation of the internal data
|
89
|
+
* according to the specified problem \a size.
|
90
|
+
* \sa FullPivLU()
|
91
|
+
*/
|
92
|
+
FullPivLU(Index rows, Index cols);
|
93
|
+
|
94
|
+
/** Constructor.
|
95
|
+
*
|
96
|
+
* \param matrix the matrix of which to compute the LU decomposition.
|
97
|
+
* It is required to be nonzero.
|
98
|
+
*/
|
99
|
+
template<typename InputType>
|
100
|
+
explicit FullPivLU(const EigenBase<InputType>& matrix);
|
101
|
+
|
102
|
+
/** \brief Constructs a LU factorization from a given matrix
|
103
|
+
*
|
104
|
+
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
|
105
|
+
*
|
106
|
+
* \sa FullPivLU(const EigenBase&)
|
107
|
+
*/
|
108
|
+
template<typename InputType>
|
109
|
+
explicit FullPivLU(EigenBase<InputType>& matrix);
|
110
|
+
|
111
|
+
/** Computes the LU decomposition of the given matrix.
|
112
|
+
*
|
113
|
+
* \param matrix the matrix of which to compute the LU decomposition.
|
114
|
+
* It is required to be nonzero.
|
115
|
+
*
|
116
|
+
* \returns a reference to *this
|
117
|
+
*/
|
118
|
+
template<typename InputType>
|
119
|
+
FullPivLU& compute(const EigenBase<InputType>& matrix) {
|
120
|
+
m_lu = matrix.derived();
|
121
|
+
computeInPlace();
|
122
|
+
return *this;
|
123
|
+
}
|
124
|
+
|
125
|
+
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
|
126
|
+
* unit-lower-triangular part is L (at least for square matrices; in the non-square
|
127
|
+
* case, special care is needed, see the documentation of class FullPivLU).
|
128
|
+
*
|
129
|
+
* \sa matrixL(), matrixU()
|
130
|
+
*/
|
131
|
+
inline const MatrixType& matrixLU() const
|
132
|
+
{
|
133
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
134
|
+
return m_lu;
|
135
|
+
}
|
136
|
+
|
137
|
+
/** \returns the number of nonzero pivots in the LU decomposition.
|
138
|
+
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
|
139
|
+
* So that notion isn't really intrinsically interesting, but it is
|
140
|
+
* still useful when implementing algorithms.
|
141
|
+
*
|
142
|
+
* \sa rank()
|
143
|
+
*/
|
144
|
+
inline Index nonzeroPivots() const
|
145
|
+
{
|
146
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
147
|
+
return m_nonzero_pivots;
|
148
|
+
}
|
149
|
+
|
150
|
+
/** \returns the absolute value of the biggest pivot, i.e. the biggest
|
151
|
+
* diagonal coefficient of U.
|
152
|
+
*/
|
153
|
+
RealScalar maxPivot() const { return m_maxpivot; }
|
154
|
+
|
155
|
+
/** \returns the permutation matrix P
|
156
|
+
*
|
157
|
+
* \sa permutationQ()
|
158
|
+
*/
|
159
|
+
EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
|
160
|
+
{
|
161
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
162
|
+
return m_p;
|
163
|
+
}
|
164
|
+
|
165
|
+
/** \returns the permutation matrix Q
|
166
|
+
*
|
167
|
+
* \sa permutationP()
|
168
|
+
*/
|
169
|
+
inline const PermutationQType& permutationQ() const
|
170
|
+
{
|
171
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
172
|
+
return m_q;
|
173
|
+
}
|
174
|
+
|
175
|
+
/** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
|
176
|
+
* will form a basis of the kernel.
|
177
|
+
*
|
178
|
+
* \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
|
179
|
+
*
|
180
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
181
|
+
* For that, it uses the threshold value that you can control by calling
|
182
|
+
* setThreshold(const RealScalar&).
|
183
|
+
*
|
184
|
+
* Example: \include FullPivLU_kernel.cpp
|
185
|
+
* Output: \verbinclude FullPivLU_kernel.out
|
186
|
+
*
|
187
|
+
* \sa image()
|
188
|
+
*/
|
189
|
+
inline const internal::kernel_retval<FullPivLU> kernel() const
|
190
|
+
{
|
191
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
192
|
+
return internal::kernel_retval<FullPivLU>(*this);
|
193
|
+
}
|
194
|
+
|
195
|
+
/** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
|
196
|
+
* will form a basis of the image (column-space).
|
197
|
+
*
|
198
|
+
* \param originalMatrix the original matrix, of which *this is the LU decomposition.
|
199
|
+
* The reason why it is needed to pass it here, is that this allows
|
200
|
+
* a large optimization, as otherwise this method would need to reconstruct it
|
201
|
+
* from the LU decomposition.
|
202
|
+
*
|
203
|
+
* \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
|
204
|
+
*
|
205
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
206
|
+
* For that, it uses the threshold value that you can control by calling
|
207
|
+
* setThreshold(const RealScalar&).
|
208
|
+
*
|
209
|
+
* Example: \include FullPivLU_image.cpp
|
210
|
+
* Output: \verbinclude FullPivLU_image.out
|
211
|
+
*
|
212
|
+
* \sa kernel()
|
213
|
+
*/
|
214
|
+
inline const internal::image_retval<FullPivLU>
|
215
|
+
image(const MatrixType& originalMatrix) const
|
216
|
+
{
|
217
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
218
|
+
return internal::image_retval<FullPivLU>(*this, originalMatrix);
|
219
|
+
}
|
220
|
+
|
221
|
+
/** \return a solution x to the equation Ax=b, where A is the matrix of which
|
222
|
+
* *this is the LU decomposition.
|
223
|
+
*
|
224
|
+
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
|
225
|
+
* the only requirement in order for the equation to make sense is that
|
226
|
+
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
|
227
|
+
*
|
228
|
+
* \returns a solution.
|
229
|
+
*
|
230
|
+
* \note_about_checking_solutions
|
231
|
+
*
|
232
|
+
* \note_about_arbitrary_choice_of_solution
|
233
|
+
* \note_about_using_kernel_to_study_multiple_solutions
|
234
|
+
*
|
235
|
+
* Example: \include FullPivLU_solve.cpp
|
236
|
+
* Output: \verbinclude FullPivLU_solve.out
|
237
|
+
*
|
238
|
+
* \sa TriangularView::solve(), kernel(), inverse()
|
239
|
+
*/
|
240
|
+
// FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
|
241
|
+
template<typename Rhs>
|
242
|
+
inline const Solve<FullPivLU, Rhs>
|
243
|
+
solve(const MatrixBase<Rhs>& b) const
|
244
|
+
{
|
245
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
246
|
+
return Solve<FullPivLU, Rhs>(*this, b.derived());
|
247
|
+
}
|
248
|
+
|
249
|
+
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
|
250
|
+
the LU decomposition.
|
251
|
+
*/
|
252
|
+
inline RealScalar rcond() const
|
253
|
+
{
|
254
|
+
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
255
|
+
return internal::rcond_estimate_helper(m_l1_norm, *this);
|
256
|
+
}
|
257
|
+
|
258
|
+
/** \returns the determinant of the matrix of which
|
259
|
+
* *this is the LU decomposition. It has only linear complexity
|
260
|
+
* (that is, O(n) where n is the dimension of the square matrix)
|
261
|
+
* as the LU decomposition has already been computed.
|
262
|
+
*
|
263
|
+
* \note This is only for square matrices.
|
264
|
+
*
|
265
|
+
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
|
266
|
+
* optimized paths.
|
267
|
+
*
|
268
|
+
* \warning a determinant can be very big or small, so for matrices
|
269
|
+
* of large enough dimension, there is a risk of overflow/underflow.
|
270
|
+
*
|
271
|
+
* \sa MatrixBase::determinant()
|
272
|
+
*/
|
273
|
+
typename internal::traits<MatrixType>::Scalar determinant() const;
|
274
|
+
|
275
|
+
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
|
276
|
+
* who need to determine when pivots are to be considered nonzero. This is not used for the
|
277
|
+
* LU decomposition itself.
|
278
|
+
*
|
279
|
+
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
|
280
|
+
* uses a formula to automatically determine a reasonable threshold.
|
281
|
+
* Once you have called the present method setThreshold(const RealScalar&),
|
282
|
+
* your value is used instead.
|
283
|
+
*
|
284
|
+
* \param threshold The new value to use as the threshold.
|
285
|
+
*
|
286
|
+
* A pivot will be considered nonzero if its absolute value is strictly greater than
|
287
|
+
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
|
288
|
+
* where maxpivot is the biggest pivot.
|
289
|
+
*
|
290
|
+
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
291
|
+
*/
|
292
|
+
FullPivLU& setThreshold(const RealScalar& threshold)
|
293
|
+
{
|
294
|
+
m_usePrescribedThreshold = true;
|
295
|
+
m_prescribedThreshold = threshold;
|
296
|
+
return *this;
|
297
|
+
}
|
298
|
+
|
299
|
+
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
300
|
+
* determining the threshold.
|
301
|
+
*
|
302
|
+
* You should pass the special object Eigen::Default as parameter here.
|
303
|
+
* \code lu.setThreshold(Eigen::Default); \endcode
|
304
|
+
*
|
305
|
+
* See the documentation of setThreshold(const RealScalar&).
|
306
|
+
*/
|
307
|
+
FullPivLU& setThreshold(Default_t)
|
308
|
+
{
|
309
|
+
m_usePrescribedThreshold = false;
|
310
|
+
return *this;
|
311
|
+
}
|
312
|
+
|
313
|
+
/** Returns the threshold that will be used by certain methods such as rank().
|
314
|
+
*
|
315
|
+
* See the documentation of setThreshold(const RealScalar&).
|
316
|
+
*/
|
317
|
+
RealScalar threshold() const
|
318
|
+
{
|
319
|
+
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
320
|
+
return m_usePrescribedThreshold ? m_prescribedThreshold
|
321
|
+
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
322
|
+
// and turns out to be identical to Higham's formula used already in LDLt.
|
323
|
+
: NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
|
324
|
+
}
|
325
|
+
|
326
|
+
/** \returns the rank of the matrix of which *this is the LU decomposition.
|
327
|
+
*
|
328
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
329
|
+
* For that, it uses the threshold value that you can control by calling
|
330
|
+
* setThreshold(const RealScalar&).
|
331
|
+
*/
|
332
|
+
inline Index rank() const
|
333
|
+
{
|
334
|
+
using std::abs;
|
335
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
336
|
+
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
|
337
|
+
Index result = 0;
|
338
|
+
for(Index i = 0; i < m_nonzero_pivots; ++i)
|
339
|
+
result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
|
340
|
+
return result;
|
341
|
+
}
|
342
|
+
|
343
|
+
/** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
|
344
|
+
*
|
345
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
346
|
+
* For that, it uses the threshold value that you can control by calling
|
347
|
+
* setThreshold(const RealScalar&).
|
348
|
+
*/
|
349
|
+
inline Index dimensionOfKernel() const
|
350
|
+
{
|
351
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
352
|
+
return cols() - rank();
|
353
|
+
}
|
354
|
+
|
355
|
+
/** \returns true if the matrix of which *this is the LU decomposition represents an injective
|
356
|
+
* linear map, i.e. has trivial kernel; false otherwise.
|
357
|
+
*
|
358
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
359
|
+
* For that, it uses the threshold value that you can control by calling
|
360
|
+
* setThreshold(const RealScalar&).
|
361
|
+
*/
|
362
|
+
inline bool isInjective() const
|
363
|
+
{
|
364
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
365
|
+
return rank() == cols();
|
366
|
+
}
|
367
|
+
|
368
|
+
/** \returns true if the matrix of which *this is the LU decomposition represents a surjective
|
369
|
+
* linear map; false otherwise.
|
370
|
+
*
|
371
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
372
|
+
* For that, it uses the threshold value that you can control by calling
|
373
|
+
* setThreshold(const RealScalar&).
|
374
|
+
*/
|
375
|
+
inline bool isSurjective() const
|
376
|
+
{
|
377
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
378
|
+
return rank() == rows();
|
379
|
+
}
|
380
|
+
|
381
|
+
/** \returns true if the matrix of which *this is the LU decomposition is invertible.
|
382
|
+
*
|
383
|
+
* \note This method has to determine which pivots should be considered nonzero.
|
384
|
+
* For that, it uses the threshold value that you can control by calling
|
385
|
+
* setThreshold(const RealScalar&).
|
386
|
+
*/
|
387
|
+
inline bool isInvertible() const
|
388
|
+
{
|
389
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
390
|
+
return isInjective() && (m_lu.rows() == m_lu.cols());
|
391
|
+
}
|
392
|
+
|
393
|
+
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
394
|
+
*
|
395
|
+
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
396
|
+
* Use isInvertible() to first determine whether this matrix is invertible.
|
397
|
+
*
|
398
|
+
* \sa MatrixBase::inverse()
|
399
|
+
*/
|
400
|
+
inline const Inverse<FullPivLU> inverse() const
|
401
|
+
{
|
402
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
403
|
+
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
|
404
|
+
return Inverse<FullPivLU>(*this);
|
405
|
+
}
|
406
|
+
|
407
|
+
MatrixType reconstructedMatrix() const;
|
408
|
+
|
409
|
+
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); }
|
410
|
+
EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); }
|
411
|
+
|
412
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
413
|
+
template<typename RhsType, typename DstType>
|
414
|
+
EIGEN_DEVICE_FUNC
|
415
|
+
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
416
|
+
|
417
|
+
template<bool Conjugate, typename RhsType, typename DstType>
|
418
|
+
EIGEN_DEVICE_FUNC
|
419
|
+
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
|
420
|
+
#endif
|
421
|
+
|
422
|
+
protected:
|
423
|
+
|
424
|
+
static void check_template_parameters()
|
425
|
+
{
|
426
|
+
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
427
|
+
}
|
428
|
+
|
429
|
+
void computeInPlace();
|
430
|
+
|
431
|
+
MatrixType m_lu;
|
432
|
+
PermutationPType m_p;
|
433
|
+
PermutationQType m_q;
|
434
|
+
IntColVectorType m_rowsTranspositions;
|
435
|
+
IntRowVectorType m_colsTranspositions;
|
436
|
+
Index m_nonzero_pivots;
|
437
|
+
RealScalar m_l1_norm;
|
438
|
+
RealScalar m_maxpivot, m_prescribedThreshold;
|
439
|
+
signed char m_det_pq;
|
440
|
+
bool m_isInitialized, m_usePrescribedThreshold;
|
441
|
+
};
|
442
|
+
|
443
|
+
template<typename MatrixType>
|
444
|
+
FullPivLU<MatrixType>::FullPivLU()
|
445
|
+
: m_isInitialized(false), m_usePrescribedThreshold(false)
|
446
|
+
{
|
447
|
+
}
|
448
|
+
|
449
|
+
template<typename MatrixType>
|
450
|
+
FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
|
451
|
+
: m_lu(rows, cols),
|
452
|
+
m_p(rows),
|
453
|
+
m_q(cols),
|
454
|
+
m_rowsTranspositions(rows),
|
455
|
+
m_colsTranspositions(cols),
|
456
|
+
m_isInitialized(false),
|
457
|
+
m_usePrescribedThreshold(false)
|
458
|
+
{
|
459
|
+
}
|
460
|
+
|
461
|
+
template<typename MatrixType>
|
462
|
+
template<typename InputType>
|
463
|
+
FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
|
464
|
+
: m_lu(matrix.rows(), matrix.cols()),
|
465
|
+
m_p(matrix.rows()),
|
466
|
+
m_q(matrix.cols()),
|
467
|
+
m_rowsTranspositions(matrix.rows()),
|
468
|
+
m_colsTranspositions(matrix.cols()),
|
469
|
+
m_isInitialized(false),
|
470
|
+
m_usePrescribedThreshold(false)
|
471
|
+
{
|
472
|
+
compute(matrix.derived());
|
473
|
+
}
|
474
|
+
|
475
|
+
template<typename MatrixType>
|
476
|
+
template<typename InputType>
|
477
|
+
FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
|
478
|
+
: m_lu(matrix.derived()),
|
479
|
+
m_p(matrix.rows()),
|
480
|
+
m_q(matrix.cols()),
|
481
|
+
m_rowsTranspositions(matrix.rows()),
|
482
|
+
m_colsTranspositions(matrix.cols()),
|
483
|
+
m_isInitialized(false),
|
484
|
+
m_usePrescribedThreshold(false)
|
485
|
+
{
|
486
|
+
computeInPlace();
|
487
|
+
}
|
488
|
+
|
489
|
+
template<typename MatrixType>
|
490
|
+
void FullPivLU<MatrixType>::computeInPlace()
|
491
|
+
{
|
492
|
+
check_template_parameters();
|
493
|
+
|
494
|
+
// the permutations are stored as int indices, so just to be sure:
|
495
|
+
eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
|
496
|
+
|
497
|
+
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
|
498
|
+
|
499
|
+
const Index size = m_lu.diagonalSize();
|
500
|
+
const Index rows = m_lu.rows();
|
501
|
+
const Index cols = m_lu.cols();
|
502
|
+
|
503
|
+
// will store the transpositions, before we accumulate them at the end.
|
504
|
+
// can't accumulate on-the-fly because that will be done in reverse order for the rows.
|
505
|
+
m_rowsTranspositions.resize(m_lu.rows());
|
506
|
+
m_colsTranspositions.resize(m_lu.cols());
|
507
|
+
Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
|
508
|
+
|
509
|
+
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
|
510
|
+
m_maxpivot = RealScalar(0);
|
511
|
+
|
512
|
+
for(Index k = 0; k < size; ++k)
|
513
|
+
{
|
514
|
+
// First, we need to find the pivot.
|
515
|
+
|
516
|
+
// biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
|
517
|
+
Index row_of_biggest_in_corner, col_of_biggest_in_corner;
|
518
|
+
typedef internal::scalar_score_coeff_op<Scalar> Scoring;
|
519
|
+
typedef typename Scoring::result_type Score;
|
520
|
+
Score biggest_in_corner;
|
521
|
+
biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
|
522
|
+
.unaryExpr(Scoring())
|
523
|
+
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
|
524
|
+
row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
|
525
|
+
col_of_biggest_in_corner += k; // need to add k to them.
|
526
|
+
|
527
|
+
if(biggest_in_corner==Score(0))
|
528
|
+
{
|
529
|
+
// before exiting, make sure to initialize the still uninitialized transpositions
|
530
|
+
// in a sane state without destroying what we already have.
|
531
|
+
m_nonzero_pivots = k;
|
532
|
+
for(Index i = k; i < size; ++i)
|
533
|
+
{
|
534
|
+
m_rowsTranspositions.coeffRef(i) = i;
|
535
|
+
m_colsTranspositions.coeffRef(i) = i;
|
536
|
+
}
|
537
|
+
break;
|
538
|
+
}
|
539
|
+
|
540
|
+
RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
|
541
|
+
if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
|
542
|
+
|
543
|
+
// Now that we've found the pivot, we need to apply the row/col swaps to
|
544
|
+
// bring it to the location (k,k).
|
545
|
+
|
546
|
+
m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
|
547
|
+
m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
|
548
|
+
if(k != row_of_biggest_in_corner) {
|
549
|
+
m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
|
550
|
+
++number_of_transpositions;
|
551
|
+
}
|
552
|
+
if(k != col_of_biggest_in_corner) {
|
553
|
+
m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
|
554
|
+
++number_of_transpositions;
|
555
|
+
}
|
556
|
+
|
557
|
+
// Now that the pivot is at the right location, we update the remaining
|
558
|
+
// bottom-right corner by Gaussian elimination.
|
559
|
+
|
560
|
+
if(k<rows-1)
|
561
|
+
m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
|
562
|
+
if(k<size-1)
|
563
|
+
m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
|
564
|
+
}
|
565
|
+
|
566
|
+
// the main loop is over, we still have to accumulate the transpositions to find the
|
567
|
+
// permutations P and Q
|
568
|
+
|
569
|
+
m_p.setIdentity(rows);
|
570
|
+
for(Index k = size-1; k >= 0; --k)
|
571
|
+
m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
|
572
|
+
|
573
|
+
m_q.setIdentity(cols);
|
574
|
+
for(Index k = 0; k < size; ++k)
|
575
|
+
m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
|
576
|
+
|
577
|
+
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
578
|
+
|
579
|
+
m_isInitialized = true;
|
580
|
+
}
|
581
|
+
|
582
|
+
template<typename MatrixType>
|
583
|
+
typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
|
584
|
+
{
|
585
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
586
|
+
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
|
587
|
+
return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
|
588
|
+
}
|
589
|
+
|
590
|
+
/** \returns the matrix represented by the decomposition,
|
591
|
+
* i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
|
592
|
+
* This function is provided for debug purposes. */
|
593
|
+
template<typename MatrixType>
|
594
|
+
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
|
595
|
+
{
|
596
|
+
eigen_assert(m_isInitialized && "LU is not initialized.");
|
597
|
+
const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
|
598
|
+
// LU
|
599
|
+
MatrixType res(m_lu.rows(),m_lu.cols());
|
600
|
+
// FIXME the .toDenseMatrix() should not be needed...
|
601
|
+
res = m_lu.leftCols(smalldim)
|
602
|
+
.template triangularView<UnitLower>().toDenseMatrix()
|
603
|
+
* m_lu.topRows(smalldim)
|
604
|
+
.template triangularView<Upper>().toDenseMatrix();
|
605
|
+
|
606
|
+
// P^{-1}(LU)
|
607
|
+
res = m_p.inverse() * res;
|
608
|
+
|
609
|
+
// (P^{-1}LU)Q^{-1}
|
610
|
+
res = res * m_q.inverse();
|
611
|
+
|
612
|
+
return res;
|
613
|
+
}
|
614
|
+
|
615
|
+
/********* Implementation of kernel() **************************************************/
|
616
|
+
|
617
|
+
namespace internal {
|
618
|
+
template<typename _MatrixType>
|
619
|
+
struct kernel_retval<FullPivLU<_MatrixType> >
|
620
|
+
: kernel_retval_base<FullPivLU<_MatrixType> >
|
621
|
+
{
|
622
|
+
EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
|
623
|
+
|
624
|
+
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
|
625
|
+
MatrixType::MaxColsAtCompileTime,
|
626
|
+
MatrixType::MaxRowsAtCompileTime)
|
627
|
+
};
|
628
|
+
|
629
|
+
template<typename Dest> void evalTo(Dest& dst) const
|
630
|
+
{
|
631
|
+
using std::abs;
|
632
|
+
const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
|
633
|
+
if(dimker == 0)
|
634
|
+
{
|
635
|
+
// The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
|
636
|
+
// avoid crashing/asserting as that depends on floating point calculations. Let's
|
637
|
+
// just return a single column vector filled with zeros.
|
638
|
+
dst.setZero();
|
639
|
+
return;
|
640
|
+
}
|
641
|
+
|
642
|
+
/* Let us use the following lemma:
|
643
|
+
*
|
644
|
+
* Lemma: If the matrix A has the LU decomposition PAQ = LU,
|
645
|
+
* then Ker A = Q(Ker U).
|
646
|
+
*
|
647
|
+
* Proof: trivial: just keep in mind that P, Q, L are invertible.
|
648
|
+
*/
|
649
|
+
|
650
|
+
/* Thus, all we need to do is to compute Ker U, and then apply Q.
|
651
|
+
*
|
652
|
+
* U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
|
653
|
+
* Thus, the diagonal of U ends with exactly
|
654
|
+
* dimKer zero's. Let us use that to construct dimKer linearly
|
655
|
+
* independent vectors in Ker U.
|
656
|
+
*/
|
657
|
+
|
658
|
+
Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
|
659
|
+
RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
|
660
|
+
Index p = 0;
|
661
|
+
for(Index i = 0; i < dec().nonzeroPivots(); ++i)
|
662
|
+
if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
|
663
|
+
pivots.coeffRef(p++) = i;
|
664
|
+
eigen_internal_assert(p == rank());
|
665
|
+
|
666
|
+
// we construct a temporaty trapezoid matrix m, by taking the U matrix and
|
667
|
+
// permuting the rows and cols to bring the nonnegligible pivots to the top of
|
668
|
+
// the main diagonal. We need that to be able to apply our triangular solvers.
|
669
|
+
// FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
|
670
|
+
Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
|
671
|
+
MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
|
672
|
+
m(dec().matrixLU().block(0, 0, rank(), cols));
|
673
|
+
for(Index i = 0; i < rank(); ++i)
|
674
|
+
{
|
675
|
+
if(i) m.row(i).head(i).setZero();
|
676
|
+
m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
|
677
|
+
}
|
678
|
+
m.block(0, 0, rank(), rank());
|
679
|
+
m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
|
680
|
+
for(Index i = 0; i < rank(); ++i)
|
681
|
+
m.col(i).swap(m.col(pivots.coeff(i)));
|
682
|
+
|
683
|
+
// ok, we have our trapezoid matrix, we can apply the triangular solver.
|
684
|
+
// notice that the math behind this suggests that we should apply this to the
|
685
|
+
// negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
|
686
|
+
m.topLeftCorner(rank(), rank())
|
687
|
+
.template triangularView<Upper>().solveInPlace(
|
688
|
+
m.topRightCorner(rank(), dimker)
|
689
|
+
);
|
690
|
+
|
691
|
+
// now we must undo the column permutation that we had applied!
|
692
|
+
for(Index i = rank()-1; i >= 0; --i)
|
693
|
+
m.col(i).swap(m.col(pivots.coeff(i)));
|
694
|
+
|
695
|
+
// see the negative sign in the next line, that's what we were talking about above.
|
696
|
+
for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
|
697
|
+
for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
|
698
|
+
for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
|
699
|
+
}
|
700
|
+
};
|
701
|
+
|
702
|
+
/***** Implementation of image() *****************************************************/
|
703
|
+
|
704
|
+
template<typename _MatrixType>
|
705
|
+
struct image_retval<FullPivLU<_MatrixType> >
|
706
|
+
: image_retval_base<FullPivLU<_MatrixType> >
|
707
|
+
{
|
708
|
+
EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
|
709
|
+
|
710
|
+
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
|
711
|
+
MatrixType::MaxColsAtCompileTime,
|
712
|
+
MatrixType::MaxRowsAtCompileTime)
|
713
|
+
};
|
714
|
+
|
715
|
+
template<typename Dest> void evalTo(Dest& dst) const
|
716
|
+
{
|
717
|
+
using std::abs;
|
718
|
+
if(rank() == 0)
|
719
|
+
{
|
720
|
+
// The Image is just {0}, so it doesn't have a basis properly speaking, but let's
|
721
|
+
// avoid crashing/asserting as that depends on floating point calculations. Let's
|
722
|
+
// just return a single column vector filled with zeros.
|
723
|
+
dst.setZero();
|
724
|
+
return;
|
725
|
+
}
|
726
|
+
|
727
|
+
Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
|
728
|
+
RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
|
729
|
+
Index p = 0;
|
730
|
+
for(Index i = 0; i < dec().nonzeroPivots(); ++i)
|
731
|
+
if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
|
732
|
+
pivots.coeffRef(p++) = i;
|
733
|
+
eigen_internal_assert(p == rank());
|
734
|
+
|
735
|
+
for(Index i = 0; i < rank(); ++i)
|
736
|
+
dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
|
737
|
+
}
|
738
|
+
};
|
739
|
+
|
740
|
+
/***** Implementation of solve() *****************************************************/
|
741
|
+
|
742
|
+
} // end namespace internal
|
743
|
+
|
744
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
745
|
+
template<typename _MatrixType>
|
746
|
+
template<typename RhsType, typename DstType>
|
747
|
+
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
748
|
+
{
|
749
|
+
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
|
750
|
+
* So we proceed as follows:
|
751
|
+
* Step 1: compute c = P * rhs.
|
752
|
+
* Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
|
753
|
+
* Step 3: replace c by the solution x to Ux = c. May or may not exist.
|
754
|
+
* Step 4: result = Q * c;
|
755
|
+
*/
|
756
|
+
|
757
|
+
const Index rows = this->rows(),
|
758
|
+
cols = this->cols(),
|
759
|
+
nonzero_pivots = this->rank();
|
760
|
+
eigen_assert(rhs.rows() == rows);
|
761
|
+
const Index smalldim = (std::min)(rows, cols);
|
762
|
+
|
763
|
+
if(nonzero_pivots == 0)
|
764
|
+
{
|
765
|
+
dst.setZero();
|
766
|
+
return;
|
767
|
+
}
|
768
|
+
|
769
|
+
typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
|
770
|
+
|
771
|
+
// Step 1
|
772
|
+
c = permutationP() * rhs;
|
773
|
+
|
774
|
+
// Step 2
|
775
|
+
m_lu.topLeftCorner(smalldim,smalldim)
|
776
|
+
.template triangularView<UnitLower>()
|
777
|
+
.solveInPlace(c.topRows(smalldim));
|
778
|
+
if(rows>cols)
|
779
|
+
c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
|
780
|
+
|
781
|
+
// Step 3
|
782
|
+
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
|
783
|
+
.template triangularView<Upper>()
|
784
|
+
.solveInPlace(c.topRows(nonzero_pivots));
|
785
|
+
|
786
|
+
// Step 4
|
787
|
+
for(Index i = 0; i < nonzero_pivots; ++i)
|
788
|
+
dst.row(permutationQ().indices().coeff(i)) = c.row(i);
|
789
|
+
for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
|
790
|
+
dst.row(permutationQ().indices().coeff(i)).setZero();
|
791
|
+
}
|
792
|
+
|
793
|
+
template<typename _MatrixType>
|
794
|
+
template<bool Conjugate, typename RhsType, typename DstType>
|
795
|
+
void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
796
|
+
{
|
797
|
+
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
|
798
|
+
* and since permutations are real and unitary, we can write this
|
799
|
+
* as A^T = Q U^T L^T P,
|
800
|
+
* So we proceed as follows:
|
801
|
+
* Step 1: compute c = Q^T rhs.
|
802
|
+
* Step 2: replace c by the solution x to U^T x = c. May or may not exist.
|
803
|
+
* Step 3: replace c by the solution x to L^T x = c.
|
804
|
+
* Step 4: result = P^T c.
|
805
|
+
* If Conjugate is true, replace "^T" by "^*" above.
|
806
|
+
*/
|
807
|
+
|
808
|
+
const Index rows = this->rows(), cols = this->cols(),
|
809
|
+
nonzero_pivots = this->rank();
|
810
|
+
eigen_assert(rhs.rows() == cols);
|
811
|
+
const Index smalldim = (std::min)(rows, cols);
|
812
|
+
|
813
|
+
if(nonzero_pivots == 0)
|
814
|
+
{
|
815
|
+
dst.setZero();
|
816
|
+
return;
|
817
|
+
}
|
818
|
+
|
819
|
+
typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
|
820
|
+
|
821
|
+
// Step 1
|
822
|
+
c = permutationQ().inverse() * rhs;
|
823
|
+
|
824
|
+
if (Conjugate) {
|
825
|
+
// Step 2
|
826
|
+
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
|
827
|
+
.template triangularView<Upper>()
|
828
|
+
.adjoint()
|
829
|
+
.solveInPlace(c.topRows(nonzero_pivots));
|
830
|
+
// Step 3
|
831
|
+
m_lu.topLeftCorner(smalldim, smalldim)
|
832
|
+
.template triangularView<UnitLower>()
|
833
|
+
.adjoint()
|
834
|
+
.solveInPlace(c.topRows(smalldim));
|
835
|
+
} else {
|
836
|
+
// Step 2
|
837
|
+
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
|
838
|
+
.template triangularView<Upper>()
|
839
|
+
.transpose()
|
840
|
+
.solveInPlace(c.topRows(nonzero_pivots));
|
841
|
+
// Step 3
|
842
|
+
m_lu.topLeftCorner(smalldim, smalldim)
|
843
|
+
.template triangularView<UnitLower>()
|
844
|
+
.transpose()
|
845
|
+
.solveInPlace(c.topRows(smalldim));
|
846
|
+
}
|
847
|
+
|
848
|
+
// Step 4
|
849
|
+
PermutationPType invp = permutationP().inverse().eval();
|
850
|
+
for(Index i = 0; i < smalldim; ++i)
|
851
|
+
dst.row(invp.indices().coeff(i)) = c.row(i);
|
852
|
+
for(Index i = smalldim; i < rows; ++i)
|
853
|
+
dst.row(invp.indices().coeff(i)).setZero();
|
854
|
+
}
|
855
|
+
|
856
|
+
#endif
|
857
|
+
|
858
|
+
namespace internal {
|
859
|
+
|
860
|
+
|
861
|
+
/***** Implementation of inverse() *****************************************************/
|
862
|
+
template<typename DstXprType, typename MatrixType>
|
863
|
+
struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
|
864
|
+
{
|
865
|
+
typedef FullPivLU<MatrixType> LuType;
|
866
|
+
typedef Inverse<LuType> SrcXprType;
|
867
|
+
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
|
868
|
+
{
|
869
|
+
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
|
870
|
+
}
|
871
|
+
};
|
872
|
+
} // end namespace internal
|
873
|
+
|
874
|
+
/******* MatrixBase methods *****************************************************************/
|
875
|
+
|
876
|
+
/** \lu_module
|
877
|
+
*
|
878
|
+
* \return the full-pivoting LU decomposition of \c *this.
|
879
|
+
*
|
880
|
+
* \sa class FullPivLU
|
881
|
+
*/
|
882
|
+
template<typename Derived>
|
883
|
+
inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
|
884
|
+
MatrixBase<Derived>::fullPivLu() const
|
885
|
+
{
|
886
|
+
return FullPivLU<PlainObject>(eval());
|
887
|
+
}
|
888
|
+
|
889
|
+
} // end namespace Eigen
|
890
|
+
|
891
|
+
#endif // EIGEN_LU_H
|