tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,346 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009 Claire Maurice
5
+ // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7
+ //
8
+ // This Source Code Form is subject to the terms of the Mozilla
9
+ // Public License v. 2.0. If a copy of the MPL was not distributed
10
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
+
12
+ #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13
+ #define EIGEN_COMPLEX_EIGEN_SOLVER_H
14
+
15
+ #include "./ComplexSchur.h"
16
+
17
+ namespace Eigen {
18
+
19
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
20
+ *
21
+ *
22
+ * \class ComplexEigenSolver
23
+ *
24
+ * \brief Computes eigenvalues and eigenvectors of general complex matrices
25
+ *
26
+ * \tparam _MatrixType the type of the matrix of which we are
27
+ * computing the eigendecomposition; this is expected to be an
28
+ * instantiation of the Matrix class template.
29
+ *
30
+ * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
31
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
32
+ * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
33
+ * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
34
+ * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
35
+ * almost always invertible, in which case we have \f$ A = V D V^{-1}
36
+ * \f$. This is called the eigendecomposition.
37
+ *
38
+ * The main function in this class is compute(), which computes the
39
+ * eigenvalues and eigenvectors of a given function. The
40
+ * documentation for that function contains an example showing the
41
+ * main features of the class.
42
+ *
43
+ * \sa class EigenSolver, class SelfAdjointEigenSolver
44
+ */
45
+ template<typename _MatrixType> class ComplexEigenSolver
46
+ {
47
+ public:
48
+
49
+ /** \brief Synonym for the template parameter \p _MatrixType. */
50
+ typedef _MatrixType MatrixType;
51
+
52
+ enum {
53
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55
+ Options = MatrixType::Options,
56
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58
+ };
59
+
60
+ /** \brief Scalar type for matrices of type #MatrixType. */
61
+ typedef typename MatrixType::Scalar Scalar;
62
+ typedef typename NumTraits<Scalar>::Real RealScalar;
63
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
64
+
65
+ /** \brief Complex scalar type for #MatrixType.
66
+ *
67
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
68
+ * \c float or \c double) and just \c Scalar if #Scalar is
69
+ * complex.
70
+ */
71
+ typedef std::complex<RealScalar> ComplexScalar;
72
+
73
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
74
+ *
75
+ * This is a column vector with entries of type #ComplexScalar.
76
+ * The length of the vector is the size of #MatrixType.
77
+ */
78
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
79
+
80
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
81
+ *
82
+ * This is a square matrix with entries of type #ComplexScalar.
83
+ * The size is the same as the size of #MatrixType.
84
+ */
85
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
86
+
87
+ /** \brief Default constructor.
88
+ *
89
+ * The default constructor is useful in cases in which the user intends to
90
+ * perform decompositions via compute().
91
+ */
92
+ ComplexEigenSolver()
93
+ : m_eivec(),
94
+ m_eivalues(),
95
+ m_schur(),
96
+ m_isInitialized(false),
97
+ m_eigenvectorsOk(false),
98
+ m_matX()
99
+ {}
100
+
101
+ /** \brief Default Constructor with memory preallocation
102
+ *
103
+ * Like the default constructor but with preallocation of the internal data
104
+ * according to the specified problem \a size.
105
+ * \sa ComplexEigenSolver()
106
+ */
107
+ explicit ComplexEigenSolver(Index size)
108
+ : m_eivec(size, size),
109
+ m_eivalues(size),
110
+ m_schur(size),
111
+ m_isInitialized(false),
112
+ m_eigenvectorsOk(false),
113
+ m_matX(size, size)
114
+ {}
115
+
116
+ /** \brief Constructor; computes eigendecomposition of given matrix.
117
+ *
118
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
119
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
120
+ * eigenvalues are computed; if false, only the eigenvalues are
121
+ * computed.
122
+ *
123
+ * This constructor calls compute() to compute the eigendecomposition.
124
+ */
125
+ template<typename InputType>
126
+ explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
127
+ : m_eivec(matrix.rows(),matrix.cols()),
128
+ m_eivalues(matrix.cols()),
129
+ m_schur(matrix.rows()),
130
+ m_isInitialized(false),
131
+ m_eigenvectorsOk(false),
132
+ m_matX(matrix.rows(),matrix.cols())
133
+ {
134
+ compute(matrix.derived(), computeEigenvectors);
135
+ }
136
+
137
+ /** \brief Returns the eigenvectors of given matrix.
138
+ *
139
+ * \returns A const reference to the matrix whose columns are the eigenvectors.
140
+ *
141
+ * \pre Either the constructor
142
+ * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
143
+ * function compute(const MatrixType& matrix, bool) has been called before
144
+ * to compute the eigendecomposition of a matrix, and
145
+ * \p computeEigenvectors was set to true (the default).
146
+ *
147
+ * This function returns a matrix whose columns are the eigenvectors. Column
148
+ * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
149
+ * \f$ as returned by eigenvalues(). The eigenvectors are normalized to
150
+ * have (Euclidean) norm equal to one. The matrix returned by this
151
+ * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
152
+ * V^{-1} \f$, if it exists.
153
+ *
154
+ * Example: \include ComplexEigenSolver_eigenvectors.cpp
155
+ * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
156
+ */
157
+ const EigenvectorType& eigenvectors() const
158
+ {
159
+ eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
160
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
161
+ return m_eivec;
162
+ }
163
+
164
+ /** \brief Returns the eigenvalues of given matrix.
165
+ *
166
+ * \returns A const reference to the column vector containing the eigenvalues.
167
+ *
168
+ * \pre Either the constructor
169
+ * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
170
+ * function compute(const MatrixType& matrix, bool) has been called before
171
+ * to compute the eigendecomposition of a matrix.
172
+ *
173
+ * This function returns a column vector containing the
174
+ * eigenvalues. Eigenvalues are repeated according to their
175
+ * algebraic multiplicity, so there are as many eigenvalues as
176
+ * rows in the matrix. The eigenvalues are not sorted in any particular
177
+ * order.
178
+ *
179
+ * Example: \include ComplexEigenSolver_eigenvalues.cpp
180
+ * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
181
+ */
182
+ const EigenvalueType& eigenvalues() const
183
+ {
184
+ eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
185
+ return m_eivalues;
186
+ }
187
+
188
+ /** \brief Computes eigendecomposition of given matrix.
189
+ *
190
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
191
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
192
+ * eigenvalues are computed; if false, only the eigenvalues are
193
+ * computed.
194
+ * \returns Reference to \c *this
195
+ *
196
+ * This function computes the eigenvalues of the complex matrix \p matrix.
197
+ * The eigenvalues() function can be used to retrieve them. If
198
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
199
+ * and can be retrieved by calling eigenvectors().
200
+ *
201
+ * The matrix is first reduced to Schur form using the
202
+ * ComplexSchur class. The Schur decomposition is then used to
203
+ * compute the eigenvalues and eigenvectors.
204
+ *
205
+ * The cost of the computation is dominated by the cost of the
206
+ * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
207
+ * is the size of the matrix.
208
+ *
209
+ * Example: \include ComplexEigenSolver_compute.cpp
210
+ * Output: \verbinclude ComplexEigenSolver_compute.out
211
+ */
212
+ template<typename InputType>
213
+ ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
214
+
215
+ /** \brief Reports whether previous computation was successful.
216
+ *
217
+ * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
218
+ */
219
+ ComputationInfo info() const
220
+ {
221
+ eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
222
+ return m_schur.info();
223
+ }
224
+
225
+ /** \brief Sets the maximum number of iterations allowed. */
226
+ ComplexEigenSolver& setMaxIterations(Index maxIters)
227
+ {
228
+ m_schur.setMaxIterations(maxIters);
229
+ return *this;
230
+ }
231
+
232
+ /** \brief Returns the maximum number of iterations. */
233
+ Index getMaxIterations()
234
+ {
235
+ return m_schur.getMaxIterations();
236
+ }
237
+
238
+ protected:
239
+
240
+ static void check_template_parameters()
241
+ {
242
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
243
+ }
244
+
245
+ EigenvectorType m_eivec;
246
+ EigenvalueType m_eivalues;
247
+ ComplexSchur<MatrixType> m_schur;
248
+ bool m_isInitialized;
249
+ bool m_eigenvectorsOk;
250
+ EigenvectorType m_matX;
251
+
252
+ private:
253
+ void doComputeEigenvectors(RealScalar matrixnorm);
254
+ void sortEigenvalues(bool computeEigenvectors);
255
+ };
256
+
257
+
258
+ template<typename MatrixType>
259
+ template<typename InputType>
260
+ ComplexEigenSolver<MatrixType>&
261
+ ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
262
+ {
263
+ check_template_parameters();
264
+
265
+ // this code is inspired from Jampack
266
+ eigen_assert(matrix.cols() == matrix.rows());
267
+
268
+ // Do a complex Schur decomposition, A = U T U^*
269
+ // The eigenvalues are on the diagonal of T.
270
+ m_schur.compute(matrix.derived(), computeEigenvectors);
271
+
272
+ if(m_schur.info() == Success)
273
+ {
274
+ m_eivalues = m_schur.matrixT().diagonal();
275
+ if(computeEigenvectors)
276
+ doComputeEigenvectors(m_schur.matrixT().norm());
277
+ sortEigenvalues(computeEigenvectors);
278
+ }
279
+
280
+ m_isInitialized = true;
281
+ m_eigenvectorsOk = computeEigenvectors;
282
+ return *this;
283
+ }
284
+
285
+
286
+ template<typename MatrixType>
287
+ void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm)
288
+ {
289
+ const Index n = m_eivalues.size();
290
+
291
+ matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits<RealScalar>::min)());
292
+
293
+ // Compute X such that T = X D X^(-1), where D is the diagonal of T.
294
+ // The matrix X is unit triangular.
295
+ m_matX = EigenvectorType::Zero(n, n);
296
+ for(Index k=n-1 ; k>=0 ; k--)
297
+ {
298
+ m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
299
+ // Compute X(i,k) using the (i,k) entry of the equation X T = D X
300
+ for(Index i=k-1 ; i>=0 ; i--)
301
+ {
302
+ m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
303
+ if(k-i-1>0)
304
+ m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
305
+ ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
306
+ if(z==ComplexScalar(0))
307
+ {
308
+ // If the i-th and k-th eigenvalue are equal, then z equals 0.
309
+ // Use a small value instead, to prevent division by zero.
310
+ numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
311
+ }
312
+ m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
313
+ }
314
+ }
315
+
316
+ // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
317
+ m_eivec.noalias() = m_schur.matrixU() * m_matX;
318
+ // .. and normalize the eigenvectors
319
+ for(Index k=0 ; k<n ; k++)
320
+ {
321
+ m_eivec.col(k).normalize();
322
+ }
323
+ }
324
+
325
+
326
+ template<typename MatrixType>
327
+ void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
328
+ {
329
+ const Index n = m_eivalues.size();
330
+ for (Index i=0; i<n; i++)
331
+ {
332
+ Index k;
333
+ m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
334
+ if (k != 0)
335
+ {
336
+ k += i;
337
+ std::swap(m_eivalues[k],m_eivalues[i]);
338
+ if(computeEigenvectors)
339
+ m_eivec.col(i).swap(m_eivec.col(k));
340
+ }
341
+ }
342
+ }
343
+
344
+ } // end namespace Eigen
345
+
346
+ #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
@@ -0,0 +1,459 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2009 Claire Maurice
5
+ // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6
+ // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7
+ //
8
+ // This Source Code Form is subject to the terms of the Mozilla
9
+ // Public License v. 2.0. If a copy of the MPL was not distributed
10
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
+
12
+ #ifndef EIGEN_COMPLEX_SCHUR_H
13
+ #define EIGEN_COMPLEX_SCHUR_H
14
+
15
+ #include "./HessenbergDecomposition.h"
16
+
17
+ namespace Eigen {
18
+
19
+ namespace internal {
20
+ template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21
+ }
22
+
23
+ /** \eigenvalues_module \ingroup Eigenvalues_Module
24
+ *
25
+ *
26
+ * \class ComplexSchur
27
+ *
28
+ * \brief Performs a complex Schur decomposition of a real or complex square matrix
29
+ *
30
+ * \tparam _MatrixType the type of the matrix of which we are
31
+ * computing the Schur decomposition; this is expected to be an
32
+ * instantiation of the Matrix class template.
33
+ *
34
+ * Given a real or complex square matrix A, this class computes the
35
+ * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
36
+ * complex matrix, and T is a complex upper triangular matrix. The
37
+ * diagonal of the matrix T corresponds to the eigenvalues of the
38
+ * matrix A.
39
+ *
40
+ * Call the function compute() to compute the Schur decomposition of
41
+ * a given matrix. Alternatively, you can use the
42
+ * ComplexSchur(const MatrixType&, bool) constructor which computes
43
+ * the Schur decomposition at construction time. Once the
44
+ * decomposition is computed, you can use the matrixU() and matrixT()
45
+ * functions to retrieve the matrices U and V in the decomposition.
46
+ *
47
+ * \note This code is inspired from Jampack
48
+ *
49
+ * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
50
+ */
51
+ template<typename _MatrixType> class ComplexSchur
52
+ {
53
+ public:
54
+ typedef _MatrixType MatrixType;
55
+ enum {
56
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58
+ Options = MatrixType::Options,
59
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61
+ };
62
+
63
+ /** \brief Scalar type for matrices of type \p _MatrixType. */
64
+ typedef typename MatrixType::Scalar Scalar;
65
+ typedef typename NumTraits<Scalar>::Real RealScalar;
66
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
67
+
68
+ /** \brief Complex scalar type for \p _MatrixType.
69
+ *
70
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
71
+ * \c float or \c double) and just \c Scalar if #Scalar is
72
+ * complex.
73
+ */
74
+ typedef std::complex<RealScalar> ComplexScalar;
75
+
76
+ /** \brief Type for the matrices in the Schur decomposition.
77
+ *
78
+ * This is a square matrix with entries of type #ComplexScalar.
79
+ * The size is the same as the size of \p _MatrixType.
80
+ */
81
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
82
+
83
+ /** \brief Default constructor.
84
+ *
85
+ * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
86
+ *
87
+ * The default constructor is useful in cases in which the user
88
+ * intends to perform decompositions via compute(). The \p size
89
+ * parameter is only used as a hint. It is not an error to give a
90
+ * wrong \p size, but it may impair performance.
91
+ *
92
+ * \sa compute() for an example.
93
+ */
94
+ explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
95
+ : m_matT(size,size),
96
+ m_matU(size,size),
97
+ m_hess(size),
98
+ m_isInitialized(false),
99
+ m_matUisUptodate(false),
100
+ m_maxIters(-1)
101
+ {}
102
+
103
+ /** \brief Constructor; computes Schur decomposition of given matrix.
104
+ *
105
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
106
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
107
+ *
108
+ * This constructor calls compute() to compute the Schur decomposition.
109
+ *
110
+ * \sa matrixT() and matrixU() for examples.
111
+ */
112
+ template<typename InputType>
113
+ explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
114
+ : m_matT(matrix.rows(),matrix.cols()),
115
+ m_matU(matrix.rows(),matrix.cols()),
116
+ m_hess(matrix.rows()),
117
+ m_isInitialized(false),
118
+ m_matUisUptodate(false),
119
+ m_maxIters(-1)
120
+ {
121
+ compute(matrix.derived(), computeU);
122
+ }
123
+
124
+ /** \brief Returns the unitary matrix in the Schur decomposition.
125
+ *
126
+ * \returns A const reference to the matrix U.
127
+ *
128
+ * It is assumed that either the constructor
129
+ * ComplexSchur(const MatrixType& matrix, bool computeU) or the
130
+ * member function compute(const MatrixType& matrix, bool computeU)
131
+ * has been called before to compute the Schur decomposition of a
132
+ * matrix, and that \p computeU was set to true (the default
133
+ * value).
134
+ *
135
+ * Example: \include ComplexSchur_matrixU.cpp
136
+ * Output: \verbinclude ComplexSchur_matrixU.out
137
+ */
138
+ const ComplexMatrixType& matrixU() const
139
+ {
140
+ eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
141
+ eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
142
+ return m_matU;
143
+ }
144
+
145
+ /** \brief Returns the triangular matrix in the Schur decomposition.
146
+ *
147
+ * \returns A const reference to the matrix T.
148
+ *
149
+ * It is assumed that either the constructor
150
+ * ComplexSchur(const MatrixType& matrix, bool computeU) or the
151
+ * member function compute(const MatrixType& matrix, bool computeU)
152
+ * has been called before to compute the Schur decomposition of a
153
+ * matrix.
154
+ *
155
+ * Note that this function returns a plain square matrix. If you want to reference
156
+ * only the upper triangular part, use:
157
+ * \code schur.matrixT().triangularView<Upper>() \endcode
158
+ *
159
+ * Example: \include ComplexSchur_matrixT.cpp
160
+ * Output: \verbinclude ComplexSchur_matrixT.out
161
+ */
162
+ const ComplexMatrixType& matrixT() const
163
+ {
164
+ eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
165
+ return m_matT;
166
+ }
167
+
168
+ /** \brief Computes Schur decomposition of given matrix.
169
+ *
170
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
171
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
172
+
173
+ * \returns Reference to \c *this
174
+ *
175
+ * The Schur decomposition is computed by first reducing the
176
+ * matrix to Hessenberg form using the class
177
+ * HessenbergDecomposition. The Hessenberg matrix is then reduced
178
+ * to triangular form by performing QR iterations with a single
179
+ * shift. The cost of computing the Schur decomposition depends
180
+ * on the number of iterations; as a rough guide, it may be taken
181
+ * on the number of iterations; as a rough guide, it may be taken
182
+ * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
183
+ * if \a computeU is false.
184
+ *
185
+ * Example: \include ComplexSchur_compute.cpp
186
+ * Output: \verbinclude ComplexSchur_compute.out
187
+ *
188
+ * \sa compute(const MatrixType&, bool, Index)
189
+ */
190
+ template<typename InputType>
191
+ ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
192
+
193
+ /** \brief Compute Schur decomposition from a given Hessenberg matrix
194
+ * \param[in] matrixH Matrix in Hessenberg form H
195
+ * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
196
+ * \param computeU Computes the matriX U of the Schur vectors
197
+ * \return Reference to \c *this
198
+ *
199
+ * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
200
+ * using either the class HessenbergDecomposition or another mean.
201
+ * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
202
+ * When computeU is true, this routine computes the matrix U such that
203
+ * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
204
+ *
205
+ * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
206
+ * is not available, the user should give an identity matrix (Q.setIdentity())
207
+ *
208
+ * \sa compute(const MatrixType&, bool)
209
+ */
210
+ template<typename HessMatrixType, typename OrthMatrixType>
211
+ ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
212
+
213
+ /** \brief Reports whether previous computation was successful.
214
+ *
215
+ * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
216
+ */
217
+ ComputationInfo info() const
218
+ {
219
+ eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
220
+ return m_info;
221
+ }
222
+
223
+ /** \brief Sets the maximum number of iterations allowed.
224
+ *
225
+ * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
226
+ * of the matrix.
227
+ */
228
+ ComplexSchur& setMaxIterations(Index maxIters)
229
+ {
230
+ m_maxIters = maxIters;
231
+ return *this;
232
+ }
233
+
234
+ /** \brief Returns the maximum number of iterations. */
235
+ Index getMaxIterations()
236
+ {
237
+ return m_maxIters;
238
+ }
239
+
240
+ /** \brief Maximum number of iterations per row.
241
+ *
242
+ * If not otherwise specified, the maximum number of iterations is this number times the size of the
243
+ * matrix. It is currently set to 30.
244
+ */
245
+ static const int m_maxIterationsPerRow = 30;
246
+
247
+ protected:
248
+ ComplexMatrixType m_matT, m_matU;
249
+ HessenbergDecomposition<MatrixType> m_hess;
250
+ ComputationInfo m_info;
251
+ bool m_isInitialized;
252
+ bool m_matUisUptodate;
253
+ Index m_maxIters;
254
+
255
+ private:
256
+ bool subdiagonalEntryIsNeglegible(Index i);
257
+ ComplexScalar computeShift(Index iu, Index iter);
258
+ void reduceToTriangularForm(bool computeU);
259
+ friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
260
+ };
261
+
262
+ /** If m_matT(i+1,i) is neglegible in floating point arithmetic
263
+ * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
264
+ * return true, else return false. */
265
+ template<typename MatrixType>
266
+ inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
267
+ {
268
+ RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
269
+ RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
270
+ if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
271
+ {
272
+ m_matT.coeffRef(i+1,i) = ComplexScalar(0);
273
+ return true;
274
+ }
275
+ return false;
276
+ }
277
+
278
+
279
+ /** Compute the shift in the current QR iteration. */
280
+ template<typename MatrixType>
281
+ typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
282
+ {
283
+ using std::abs;
284
+ if (iter == 10 || iter == 20)
285
+ {
286
+ // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
287
+ return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
288
+ }
289
+
290
+ // compute the shift as one of the eigenvalues of t, the 2x2
291
+ // diagonal block on the bottom of the active submatrix
292
+ Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
293
+ RealScalar normt = t.cwiseAbs().sum();
294
+ t /= normt; // the normalization by sf is to avoid under/overflow
295
+
296
+ ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
297
+ ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
298
+ ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
299
+ ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
300
+ ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
301
+ ComplexScalar eival1 = (trace + disc) / RealScalar(2);
302
+ ComplexScalar eival2 = (trace - disc) / RealScalar(2);
303
+
304
+ if(numext::norm1(eival1) > numext::norm1(eival2))
305
+ eival2 = det / eival1;
306
+ else
307
+ eival1 = det / eival2;
308
+
309
+ // choose the eigenvalue closest to the bottom entry of the diagonal
310
+ if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
311
+ return normt * eival1;
312
+ else
313
+ return normt * eival2;
314
+ }
315
+
316
+
317
+ template<typename MatrixType>
318
+ template<typename InputType>
319
+ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
320
+ {
321
+ m_matUisUptodate = false;
322
+ eigen_assert(matrix.cols() == matrix.rows());
323
+
324
+ if(matrix.cols() == 1)
325
+ {
326
+ m_matT = matrix.derived().template cast<ComplexScalar>();
327
+ if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
328
+ m_info = Success;
329
+ m_isInitialized = true;
330
+ m_matUisUptodate = computeU;
331
+ return *this;
332
+ }
333
+
334
+ internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
335
+ computeFromHessenberg(m_matT, m_matU, computeU);
336
+ return *this;
337
+ }
338
+
339
+ template<typename MatrixType>
340
+ template<typename HessMatrixType, typename OrthMatrixType>
341
+ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
342
+ {
343
+ m_matT = matrixH;
344
+ if(computeU)
345
+ m_matU = matrixQ;
346
+ reduceToTriangularForm(computeU);
347
+ return *this;
348
+ }
349
+ namespace internal {
350
+
351
+ /* Reduce given matrix to Hessenberg form */
352
+ template<typename MatrixType, bool IsComplex>
353
+ struct complex_schur_reduce_to_hessenberg
354
+ {
355
+ // this is the implementation for the case IsComplex = true
356
+ static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
357
+ {
358
+ _this.m_hess.compute(matrix);
359
+ _this.m_matT = _this.m_hess.matrixH();
360
+ if(computeU) _this.m_matU = _this.m_hess.matrixQ();
361
+ }
362
+ };
363
+
364
+ template<typename MatrixType>
365
+ struct complex_schur_reduce_to_hessenberg<MatrixType, false>
366
+ {
367
+ static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
368
+ {
369
+ typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
370
+
371
+ // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
372
+ _this.m_hess.compute(matrix);
373
+ _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
374
+ if(computeU)
375
+ {
376
+ // This may cause an allocation which seems to be avoidable
377
+ MatrixType Q = _this.m_hess.matrixQ();
378
+ _this.m_matU = Q.template cast<ComplexScalar>();
379
+ }
380
+ }
381
+ };
382
+
383
+ } // end namespace internal
384
+
385
+ // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
386
+ template<typename MatrixType>
387
+ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
388
+ {
389
+ Index maxIters = m_maxIters;
390
+ if (maxIters == -1)
391
+ maxIters = m_maxIterationsPerRow * m_matT.rows();
392
+
393
+ // The matrix m_matT is divided in three parts.
394
+ // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
395
+ // Rows il,...,iu is the part we are working on (the active submatrix).
396
+ // Rows iu+1,...,end are already brought in triangular form.
397
+ Index iu = m_matT.cols() - 1;
398
+ Index il;
399
+ Index iter = 0; // number of iterations we are working on the (iu,iu) element
400
+ Index totalIter = 0; // number of iterations for whole matrix
401
+
402
+ while(true)
403
+ {
404
+ // find iu, the bottom row of the active submatrix
405
+ while(iu > 0)
406
+ {
407
+ if(!subdiagonalEntryIsNeglegible(iu-1)) break;
408
+ iter = 0;
409
+ --iu;
410
+ }
411
+
412
+ // if iu is zero then we are done; the whole matrix is triangularized
413
+ if(iu==0) break;
414
+
415
+ // if we spent too many iterations, we give up
416
+ iter++;
417
+ totalIter++;
418
+ if(totalIter > maxIters) break;
419
+
420
+ // find il, the top row of the active submatrix
421
+ il = iu-1;
422
+ while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
423
+ {
424
+ --il;
425
+ }
426
+
427
+ /* perform the QR step using Givens rotations. The first rotation
428
+ creates a bulge; the (il+2,il) element becomes nonzero. This
429
+ bulge is chased down to the bottom of the active submatrix. */
430
+
431
+ ComplexScalar shift = computeShift(iu, iter);
432
+ JacobiRotation<ComplexScalar> rot;
433
+ rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
434
+ m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
435
+ m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
436
+ if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
437
+
438
+ for(Index i=il+1 ; i<iu ; i++)
439
+ {
440
+ rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
441
+ m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
442
+ m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
443
+ m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
444
+ if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
445
+ }
446
+ }
447
+
448
+ if(totalIter <= maxIters)
449
+ m_info = Success;
450
+ else
451
+ m_info = NoConvergence;
452
+
453
+ m_isInitialized = true;
454
+ m_matUisUptodate = computeU;
455
+ }
456
+
457
+ } // end namespace Eigen
458
+
459
+ #endif // EIGEN_COMPLEX_SCHUR_H