tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,653 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6
+ //
7
+ // This Source Code Form is subject to the terms of the Mozilla
8
+ // Public License v. 2.0. If a copy of the MPL was not distributed
9
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
+
11
+ #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
12
+ #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
13
+
14
+ namespace Eigen {
15
+
16
+ namespace internal {
17
+ template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
18
+ : traits<_MatrixType>
19
+ {
20
+ enum { Flags = 0 };
21
+ };
22
+
23
+ } // end namespace internal
24
+
25
+ /** \ingroup QR_Module
26
+ *
27
+ * \class ColPivHouseholderQR
28
+ *
29
+ * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
30
+ *
31
+ * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
32
+ *
33
+ * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
34
+ * such that
35
+ * \f[
36
+ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
37
+ * \f]
38
+ * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
39
+ * upper triangular matrix.
40
+ *
41
+ * This decomposition performs column pivoting in order to be rank-revealing and improve
42
+ * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
43
+ *
44
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
45
+ *
46
+ * \sa MatrixBase::colPivHouseholderQr()
47
+ */
48
+ template<typename _MatrixType> class ColPivHouseholderQR
49
+ {
50
+ public:
51
+
52
+ typedef _MatrixType MatrixType;
53
+ enum {
54
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
55
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
56
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58
+ };
59
+ typedef typename MatrixType::Scalar Scalar;
60
+ typedef typename MatrixType::RealScalar RealScalar;
61
+ // FIXME should be int
62
+ typedef typename MatrixType::StorageIndex StorageIndex;
63
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
64
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
65
+ typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
66
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
67
+ typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
68
+ typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
69
+ typedef typename MatrixType::PlainObject PlainObject;
70
+
71
+ private:
72
+
73
+ typedef typename PermutationType::StorageIndex PermIndexType;
74
+
75
+ public:
76
+
77
+ /**
78
+ * \brief Default Constructor.
79
+ *
80
+ * The default constructor is useful in cases in which the user intends to
81
+ * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
82
+ */
83
+ ColPivHouseholderQR()
84
+ : m_qr(),
85
+ m_hCoeffs(),
86
+ m_colsPermutation(),
87
+ m_colsTranspositions(),
88
+ m_temp(),
89
+ m_colNormsUpdated(),
90
+ m_colNormsDirect(),
91
+ m_isInitialized(false),
92
+ m_usePrescribedThreshold(false) {}
93
+
94
+ /** \brief Default Constructor with memory preallocation
95
+ *
96
+ * Like the default constructor but with preallocation of the internal data
97
+ * according to the specified problem \a size.
98
+ * \sa ColPivHouseholderQR()
99
+ */
100
+ ColPivHouseholderQR(Index rows, Index cols)
101
+ : m_qr(rows, cols),
102
+ m_hCoeffs((std::min)(rows,cols)),
103
+ m_colsPermutation(PermIndexType(cols)),
104
+ m_colsTranspositions(cols),
105
+ m_temp(cols),
106
+ m_colNormsUpdated(cols),
107
+ m_colNormsDirect(cols),
108
+ m_isInitialized(false),
109
+ m_usePrescribedThreshold(false) {}
110
+
111
+ /** \brief Constructs a QR factorization from a given matrix
112
+ *
113
+ * This constructor computes the QR factorization of the matrix \a matrix by calling
114
+ * the method compute(). It is a short cut for:
115
+ *
116
+ * \code
117
+ * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
118
+ * qr.compute(matrix);
119
+ * \endcode
120
+ *
121
+ * \sa compute()
122
+ */
123
+ template<typename InputType>
124
+ explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix)
125
+ : m_qr(matrix.rows(), matrix.cols()),
126
+ m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
127
+ m_colsPermutation(PermIndexType(matrix.cols())),
128
+ m_colsTranspositions(matrix.cols()),
129
+ m_temp(matrix.cols()),
130
+ m_colNormsUpdated(matrix.cols()),
131
+ m_colNormsDirect(matrix.cols()),
132
+ m_isInitialized(false),
133
+ m_usePrescribedThreshold(false)
134
+ {
135
+ compute(matrix.derived());
136
+ }
137
+
138
+ /** \brief Constructs a QR factorization from a given matrix
139
+ *
140
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
141
+ *
142
+ * \sa ColPivHouseholderQR(const EigenBase&)
143
+ */
144
+ template<typename InputType>
145
+ explicit ColPivHouseholderQR(EigenBase<InputType>& matrix)
146
+ : m_qr(matrix.derived()),
147
+ m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
148
+ m_colsPermutation(PermIndexType(matrix.cols())),
149
+ m_colsTranspositions(matrix.cols()),
150
+ m_temp(matrix.cols()),
151
+ m_colNormsUpdated(matrix.cols()),
152
+ m_colNormsDirect(matrix.cols()),
153
+ m_isInitialized(false),
154
+ m_usePrescribedThreshold(false)
155
+ {
156
+ computeInPlace();
157
+ }
158
+
159
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
160
+ * *this is the QR decomposition, if any exists.
161
+ *
162
+ * \param b the right-hand-side of the equation to solve.
163
+ *
164
+ * \returns a solution.
165
+ *
166
+ * \note_about_checking_solutions
167
+ *
168
+ * \note_about_arbitrary_choice_of_solution
169
+ *
170
+ * Example: \include ColPivHouseholderQR_solve.cpp
171
+ * Output: \verbinclude ColPivHouseholderQR_solve.out
172
+ */
173
+ template<typename Rhs>
174
+ inline const Solve<ColPivHouseholderQR, Rhs>
175
+ solve(const MatrixBase<Rhs>& b) const
176
+ {
177
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
178
+ return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived());
179
+ }
180
+
181
+ HouseholderSequenceType householderQ() const;
182
+ HouseholderSequenceType matrixQ() const
183
+ {
184
+ return householderQ();
185
+ }
186
+
187
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
188
+ */
189
+ const MatrixType& matrixQR() const
190
+ {
191
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
192
+ return m_qr;
193
+ }
194
+
195
+ /** \returns a reference to the matrix where the result Householder QR is stored
196
+ * \warning The strict lower part of this matrix contains internal values.
197
+ * Only the upper triangular part should be referenced. To get it, use
198
+ * \code matrixR().template triangularView<Upper>() \endcode
199
+ * For rank-deficient matrices, use
200
+ * \code
201
+ * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
202
+ * \endcode
203
+ */
204
+ const MatrixType& matrixR() const
205
+ {
206
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
207
+ return m_qr;
208
+ }
209
+
210
+ template<typename InputType>
211
+ ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
212
+
213
+ /** \returns a const reference to the column permutation matrix */
214
+ const PermutationType& colsPermutation() const
215
+ {
216
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
217
+ return m_colsPermutation;
218
+ }
219
+
220
+ /** \returns the absolute value of the determinant of the matrix of which
221
+ * *this is the QR decomposition. It has only linear complexity
222
+ * (that is, O(n) where n is the dimension of the square matrix)
223
+ * as the QR decomposition has already been computed.
224
+ *
225
+ * \note This is only for square matrices.
226
+ *
227
+ * \warning a determinant can be very big or small, so for matrices
228
+ * of large enough dimension, there is a risk of overflow/underflow.
229
+ * One way to work around that is to use logAbsDeterminant() instead.
230
+ *
231
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
232
+ */
233
+ typename MatrixType::RealScalar absDeterminant() const;
234
+
235
+ /** \returns the natural log of the absolute value of the determinant of the matrix of which
236
+ * *this is the QR decomposition. It has only linear complexity
237
+ * (that is, O(n) where n is the dimension of the square matrix)
238
+ * as the QR decomposition has already been computed.
239
+ *
240
+ * \note This is only for square matrices.
241
+ *
242
+ * \note This method is useful to work around the risk of overflow/underflow that's inherent
243
+ * to determinant computation.
244
+ *
245
+ * \sa absDeterminant(), MatrixBase::determinant()
246
+ */
247
+ typename MatrixType::RealScalar logAbsDeterminant() const;
248
+
249
+ /** \returns the rank of the matrix of which *this is the QR decomposition.
250
+ *
251
+ * \note This method has to determine which pivots should be considered nonzero.
252
+ * For that, it uses the threshold value that you can control by calling
253
+ * setThreshold(const RealScalar&).
254
+ */
255
+ inline Index rank() const
256
+ {
257
+ using std::abs;
258
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
259
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
260
+ Index result = 0;
261
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
262
+ result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
263
+ return result;
264
+ }
265
+
266
+ /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
267
+ *
268
+ * \note This method has to determine which pivots should be considered nonzero.
269
+ * For that, it uses the threshold value that you can control by calling
270
+ * setThreshold(const RealScalar&).
271
+ */
272
+ inline Index dimensionOfKernel() const
273
+ {
274
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
275
+ return cols() - rank();
276
+ }
277
+
278
+ /** \returns true if the matrix of which *this is the QR decomposition represents an injective
279
+ * linear map, i.e. has trivial kernel; false otherwise.
280
+ *
281
+ * \note This method has to determine which pivots should be considered nonzero.
282
+ * For that, it uses the threshold value that you can control by calling
283
+ * setThreshold(const RealScalar&).
284
+ */
285
+ inline bool isInjective() const
286
+ {
287
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
288
+ return rank() == cols();
289
+ }
290
+
291
+ /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
292
+ * linear map; false otherwise.
293
+ *
294
+ * \note This method has to determine which pivots should be considered nonzero.
295
+ * For that, it uses the threshold value that you can control by calling
296
+ * setThreshold(const RealScalar&).
297
+ */
298
+ inline bool isSurjective() const
299
+ {
300
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
301
+ return rank() == rows();
302
+ }
303
+
304
+ /** \returns true if the matrix of which *this is the QR decomposition is invertible.
305
+ *
306
+ * \note This method has to determine which pivots should be considered nonzero.
307
+ * For that, it uses the threshold value that you can control by calling
308
+ * setThreshold(const RealScalar&).
309
+ */
310
+ inline bool isInvertible() const
311
+ {
312
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
313
+ return isInjective() && isSurjective();
314
+ }
315
+
316
+ /** \returns the inverse of the matrix of which *this is the QR decomposition.
317
+ *
318
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
319
+ * Use isInvertible() to first determine whether this matrix is invertible.
320
+ */
321
+ inline const Inverse<ColPivHouseholderQR> inverse() const
322
+ {
323
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
324
+ return Inverse<ColPivHouseholderQR>(*this);
325
+ }
326
+
327
+ inline Index rows() const { return m_qr.rows(); }
328
+ inline Index cols() const { return m_qr.cols(); }
329
+
330
+ /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
331
+ *
332
+ * For advanced uses only.
333
+ */
334
+ const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
335
+
336
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
337
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
338
+ * QR decomposition itself.
339
+ *
340
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
341
+ * uses a formula to automatically determine a reasonable threshold.
342
+ * Once you have called the present method setThreshold(const RealScalar&),
343
+ * your value is used instead.
344
+ *
345
+ * \param threshold The new value to use as the threshold.
346
+ *
347
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
348
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
349
+ * where maxpivot is the biggest pivot.
350
+ *
351
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
352
+ */
353
+ ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
354
+ {
355
+ m_usePrescribedThreshold = true;
356
+ m_prescribedThreshold = threshold;
357
+ return *this;
358
+ }
359
+
360
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
361
+ * determining the threshold.
362
+ *
363
+ * You should pass the special object Eigen::Default as parameter here.
364
+ * \code qr.setThreshold(Eigen::Default); \endcode
365
+ *
366
+ * See the documentation of setThreshold(const RealScalar&).
367
+ */
368
+ ColPivHouseholderQR& setThreshold(Default_t)
369
+ {
370
+ m_usePrescribedThreshold = false;
371
+ return *this;
372
+ }
373
+
374
+ /** Returns the threshold that will be used by certain methods such as rank().
375
+ *
376
+ * See the documentation of setThreshold(const RealScalar&).
377
+ */
378
+ RealScalar threshold() const
379
+ {
380
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
381
+ return m_usePrescribedThreshold ? m_prescribedThreshold
382
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
383
+ // and turns out to be identical to Higham's formula used already in LDLt.
384
+ : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
385
+ }
386
+
387
+ /** \returns the number of nonzero pivots in the QR decomposition.
388
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
389
+ * So that notion isn't really intrinsically interesting, but it is
390
+ * still useful when implementing algorithms.
391
+ *
392
+ * \sa rank()
393
+ */
394
+ inline Index nonzeroPivots() const
395
+ {
396
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
397
+ return m_nonzero_pivots;
398
+ }
399
+
400
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
401
+ * diagonal coefficient of R.
402
+ */
403
+ RealScalar maxPivot() const { return m_maxpivot; }
404
+
405
+ /** \brief Reports whether the QR factorization was succesful.
406
+ *
407
+ * \note This function always returns \c Success. It is provided for compatibility
408
+ * with other factorization routines.
409
+ * \returns \c Success
410
+ */
411
+ ComputationInfo info() const
412
+ {
413
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
414
+ return Success;
415
+ }
416
+
417
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
418
+ template<typename RhsType, typename DstType>
419
+ EIGEN_DEVICE_FUNC
420
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
421
+ #endif
422
+
423
+ protected:
424
+
425
+ friend class CompleteOrthogonalDecomposition<MatrixType>;
426
+
427
+ static void check_template_parameters()
428
+ {
429
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
430
+ }
431
+
432
+ void computeInPlace();
433
+
434
+ MatrixType m_qr;
435
+ HCoeffsType m_hCoeffs;
436
+ PermutationType m_colsPermutation;
437
+ IntRowVectorType m_colsTranspositions;
438
+ RowVectorType m_temp;
439
+ RealRowVectorType m_colNormsUpdated;
440
+ RealRowVectorType m_colNormsDirect;
441
+ bool m_isInitialized, m_usePrescribedThreshold;
442
+ RealScalar m_prescribedThreshold, m_maxpivot;
443
+ Index m_nonzero_pivots;
444
+ Index m_det_pq;
445
+ };
446
+
447
+ template<typename MatrixType>
448
+ typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
449
+ {
450
+ using std::abs;
451
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
452
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
453
+ return abs(m_qr.diagonal().prod());
454
+ }
455
+
456
+ template<typename MatrixType>
457
+ typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
458
+ {
459
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
460
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
461
+ return m_qr.diagonal().cwiseAbs().array().log().sum();
462
+ }
463
+
464
+ /** Performs the QR factorization of the given matrix \a matrix. The result of
465
+ * the factorization is stored into \c *this, and a reference to \c *this
466
+ * is returned.
467
+ *
468
+ * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
469
+ */
470
+ template<typename MatrixType>
471
+ template<typename InputType>
472
+ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
473
+ {
474
+ m_qr = matrix.derived();
475
+ computeInPlace();
476
+ return *this;
477
+ }
478
+
479
+ template<typename MatrixType>
480
+ void ColPivHouseholderQR<MatrixType>::computeInPlace()
481
+ {
482
+ check_template_parameters();
483
+
484
+ // the column permutation is stored as int indices, so just to be sure:
485
+ eigen_assert(m_qr.cols()<=NumTraits<int>::highest());
486
+
487
+ using std::abs;
488
+
489
+ Index rows = m_qr.rows();
490
+ Index cols = m_qr.cols();
491
+ Index size = m_qr.diagonalSize();
492
+
493
+ m_hCoeffs.resize(size);
494
+
495
+ m_temp.resize(cols);
496
+
497
+ m_colsTranspositions.resize(m_qr.cols());
498
+ Index number_of_transpositions = 0;
499
+
500
+ m_colNormsUpdated.resize(cols);
501
+ m_colNormsDirect.resize(cols);
502
+ for (Index k = 0; k < cols; ++k) {
503
+ // colNormsDirect(k) caches the most recent directly computed norm of
504
+ // column k.
505
+ m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm();
506
+ m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
507
+ }
508
+
509
+ RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
510
+ RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
511
+
512
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
513
+ m_maxpivot = RealScalar(0);
514
+
515
+ for(Index k = 0; k < size; ++k)
516
+ {
517
+ // first, we look up in our table m_colNormsUpdated which column has the biggest norm
518
+ Index biggest_col_index;
519
+ RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
520
+ biggest_col_index += k;
521
+
522
+ // Track the number of meaningful pivots but do not stop the decomposition to make
523
+ // sure that the initial matrix is properly reproduced. See bug 941.
524
+ if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
525
+ m_nonzero_pivots = k;
526
+
527
+ // apply the transposition to the columns
528
+ m_colsTranspositions.coeffRef(k) = biggest_col_index;
529
+ if(k != biggest_col_index) {
530
+ m_qr.col(k).swap(m_qr.col(biggest_col_index));
531
+ std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
532
+ std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
533
+ ++number_of_transpositions;
534
+ }
535
+
536
+ // generate the householder vector, store it below the diagonal
537
+ RealScalar beta;
538
+ m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
539
+
540
+ // apply the householder transformation to the diagonal coefficient
541
+ m_qr.coeffRef(k,k) = beta;
542
+
543
+ // remember the maximum absolute value of diagonal coefficients
544
+ if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
545
+
546
+ // apply the householder transformation
547
+ m_qr.bottomRightCorner(rows-k, cols-k-1)
548
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
549
+
550
+ // update our table of norms of the columns
551
+ for (Index j = k + 1; j < cols; ++j) {
552
+ // The following implements the stable norm downgrade step discussed in
553
+ // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
554
+ // and used in LAPACK routines xGEQPF and xGEQP3.
555
+ // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
556
+ if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
557
+ RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
558
+ temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
559
+ temp = temp < RealScalar(0) ? RealScalar(0) : temp;
560
+ RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
561
+ m_colNormsDirect.coeffRef(j));
562
+ if (temp2 <= norm_downdate_threshold) {
563
+ // The updated norm has become too inaccurate so re-compute the column
564
+ // norm directly.
565
+ m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
566
+ m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
567
+ } else {
568
+ m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
569
+ }
570
+ }
571
+ }
572
+ }
573
+
574
+ m_colsPermutation.setIdentity(PermIndexType(cols));
575
+ for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
576
+ m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
577
+
578
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
579
+ m_isInitialized = true;
580
+ }
581
+
582
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
583
+ template<typename _MatrixType>
584
+ template<typename RhsType, typename DstType>
585
+ void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
586
+ {
587
+ eigen_assert(rhs.rows() == rows());
588
+
589
+ const Index nonzero_pivots = nonzeroPivots();
590
+
591
+ if(nonzero_pivots == 0)
592
+ {
593
+ dst.setZero();
594
+ return;
595
+ }
596
+
597
+ typename RhsType::PlainObject c(rhs);
598
+
599
+ // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
600
+ c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs)
601
+ .setLength(nonzero_pivots)
602
+ .transpose()
603
+ );
604
+
605
+ m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
606
+ .template triangularView<Upper>()
607
+ .solveInPlace(c.topRows(nonzero_pivots));
608
+
609
+ for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
610
+ for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
611
+ }
612
+ #endif
613
+
614
+ namespace internal {
615
+
616
+ template<typename DstXprType, typename MatrixType>
617
+ struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
618
+ {
619
+ typedef ColPivHouseholderQR<MatrixType> QrType;
620
+ typedef Inverse<QrType> SrcXprType;
621
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
622
+ {
623
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
624
+ }
625
+ };
626
+
627
+ } // end namespace internal
628
+
629
+ /** \returns the matrix Q as a sequence of householder transformations.
630
+ * You can extract the meaningful part only by using:
631
+ * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
632
+ template<typename MatrixType>
633
+ typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
634
+ ::householderQ() const
635
+ {
636
+ eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
637
+ return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
638
+ }
639
+
640
+ /** \return the column-pivoting Householder QR decomposition of \c *this.
641
+ *
642
+ * \sa class ColPivHouseholderQR
643
+ */
644
+ template<typename Derived>
645
+ const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
646
+ MatrixBase<Derived>::colPivHouseholderQr() const
647
+ {
648
+ return ColPivHouseholderQR<PlainObject>(eval());
649
+ }
650
+
651
+ } // end namespace Eigen
652
+
653
+ #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H