tomoto 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +123 -0
- data/ext/tomoto/ext.cpp +245 -0
- data/ext/tomoto/extconf.rb +28 -0
- data/lib/tomoto.rb +12 -0
- data/lib/tomoto/ct.rb +11 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/lda.rb +67 -0
- data/lib/tomoto/version.rb +3 -0
- data/vendor/EigenRand/EigenRand/Core.h +1139 -0
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
- data/vendor/EigenRand/EigenRand/EigenRand +19 -0
- data/vendor/EigenRand/EigenRand/Macro.h +24 -0
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
- data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
- data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
- data/vendor/EigenRand/EigenRand/doc.h +220 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +288 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +52 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
- data/vendor/eigen/Eigen/Cholesky +46 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +537 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +61 -0
- data/vendor/eigen/Eigen/Geometry +62 -0
- data/vendor/eigen/Eigen/Householder +30 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +33 -0
- data/vendor/eigen/Eigen/LU +50 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +73 -0
- data/vendor/eigen/Eigen/PaStiXSupport +48 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +51 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +51 -0
- data/vendor/eigen/Eigen/Sparse +36 -0
- data/vendor/eigen/Eigen/SparseCholesky +45 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +46 -0
- data/vendor/eigen/Eigen/SparseQR +37 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
- data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
- data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
- data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
- data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
- data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
- data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
- data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
- data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
- data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
- data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
- data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
- data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
- data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
- data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
- data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
- data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
- data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
- data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
- data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
- data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
- data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
- data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
- data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
- data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
- data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
- data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
- data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
- data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
- data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
- data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
- data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
- data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
- data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
- data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
- data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
- data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
- data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
- data/vendor/eigen/README.md +3 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +21 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +375 -0
- data/vendor/tomotopy/README.rst +382 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
- data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
- data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
- data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
- data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
- data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
- data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
- data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
- data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
- data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
- data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
- data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
- data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
- data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
- data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
- data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
- data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
- data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
- data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
- data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
- data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
- data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
- data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
- data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
- data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
- data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
- data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
- data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
- data/vendor/tomotopy/src/Utils/exception.h +28 -0
- data/vendor/tomotopy/src/Utils/math.h +281 -0
- data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
- data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
- data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
- data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
- data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
- data/vendor/tomotopy/src/Utils/text.hpp +49 -0
- data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
- metadata +531 -0
@@ -0,0 +1,99 @@
|
|
1
|
+
/*
|
2
|
+
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
this list of conditions and the following disclaimer in the documentation
|
11
|
+
and/or other materials provided with the distribution.
|
12
|
+
* Neither the name of Intel Corporation nor the names of its contributors may
|
13
|
+
be used to endorse or promote products derived from this software without
|
14
|
+
specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
20
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
21
|
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
22
|
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
23
|
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
24
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
25
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
|
27
|
+
********************************************************************************
|
28
|
+
* Content : Eigen bindings to LAPACKe
|
29
|
+
* LLt decomposition based on LAPACKE_?potrf function.
|
30
|
+
********************************************************************************
|
31
|
+
*/
|
32
|
+
|
33
|
+
#ifndef EIGEN_LLT_LAPACKE_H
|
34
|
+
#define EIGEN_LLT_LAPACKE_H
|
35
|
+
|
36
|
+
namespace Eigen {
|
37
|
+
|
38
|
+
namespace internal {
|
39
|
+
|
40
|
+
template<typename Scalar> struct lapacke_llt;
|
41
|
+
|
42
|
+
#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \
|
43
|
+
template<> struct lapacke_llt<EIGTYPE> \
|
44
|
+
{ \
|
45
|
+
template<typename MatrixType> \
|
46
|
+
static inline Index potrf(MatrixType& m, char uplo) \
|
47
|
+
{ \
|
48
|
+
lapack_int matrix_order; \
|
49
|
+
lapack_int size, lda, info, StorageOrder; \
|
50
|
+
EIGTYPE* a; \
|
51
|
+
eigen_assert(m.rows()==m.cols()); \
|
52
|
+
/* Set up parameters for ?potrf */ \
|
53
|
+
size = convert_index<lapack_int>(m.rows()); \
|
54
|
+
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
|
55
|
+
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
|
56
|
+
a = &(m.coeffRef(0,0)); \
|
57
|
+
lda = convert_index<lapack_int>(m.outerStride()); \
|
58
|
+
\
|
59
|
+
info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \
|
60
|
+
info = (info==0) ? -1 : info>0 ? info-1 : size; \
|
61
|
+
return info; \
|
62
|
+
} \
|
63
|
+
}; \
|
64
|
+
template<> struct llt_inplace<EIGTYPE, Lower> \
|
65
|
+
{ \
|
66
|
+
template<typename MatrixType> \
|
67
|
+
static Index blocked(MatrixType& m) \
|
68
|
+
{ \
|
69
|
+
return lapacke_llt<EIGTYPE>::potrf(m, 'L'); \
|
70
|
+
} \
|
71
|
+
template<typename MatrixType, typename VectorType> \
|
72
|
+
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
|
73
|
+
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
|
74
|
+
}; \
|
75
|
+
template<> struct llt_inplace<EIGTYPE, Upper> \
|
76
|
+
{ \
|
77
|
+
template<typename MatrixType> \
|
78
|
+
static Index blocked(MatrixType& m) \
|
79
|
+
{ \
|
80
|
+
return lapacke_llt<EIGTYPE>::potrf(m, 'U'); \
|
81
|
+
} \
|
82
|
+
template<typename MatrixType, typename VectorType> \
|
83
|
+
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
|
84
|
+
{ \
|
85
|
+
Transpose<MatrixType> matt(mat); \
|
86
|
+
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
|
87
|
+
} \
|
88
|
+
};
|
89
|
+
|
90
|
+
EIGEN_LAPACKE_LLT(double, double, d)
|
91
|
+
EIGEN_LAPACKE_LLT(float, float, s)
|
92
|
+
EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z)
|
93
|
+
EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c)
|
94
|
+
|
95
|
+
} // end namespace internal
|
96
|
+
|
97
|
+
} // end namespace Eigen
|
98
|
+
|
99
|
+
#endif // EIGEN_LLT_LAPACKE_H
|
@@ -0,0 +1,639 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_CHOLMODSUPPORT_H
|
11
|
+
#define EIGEN_CHOLMODSUPPORT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
namespace internal {
|
16
|
+
|
17
|
+
template<typename Scalar> struct cholmod_configure_matrix;
|
18
|
+
|
19
|
+
template<> struct cholmod_configure_matrix<double> {
|
20
|
+
template<typename CholmodType>
|
21
|
+
static void run(CholmodType& mat) {
|
22
|
+
mat.xtype = CHOLMOD_REAL;
|
23
|
+
mat.dtype = CHOLMOD_DOUBLE;
|
24
|
+
}
|
25
|
+
};
|
26
|
+
|
27
|
+
template<> struct cholmod_configure_matrix<std::complex<double> > {
|
28
|
+
template<typename CholmodType>
|
29
|
+
static void run(CholmodType& mat) {
|
30
|
+
mat.xtype = CHOLMOD_COMPLEX;
|
31
|
+
mat.dtype = CHOLMOD_DOUBLE;
|
32
|
+
}
|
33
|
+
};
|
34
|
+
|
35
|
+
// Other scalar types are not yet suppotred by Cholmod
|
36
|
+
// template<> struct cholmod_configure_matrix<float> {
|
37
|
+
// template<typename CholmodType>
|
38
|
+
// static void run(CholmodType& mat) {
|
39
|
+
// mat.xtype = CHOLMOD_REAL;
|
40
|
+
// mat.dtype = CHOLMOD_SINGLE;
|
41
|
+
// }
|
42
|
+
// };
|
43
|
+
//
|
44
|
+
// template<> struct cholmod_configure_matrix<std::complex<float> > {
|
45
|
+
// template<typename CholmodType>
|
46
|
+
// static void run(CholmodType& mat) {
|
47
|
+
// mat.xtype = CHOLMOD_COMPLEX;
|
48
|
+
// mat.dtype = CHOLMOD_SINGLE;
|
49
|
+
// }
|
50
|
+
// };
|
51
|
+
|
52
|
+
} // namespace internal
|
53
|
+
|
54
|
+
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
|
55
|
+
* Note that the data are shared.
|
56
|
+
*/
|
57
|
+
template<typename _Scalar, int _Options, typename _StorageIndex>
|
58
|
+
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
|
59
|
+
{
|
60
|
+
cholmod_sparse res;
|
61
|
+
res.nzmax = mat.nonZeros();
|
62
|
+
res.nrow = mat.rows();
|
63
|
+
res.ncol = mat.cols();
|
64
|
+
res.p = mat.outerIndexPtr();
|
65
|
+
res.i = mat.innerIndexPtr();
|
66
|
+
res.x = mat.valuePtr();
|
67
|
+
res.z = 0;
|
68
|
+
res.sorted = 1;
|
69
|
+
if(mat.isCompressed())
|
70
|
+
{
|
71
|
+
res.packed = 1;
|
72
|
+
res.nz = 0;
|
73
|
+
}
|
74
|
+
else
|
75
|
+
{
|
76
|
+
res.packed = 0;
|
77
|
+
res.nz = mat.innerNonZeroPtr();
|
78
|
+
}
|
79
|
+
|
80
|
+
res.dtype = 0;
|
81
|
+
res.stype = -1;
|
82
|
+
|
83
|
+
if (internal::is_same<_StorageIndex,int>::value)
|
84
|
+
{
|
85
|
+
res.itype = CHOLMOD_INT;
|
86
|
+
}
|
87
|
+
else if (internal::is_same<_StorageIndex,long>::value)
|
88
|
+
{
|
89
|
+
res.itype = CHOLMOD_LONG;
|
90
|
+
}
|
91
|
+
else
|
92
|
+
{
|
93
|
+
eigen_assert(false && "Index type not supported yet");
|
94
|
+
}
|
95
|
+
|
96
|
+
// setup res.xtype
|
97
|
+
internal::cholmod_configure_matrix<_Scalar>::run(res);
|
98
|
+
|
99
|
+
res.stype = 0;
|
100
|
+
|
101
|
+
return res;
|
102
|
+
}
|
103
|
+
|
104
|
+
template<typename _Scalar, int _Options, typename _Index>
|
105
|
+
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
|
106
|
+
{
|
107
|
+
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
|
108
|
+
return res;
|
109
|
+
}
|
110
|
+
|
111
|
+
template<typename _Scalar, int _Options, typename _Index>
|
112
|
+
const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
|
113
|
+
{
|
114
|
+
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
|
115
|
+
return res;
|
116
|
+
}
|
117
|
+
|
118
|
+
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
|
119
|
+
* The data are not copied but shared. */
|
120
|
+
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
121
|
+
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
122
|
+
{
|
123
|
+
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
|
124
|
+
|
125
|
+
if(UpLo==Upper) res.stype = 1;
|
126
|
+
if(UpLo==Lower) res.stype = -1;
|
127
|
+
|
128
|
+
return res;
|
129
|
+
}
|
130
|
+
|
131
|
+
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
|
132
|
+
* The data are not copied but shared. */
|
133
|
+
template<typename Derived>
|
134
|
+
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
|
135
|
+
{
|
136
|
+
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
137
|
+
typedef typename Derived::Scalar Scalar;
|
138
|
+
|
139
|
+
cholmod_dense res;
|
140
|
+
res.nrow = mat.rows();
|
141
|
+
res.ncol = mat.cols();
|
142
|
+
res.nzmax = res.nrow * res.ncol;
|
143
|
+
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
|
144
|
+
res.x = (void*)(mat.derived().data());
|
145
|
+
res.z = 0;
|
146
|
+
|
147
|
+
internal::cholmod_configure_matrix<Scalar>::run(res);
|
148
|
+
|
149
|
+
return res;
|
150
|
+
}
|
151
|
+
|
152
|
+
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
|
153
|
+
* The data are not copied but shared. */
|
154
|
+
template<typename Scalar, int Flags, typename StorageIndex>
|
155
|
+
MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
|
156
|
+
{
|
157
|
+
return MappedSparseMatrix<Scalar,Flags,StorageIndex>
|
158
|
+
(cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
|
159
|
+
static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
|
160
|
+
}
|
161
|
+
|
162
|
+
enum CholmodMode {
|
163
|
+
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
|
164
|
+
};
|
165
|
+
|
166
|
+
|
167
|
+
/** \ingroup CholmodSupport_Module
|
168
|
+
* \class CholmodBase
|
169
|
+
* \brief The base class for the direct Cholesky factorization of Cholmod
|
170
|
+
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
|
171
|
+
*/
|
172
|
+
template<typename _MatrixType, int _UpLo, typename Derived>
|
173
|
+
class CholmodBase : public SparseSolverBase<Derived>
|
174
|
+
{
|
175
|
+
protected:
|
176
|
+
typedef SparseSolverBase<Derived> Base;
|
177
|
+
using Base::derived;
|
178
|
+
using Base::m_isInitialized;
|
179
|
+
public:
|
180
|
+
typedef _MatrixType MatrixType;
|
181
|
+
enum { UpLo = _UpLo };
|
182
|
+
typedef typename MatrixType::Scalar Scalar;
|
183
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
184
|
+
typedef MatrixType CholMatrixType;
|
185
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
186
|
+
enum {
|
187
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
188
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
189
|
+
};
|
190
|
+
|
191
|
+
public:
|
192
|
+
|
193
|
+
CholmodBase()
|
194
|
+
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
|
195
|
+
{
|
196
|
+
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
|
197
|
+
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
|
198
|
+
cholmod_start(&m_cholmod);
|
199
|
+
}
|
200
|
+
|
201
|
+
explicit CholmodBase(const MatrixType& matrix)
|
202
|
+
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
|
203
|
+
{
|
204
|
+
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
|
205
|
+
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
|
206
|
+
cholmod_start(&m_cholmod);
|
207
|
+
compute(matrix);
|
208
|
+
}
|
209
|
+
|
210
|
+
~CholmodBase()
|
211
|
+
{
|
212
|
+
if(m_cholmodFactor)
|
213
|
+
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
214
|
+
cholmod_finish(&m_cholmod);
|
215
|
+
}
|
216
|
+
|
217
|
+
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
|
218
|
+
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
|
219
|
+
|
220
|
+
/** \brief Reports whether previous computation was successful.
|
221
|
+
*
|
222
|
+
* \returns \c Success if computation was succesful,
|
223
|
+
* \c NumericalIssue if the matrix.appears to be negative.
|
224
|
+
*/
|
225
|
+
ComputationInfo info() const
|
226
|
+
{
|
227
|
+
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
228
|
+
return m_info;
|
229
|
+
}
|
230
|
+
|
231
|
+
/** Computes the sparse Cholesky decomposition of \a matrix */
|
232
|
+
Derived& compute(const MatrixType& matrix)
|
233
|
+
{
|
234
|
+
analyzePattern(matrix);
|
235
|
+
factorize(matrix);
|
236
|
+
return derived();
|
237
|
+
}
|
238
|
+
|
239
|
+
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
|
240
|
+
*
|
241
|
+
* This function is particularly useful when solving for several problems having the same structure.
|
242
|
+
*
|
243
|
+
* \sa factorize()
|
244
|
+
*/
|
245
|
+
void analyzePattern(const MatrixType& matrix)
|
246
|
+
{
|
247
|
+
if(m_cholmodFactor)
|
248
|
+
{
|
249
|
+
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
250
|
+
m_cholmodFactor = 0;
|
251
|
+
}
|
252
|
+
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
253
|
+
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
254
|
+
|
255
|
+
this->m_isInitialized = true;
|
256
|
+
this->m_info = Success;
|
257
|
+
m_analysisIsOk = true;
|
258
|
+
m_factorizationIsOk = false;
|
259
|
+
}
|
260
|
+
|
261
|
+
/** Performs a numeric decomposition of \a matrix
|
262
|
+
*
|
263
|
+
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
|
264
|
+
*
|
265
|
+
* \sa analyzePattern()
|
266
|
+
*/
|
267
|
+
void factorize(const MatrixType& matrix)
|
268
|
+
{
|
269
|
+
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
270
|
+
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
271
|
+
cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
|
272
|
+
|
273
|
+
// If the factorization failed, minor is the column at which it did. On success minor == n.
|
274
|
+
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
|
275
|
+
m_factorizationIsOk = true;
|
276
|
+
}
|
277
|
+
|
278
|
+
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
|
279
|
+
* See the Cholmod user guide for details. */
|
280
|
+
cholmod_common& cholmod() { return m_cholmod; }
|
281
|
+
|
282
|
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
283
|
+
/** \internal */
|
284
|
+
template<typename Rhs,typename Dest>
|
285
|
+
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
286
|
+
{
|
287
|
+
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
288
|
+
const Index size = m_cholmodFactor->n;
|
289
|
+
EIGEN_UNUSED_VARIABLE(size);
|
290
|
+
eigen_assert(size==b.rows());
|
291
|
+
|
292
|
+
// Cholmod needs column-major stoarge without inner-stride, which corresponds to the default behavior of Ref.
|
293
|
+
Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
|
294
|
+
|
295
|
+
cholmod_dense b_cd = viewAsCholmod(b_ref);
|
296
|
+
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
|
297
|
+
if(!x_cd)
|
298
|
+
{
|
299
|
+
this->m_info = NumericalIssue;
|
300
|
+
return;
|
301
|
+
}
|
302
|
+
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
|
303
|
+
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
|
304
|
+
cholmod_free_dense(&x_cd, &m_cholmod);
|
305
|
+
}
|
306
|
+
|
307
|
+
/** \internal */
|
308
|
+
template<typename RhsDerived, typename DestDerived>
|
309
|
+
void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
|
310
|
+
{
|
311
|
+
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
312
|
+
const Index size = m_cholmodFactor->n;
|
313
|
+
EIGEN_UNUSED_VARIABLE(size);
|
314
|
+
eigen_assert(size==b.rows());
|
315
|
+
|
316
|
+
// note: cs stands for Cholmod Sparse
|
317
|
+
Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
|
318
|
+
cholmod_sparse b_cs = viewAsCholmod(b_ref);
|
319
|
+
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
|
320
|
+
if(!x_cs)
|
321
|
+
{
|
322
|
+
this->m_info = NumericalIssue;
|
323
|
+
return;
|
324
|
+
}
|
325
|
+
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
|
326
|
+
dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
|
327
|
+
cholmod_free_sparse(&x_cs, &m_cholmod);
|
328
|
+
}
|
329
|
+
#endif // EIGEN_PARSED_BY_DOXYGEN
|
330
|
+
|
331
|
+
|
332
|
+
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
|
333
|
+
*
|
334
|
+
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
|
335
|
+
* \c d_ii = \a offset + \c d_ii
|
336
|
+
*
|
337
|
+
* The default is \a offset=0.
|
338
|
+
*
|
339
|
+
* \returns a reference to \c *this.
|
340
|
+
*/
|
341
|
+
Derived& setShift(const RealScalar& offset)
|
342
|
+
{
|
343
|
+
m_shiftOffset[0] = double(offset);
|
344
|
+
return derived();
|
345
|
+
}
|
346
|
+
|
347
|
+
/** \returns the determinant of the underlying matrix from the current factorization */
|
348
|
+
Scalar determinant() const
|
349
|
+
{
|
350
|
+
using std::exp;
|
351
|
+
return exp(logDeterminant());
|
352
|
+
}
|
353
|
+
|
354
|
+
/** \returns the log determinant of the underlying matrix from the current factorization */
|
355
|
+
Scalar logDeterminant() const
|
356
|
+
{
|
357
|
+
using std::log;
|
358
|
+
using numext::real;
|
359
|
+
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
360
|
+
|
361
|
+
RealScalar logDet = 0;
|
362
|
+
Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
|
363
|
+
if (m_cholmodFactor->is_super)
|
364
|
+
{
|
365
|
+
// Supernodal factorization stored as a packed list of dense column-major blocs,
|
366
|
+
// as described by the following structure:
|
367
|
+
|
368
|
+
// super[k] == index of the first column of the j-th super node
|
369
|
+
StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
|
370
|
+
// pi[k] == offset to the description of row indices
|
371
|
+
StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
|
372
|
+
// px[k] == offset to the respective dense block
|
373
|
+
StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
|
374
|
+
|
375
|
+
Index nb_super_nodes = m_cholmodFactor->nsuper;
|
376
|
+
for (Index k=0; k < nb_super_nodes; ++k)
|
377
|
+
{
|
378
|
+
StorageIndex ncols = super[k + 1] - super[k];
|
379
|
+
StorageIndex nrows = pi[k + 1] - pi[k];
|
380
|
+
|
381
|
+
Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
|
382
|
+
logDet += sk.real().log().sum();
|
383
|
+
}
|
384
|
+
}
|
385
|
+
else
|
386
|
+
{
|
387
|
+
// Simplicial factorization stored as standard CSC matrix.
|
388
|
+
StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
|
389
|
+
Index size = m_cholmodFactor->n;
|
390
|
+
for (Index k=0; k<size; ++k)
|
391
|
+
logDet += log(real( x[p[k]] ));
|
392
|
+
}
|
393
|
+
if (m_cholmodFactor->is_ll)
|
394
|
+
logDet *= 2.0;
|
395
|
+
return logDet;
|
396
|
+
};
|
397
|
+
|
398
|
+
template<typename Stream>
|
399
|
+
void dumpMemory(Stream& /*s*/)
|
400
|
+
{}
|
401
|
+
|
402
|
+
protected:
|
403
|
+
mutable cholmod_common m_cholmod;
|
404
|
+
cholmod_factor* m_cholmodFactor;
|
405
|
+
double m_shiftOffset[2];
|
406
|
+
mutable ComputationInfo m_info;
|
407
|
+
int m_factorizationIsOk;
|
408
|
+
int m_analysisIsOk;
|
409
|
+
};
|
410
|
+
|
411
|
+
/** \ingroup CholmodSupport_Module
|
412
|
+
* \class CholmodSimplicialLLT
|
413
|
+
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
|
414
|
+
*
|
415
|
+
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
|
416
|
+
* using the Cholmod library.
|
417
|
+
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
|
418
|
+
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
419
|
+
* X and B can be either dense or sparse.
|
420
|
+
*
|
421
|
+
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
422
|
+
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
423
|
+
* or Upper. Default is Lower.
|
424
|
+
*
|
425
|
+
* \implsparsesolverconcept
|
426
|
+
*
|
427
|
+
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
428
|
+
*
|
429
|
+
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
430
|
+
*
|
431
|
+
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
|
432
|
+
*/
|
433
|
+
template<typename _MatrixType, int _UpLo = Lower>
|
434
|
+
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
|
435
|
+
{
|
436
|
+
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
|
437
|
+
using Base::m_cholmod;
|
438
|
+
|
439
|
+
public:
|
440
|
+
|
441
|
+
typedef _MatrixType MatrixType;
|
442
|
+
|
443
|
+
CholmodSimplicialLLT() : Base() { init(); }
|
444
|
+
|
445
|
+
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
|
446
|
+
{
|
447
|
+
init();
|
448
|
+
this->compute(matrix);
|
449
|
+
}
|
450
|
+
|
451
|
+
~CholmodSimplicialLLT() {}
|
452
|
+
protected:
|
453
|
+
void init()
|
454
|
+
{
|
455
|
+
m_cholmod.final_asis = 0;
|
456
|
+
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
457
|
+
m_cholmod.final_ll = 1;
|
458
|
+
}
|
459
|
+
};
|
460
|
+
|
461
|
+
|
462
|
+
/** \ingroup CholmodSupport_Module
|
463
|
+
* \class CholmodSimplicialLDLT
|
464
|
+
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
|
465
|
+
*
|
466
|
+
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
|
467
|
+
* using the Cholmod library.
|
468
|
+
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
|
469
|
+
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
470
|
+
* X and B can be either dense or sparse.
|
471
|
+
*
|
472
|
+
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
473
|
+
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
474
|
+
* or Upper. Default is Lower.
|
475
|
+
*
|
476
|
+
* \implsparsesolverconcept
|
477
|
+
*
|
478
|
+
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
479
|
+
*
|
480
|
+
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
481
|
+
*
|
482
|
+
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
|
483
|
+
*/
|
484
|
+
template<typename _MatrixType, int _UpLo = Lower>
|
485
|
+
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
|
486
|
+
{
|
487
|
+
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
|
488
|
+
using Base::m_cholmod;
|
489
|
+
|
490
|
+
public:
|
491
|
+
|
492
|
+
typedef _MatrixType MatrixType;
|
493
|
+
|
494
|
+
CholmodSimplicialLDLT() : Base() { init(); }
|
495
|
+
|
496
|
+
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
|
497
|
+
{
|
498
|
+
init();
|
499
|
+
this->compute(matrix);
|
500
|
+
}
|
501
|
+
|
502
|
+
~CholmodSimplicialLDLT() {}
|
503
|
+
protected:
|
504
|
+
void init()
|
505
|
+
{
|
506
|
+
m_cholmod.final_asis = 1;
|
507
|
+
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
508
|
+
}
|
509
|
+
};
|
510
|
+
|
511
|
+
/** \ingroup CholmodSupport_Module
|
512
|
+
* \class CholmodSupernodalLLT
|
513
|
+
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
|
514
|
+
*
|
515
|
+
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
|
516
|
+
* using the Cholmod library.
|
517
|
+
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
|
518
|
+
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
519
|
+
* X and B can be either dense or sparse.
|
520
|
+
*
|
521
|
+
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
522
|
+
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
523
|
+
* or Upper. Default is Lower.
|
524
|
+
*
|
525
|
+
* \implsparsesolverconcept
|
526
|
+
*
|
527
|
+
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
528
|
+
*
|
529
|
+
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
530
|
+
*
|
531
|
+
* \sa \ref TutorialSparseSolverConcept
|
532
|
+
*/
|
533
|
+
template<typename _MatrixType, int _UpLo = Lower>
|
534
|
+
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
|
535
|
+
{
|
536
|
+
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
|
537
|
+
using Base::m_cholmod;
|
538
|
+
|
539
|
+
public:
|
540
|
+
|
541
|
+
typedef _MatrixType MatrixType;
|
542
|
+
|
543
|
+
CholmodSupernodalLLT() : Base() { init(); }
|
544
|
+
|
545
|
+
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
|
546
|
+
{
|
547
|
+
init();
|
548
|
+
this->compute(matrix);
|
549
|
+
}
|
550
|
+
|
551
|
+
~CholmodSupernodalLLT() {}
|
552
|
+
protected:
|
553
|
+
void init()
|
554
|
+
{
|
555
|
+
m_cholmod.final_asis = 1;
|
556
|
+
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
557
|
+
}
|
558
|
+
};
|
559
|
+
|
560
|
+
/** \ingroup CholmodSupport_Module
|
561
|
+
* \class CholmodDecomposition
|
562
|
+
* \brief A general Cholesky factorization and solver based on Cholmod
|
563
|
+
*
|
564
|
+
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
|
565
|
+
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
566
|
+
* X and B can be either dense or sparse.
|
567
|
+
*
|
568
|
+
* This variant permits to change the underlying Cholesky method at runtime.
|
569
|
+
* On the other hand, it does not provide access to the result of the factorization.
|
570
|
+
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
|
571
|
+
*
|
572
|
+
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
573
|
+
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
574
|
+
* or Upper. Default is Lower.
|
575
|
+
*
|
576
|
+
* \implsparsesolverconcept
|
577
|
+
*
|
578
|
+
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
|
579
|
+
*
|
580
|
+
* \warning Only double precision real and complex scalar types are supported by Cholmod.
|
581
|
+
*
|
582
|
+
* \sa \ref TutorialSparseSolverConcept
|
583
|
+
*/
|
584
|
+
template<typename _MatrixType, int _UpLo = Lower>
|
585
|
+
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
|
586
|
+
{
|
587
|
+
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
|
588
|
+
using Base::m_cholmod;
|
589
|
+
|
590
|
+
public:
|
591
|
+
|
592
|
+
typedef _MatrixType MatrixType;
|
593
|
+
|
594
|
+
CholmodDecomposition() : Base() { init(); }
|
595
|
+
|
596
|
+
CholmodDecomposition(const MatrixType& matrix) : Base()
|
597
|
+
{
|
598
|
+
init();
|
599
|
+
this->compute(matrix);
|
600
|
+
}
|
601
|
+
|
602
|
+
~CholmodDecomposition() {}
|
603
|
+
|
604
|
+
void setMode(CholmodMode mode)
|
605
|
+
{
|
606
|
+
switch(mode)
|
607
|
+
{
|
608
|
+
case CholmodAuto:
|
609
|
+
m_cholmod.final_asis = 1;
|
610
|
+
m_cholmod.supernodal = CHOLMOD_AUTO;
|
611
|
+
break;
|
612
|
+
case CholmodSimplicialLLt:
|
613
|
+
m_cholmod.final_asis = 0;
|
614
|
+
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
615
|
+
m_cholmod.final_ll = 1;
|
616
|
+
break;
|
617
|
+
case CholmodSupernodalLLt:
|
618
|
+
m_cholmod.final_asis = 1;
|
619
|
+
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
620
|
+
break;
|
621
|
+
case CholmodLDLt:
|
622
|
+
m_cholmod.final_asis = 1;
|
623
|
+
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
624
|
+
break;
|
625
|
+
default:
|
626
|
+
break;
|
627
|
+
}
|
628
|
+
}
|
629
|
+
protected:
|
630
|
+
void init()
|
631
|
+
{
|
632
|
+
m_cholmod.final_asis = 1;
|
633
|
+
m_cholmod.supernodal = CHOLMOD_AUTO;
|
634
|
+
}
|
635
|
+
};
|
636
|
+
|
637
|
+
} // end namespace Eigen
|
638
|
+
|
639
|
+
#endif // EIGEN_CHOLMODSUPPORT_H
|