tomoto 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (420) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +123 -0
  5. data/ext/tomoto/ext.cpp +245 -0
  6. data/ext/tomoto/extconf.rb +28 -0
  7. data/lib/tomoto.rb +12 -0
  8. data/lib/tomoto/ct.rb +11 -0
  9. data/lib/tomoto/hdp.rb +11 -0
  10. data/lib/tomoto/lda.rb +67 -0
  11. data/lib/tomoto/version.rb +3 -0
  12. data/vendor/EigenRand/EigenRand/Core.h +1139 -0
  13. data/vendor/EigenRand/EigenRand/Dists/Basic.h +111 -0
  14. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +877 -0
  15. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +108 -0
  16. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +626 -0
  17. data/vendor/EigenRand/EigenRand/EigenRand +19 -0
  18. data/vendor/EigenRand/EigenRand/Macro.h +24 -0
  19. data/vendor/EigenRand/EigenRand/MorePacketMath.h +978 -0
  20. data/vendor/EigenRand/EigenRand/PacketFilter.h +286 -0
  21. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +624 -0
  22. data/vendor/EigenRand/EigenRand/RandUtils.h +413 -0
  23. data/vendor/EigenRand/EigenRand/doc.h +220 -0
  24. data/vendor/EigenRand/LICENSE +21 -0
  25. data/vendor/EigenRand/README.md +288 -0
  26. data/vendor/eigen/COPYING.BSD +26 -0
  27. data/vendor/eigen/COPYING.GPL +674 -0
  28. data/vendor/eigen/COPYING.LGPL +502 -0
  29. data/vendor/eigen/COPYING.MINPACK +52 -0
  30. data/vendor/eigen/COPYING.MPL2 +373 -0
  31. data/vendor/eigen/COPYING.README +18 -0
  32. data/vendor/eigen/Eigen/CMakeLists.txt +19 -0
  33. data/vendor/eigen/Eigen/Cholesky +46 -0
  34. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  35. data/vendor/eigen/Eigen/Core +537 -0
  36. data/vendor/eigen/Eigen/Dense +7 -0
  37. data/vendor/eigen/Eigen/Eigen +2 -0
  38. data/vendor/eigen/Eigen/Eigenvalues +61 -0
  39. data/vendor/eigen/Eigen/Geometry +62 -0
  40. data/vendor/eigen/Eigen/Householder +30 -0
  41. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  42. data/vendor/eigen/Eigen/Jacobi +33 -0
  43. data/vendor/eigen/Eigen/LU +50 -0
  44. data/vendor/eigen/Eigen/MetisSupport +35 -0
  45. data/vendor/eigen/Eigen/OrderingMethods +73 -0
  46. data/vendor/eigen/Eigen/PaStiXSupport +48 -0
  47. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  48. data/vendor/eigen/Eigen/QR +51 -0
  49. data/vendor/eigen/Eigen/QtAlignedMalloc +40 -0
  50. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  51. data/vendor/eigen/Eigen/SVD +51 -0
  52. data/vendor/eigen/Eigen/Sparse +36 -0
  53. data/vendor/eigen/Eigen/SparseCholesky +45 -0
  54. data/vendor/eigen/Eigen/SparseCore +69 -0
  55. data/vendor/eigen/Eigen/SparseLU +46 -0
  56. data/vendor/eigen/Eigen/SparseQR +37 -0
  57. data/vendor/eigen/Eigen/StdDeque +27 -0
  58. data/vendor/eigen/Eigen/StdList +26 -0
  59. data/vendor/eigen/Eigen/StdVector +27 -0
  60. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  61. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  62. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +673 -0
  63. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +542 -0
  64. data/vendor/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
  65. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +639 -0
  66. data/vendor/eigen/Eigen/src/Core/Array.h +329 -0
  67. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +226 -0
  68. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +209 -0
  69. data/vendor/eigen/Eigen/src/Core/Assign.h +90 -0
  70. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +935 -0
  71. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +178 -0
  72. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +353 -0
  73. data/vendor/eigen/Eigen/src/Core/Block.h +452 -0
  74. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +164 -0
  75. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +160 -0
  76. data/vendor/eigen/Eigen/src/Core/ConditionEstimator.h +175 -0
  77. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +1688 -0
  78. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +127 -0
  79. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +184 -0
  80. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +866 -0
  81. data/vendor/eigen/Eigen/src/Core/CwiseTernaryOp.h +197 -0
  82. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +103 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +128 -0
  84. data/vendor/eigen/Eigen/src/Core/DenseBase.h +611 -0
  85. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +681 -0
  86. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +570 -0
  87. data/vendor/eigen/Eigen/src/Core/Diagonal.h +260 -0
  88. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +343 -0
  89. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +28 -0
  90. data/vendor/eigen/Eigen/src/Core/Dot.h +318 -0
  91. data/vendor/eigen/Eigen/src/Core/EigenBase.h +159 -0
  92. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +146 -0
  93. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +155 -0
  94. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +455 -0
  95. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +593 -0
  96. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +187 -0
  97. data/vendor/eigen/Eigen/src/Core/IO.h +225 -0
  98. data/vendor/eigen/Eigen/src/Core/Inverse.h +118 -0
  99. data/vendor/eigen/Eigen/src/Core/Map.h +171 -0
  100. data/vendor/eigen/Eigen/src/Core/MapBase.h +303 -0
  101. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +1415 -0
  102. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +101 -0
  103. data/vendor/eigen/Eigen/src/Core/Matrix.h +459 -0
  104. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +529 -0
  105. data/vendor/eigen/Eigen/src/Core/NestByValue.h +110 -0
  106. data/vendor/eigen/Eigen/src/Core/NoAlias.h +108 -0
  107. data/vendor/eigen/Eigen/src/Core/NumTraits.h +248 -0
  108. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +633 -0
  109. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +1035 -0
  110. data/vendor/eigen/Eigen/src/Core/Product.h +186 -0
  111. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +1112 -0
  112. data/vendor/eigen/Eigen/src/Core/Random.h +182 -0
  113. data/vendor/eigen/Eigen/src/Core/Redux.h +505 -0
  114. data/vendor/eigen/Eigen/src/Core/Ref.h +283 -0
  115. data/vendor/eigen/Eigen/src/Core/Replicate.h +142 -0
  116. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +117 -0
  117. data/vendor/eigen/Eigen/src/Core/Reverse.h +211 -0
  118. data/vendor/eigen/Eigen/src/Core/Select.h +162 -0
  119. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +352 -0
  120. data/vendor/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
  121. data/vendor/eigen/Eigen/src/Core/Solve.h +188 -0
  122. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +235 -0
  123. data/vendor/eigen/Eigen/src/Core/SolverBase.h +130 -0
  124. data/vendor/eigen/Eigen/src/Core/StableNorm.h +221 -0
  125. data/vendor/eigen/Eigen/src/Core/Stride.h +111 -0
  126. data/vendor/eigen/Eigen/src/Core/Swap.h +67 -0
  127. data/vendor/eigen/Eigen/src/Core/Transpose.h +403 -0
  128. data/vendor/eigen/Eigen/src/Core/Transpositions.h +407 -0
  129. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +983 -0
  130. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +96 -0
  131. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +695 -0
  132. data/vendor/eigen/Eigen/src/Core/Visitor.h +273 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +451 -0
  134. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +439 -0
  135. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +637 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +51 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +391 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1316 -0
  139. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +430 -0
  140. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +322 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +1061 -0
  142. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +103 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +674 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +91 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +333 -0
  146. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +1124 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +212 -0
  148. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +29 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +49 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +490 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +91 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +760 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +471 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +562 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +895 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +77 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +397 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +137 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +945 -0
  160. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +168 -0
  161. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +475 -0
  162. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +188 -0
  163. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +136 -0
  164. data/vendor/eigen/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
  165. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +792 -0
  166. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2156 -0
  167. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +492 -0
  168. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +311 -0
  169. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
  170. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +122 -0
  171. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +619 -0
  172. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
  173. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +163 -0
  174. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +521 -0
  175. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +287 -0
  176. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +260 -0
  177. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
  178. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
  179. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +93 -0
  180. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +466 -0
  181. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +315 -0
  182. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
  183. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
  184. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +335 -0
  185. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +163 -0
  186. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +145 -0
  187. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +398 -0
  188. data/vendor/eigen/Eigen/src/Core/util/Constants.h +547 -0
  189. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +83 -0
  190. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +302 -0
  191. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +130 -0
  192. data/vendor/eigen/Eigen/src/Core/util/Macros.h +1001 -0
  193. data/vendor/eigen/Eigen/src/Core/util/Memory.h +993 -0
  194. data/vendor/eigen/Eigen/src/Core/util/Meta.h +534 -0
  195. data/vendor/eigen/Eigen/src/Core/util/NonMPL2.h +3 -0
  196. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +27 -0
  197. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +218 -0
  198. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +821 -0
  199. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
  200. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +459 -0
  201. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
  202. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
  203. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
  204. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
  205. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
  206. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
  207. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +654 -0
  208. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +546 -0
  209. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
  210. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +870 -0
  211. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
  212. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +556 -0
  213. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +392 -0
  214. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +247 -0
  215. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +114 -0
  216. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +497 -0
  217. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +282 -0
  218. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +234 -0
  219. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +195 -0
  220. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +814 -0
  221. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +199 -0
  222. data/vendor/eigen/Eigen/src/Geometry/RotationBase.h +206 -0
  223. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +170 -0
  224. data/vendor/eigen/Eigen/src/Geometry/Transform.h +1542 -0
  225. data/vendor/eigen/Eigen/src/Geometry/Translation.h +208 -0
  226. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +166 -0
  227. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +161 -0
  228. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +103 -0
  229. data/vendor/eigen/Eigen/src/Householder/Householder.h +172 -0
  230. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +470 -0
  231. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
  232. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +228 -0
  233. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +246 -0
  234. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +400 -0
  235. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +462 -0
  236. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +394 -0
  237. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +216 -0
  238. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +115 -0
  239. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +462 -0
  240. data/vendor/eigen/Eigen/src/LU/Determinant.h +101 -0
  241. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +891 -0
  242. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +415 -0
  243. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +611 -0
  244. data/vendor/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
  245. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +338 -0
  246. data/vendor/eigen/Eigen/src/MetisSupport/MetisSupport.h +137 -0
  247. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +445 -0
  248. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +1843 -0
  249. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +157 -0
  250. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
  251. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +543 -0
  252. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +653 -0
  253. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
  254. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +562 -0
  255. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +676 -0
  256. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +409 -0
  257. data/vendor/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
  258. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +313 -0
  259. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +1246 -0
  260. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +804 -0
  261. data/vendor/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
  262. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +315 -0
  263. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
  264. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +689 -0
  265. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +199 -0
  266. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +377 -0
  267. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +258 -0
  268. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
  269. data/vendor/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
  270. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +216 -0
  271. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +603 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/SparseColEtree.h +206 -0
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +341 -0
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +726 -0
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +148 -0
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +320 -0
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDot.h +98 -0
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMap.h +305 -0
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +1403 -0
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +405 -0
  283. data/vendor/eigen/Eigen/src/SparseCore/SparsePermutation.h +178 -0
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +169 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseRedux.h +49 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +397 -0
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +656 -0
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseTranspose.h +92 -0
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +178 -0
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +478 -0
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +253 -0
  295. data/vendor/eigen/Eigen/src/SparseCore/TriangularSolver.h +315 -0
  296. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +773 -0
  297. data/vendor/eigen/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
  298. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
  299. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
  300. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +301 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
  307. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
  308. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
  309. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
  310. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
  311. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
  312. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
  313. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +745 -0
  314. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +126 -0
  315. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +106 -0
  316. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +131 -0
  317. data/vendor/eigen/Eigen/src/StlSupport/details.h +84 -0
  318. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +1027 -0
  319. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +506 -0
  320. data/vendor/eigen/Eigen/src/misc/Image.h +82 -0
  321. data/vendor/eigen/Eigen/src/misc/Kernel.h +79 -0
  322. data/vendor/eigen/Eigen/src/misc/RealSvd2x2.h +55 -0
  323. data/vendor/eigen/Eigen/src/misc/blas.h +440 -0
  324. data/vendor/eigen/Eigen/src/misc/lapack.h +152 -0
  325. data/vendor/eigen/Eigen/src/misc/lapacke.h +16291 -0
  326. data/vendor/eigen/Eigen/src/misc/lapacke_mangling.h +17 -0
  327. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +332 -0
  328. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +552 -0
  329. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +1058 -0
  330. data/vendor/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
  331. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +163 -0
  332. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
  333. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +85 -0
  334. data/vendor/eigen/README.md +3 -0
  335. data/vendor/eigen/bench/README.txt +55 -0
  336. data/vendor/eigen/bench/btl/COPYING +340 -0
  337. data/vendor/eigen/bench/btl/README +154 -0
  338. data/vendor/eigen/bench/tensors/README +21 -0
  339. data/vendor/eigen/blas/README.txt +6 -0
  340. data/vendor/eigen/demos/mandelbrot/README +10 -0
  341. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  342. data/vendor/eigen/demos/opengl/README +13 -0
  343. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1760 -0
  344. data/vendor/eigen/unsupported/README.txt +50 -0
  345. data/vendor/tomotopy/LICENSE +21 -0
  346. data/vendor/tomotopy/README.kr.rst +375 -0
  347. data/vendor/tomotopy/README.rst +382 -0
  348. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +362 -0
  349. data/vendor/tomotopy/src/Labeling/FoRelevance.h +88 -0
  350. data/vendor/tomotopy/src/Labeling/Labeler.h +50 -0
  351. data/vendor/tomotopy/src/TopicModel/CT.h +37 -0
  352. data/vendor/tomotopy/src/TopicModel/CTModel.cpp +13 -0
  353. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +293 -0
  354. data/vendor/tomotopy/src/TopicModel/DMR.h +51 -0
  355. data/vendor/tomotopy/src/TopicModel/DMRModel.cpp +13 -0
  356. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +374 -0
  357. data/vendor/tomotopy/src/TopicModel/DT.h +65 -0
  358. data/vendor/tomotopy/src/TopicModel/DTM.h +22 -0
  359. data/vendor/tomotopy/src/TopicModel/DTModel.cpp +15 -0
  360. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +572 -0
  361. data/vendor/tomotopy/src/TopicModel/GDMR.h +37 -0
  362. data/vendor/tomotopy/src/TopicModel/GDMRModel.cpp +14 -0
  363. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +485 -0
  364. data/vendor/tomotopy/src/TopicModel/HDP.h +74 -0
  365. data/vendor/tomotopy/src/TopicModel/HDPModel.cpp +13 -0
  366. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +592 -0
  367. data/vendor/tomotopy/src/TopicModel/HLDA.h +40 -0
  368. data/vendor/tomotopy/src/TopicModel/HLDAModel.cpp +13 -0
  369. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +681 -0
  370. data/vendor/tomotopy/src/TopicModel/HPA.h +27 -0
  371. data/vendor/tomotopy/src/TopicModel/HPAModel.cpp +21 -0
  372. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +588 -0
  373. data/vendor/tomotopy/src/TopicModel/LDA.h +144 -0
  374. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +442 -0
  375. data/vendor/tomotopy/src/TopicModel/LDAModel.cpp +13 -0
  376. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +1058 -0
  377. data/vendor/tomotopy/src/TopicModel/LLDA.h +45 -0
  378. data/vendor/tomotopy/src/TopicModel/LLDAModel.cpp +13 -0
  379. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +203 -0
  380. data/vendor/tomotopy/src/TopicModel/MGLDA.h +63 -0
  381. data/vendor/tomotopy/src/TopicModel/MGLDAModel.cpp +17 -0
  382. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +558 -0
  383. data/vendor/tomotopy/src/TopicModel/PA.h +43 -0
  384. data/vendor/tomotopy/src/TopicModel/PAModel.cpp +13 -0
  385. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +467 -0
  386. data/vendor/tomotopy/src/TopicModel/PLDA.h +17 -0
  387. data/vendor/tomotopy/src/TopicModel/PLDAModel.cpp +13 -0
  388. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +214 -0
  389. data/vendor/tomotopy/src/TopicModel/SLDA.h +54 -0
  390. data/vendor/tomotopy/src/TopicModel/SLDAModel.cpp +17 -0
  391. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +456 -0
  392. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +692 -0
  393. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +169 -0
  394. data/vendor/tomotopy/src/Utils/Dictionary.h +80 -0
  395. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +181 -0
  396. data/vendor/tomotopy/src/Utils/LBFGS.h +202 -0
  397. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBacktracking.h +120 -0
  398. data/vendor/tomotopy/src/Utils/LBFGS/LineSearchBracketing.h +122 -0
  399. data/vendor/tomotopy/src/Utils/LBFGS/Param.h +213 -0
  400. data/vendor/tomotopy/src/Utils/LUT.hpp +82 -0
  401. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +69 -0
  402. data/vendor/tomotopy/src/Utils/PolyaGamma.hpp +200 -0
  403. data/vendor/tomotopy/src/Utils/PolyaGammaHybrid.hpp +672 -0
  404. data/vendor/tomotopy/src/Utils/ThreadPool.hpp +150 -0
  405. data/vendor/tomotopy/src/Utils/Trie.hpp +220 -0
  406. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +94 -0
  407. data/vendor/tomotopy/src/Utils/Utils.hpp +337 -0
  408. data/vendor/tomotopy/src/Utils/avx_gamma.h +46 -0
  409. data/vendor/tomotopy/src/Utils/avx_mathfun.h +736 -0
  410. data/vendor/tomotopy/src/Utils/exception.h +28 -0
  411. data/vendor/tomotopy/src/Utils/math.h +281 -0
  412. data/vendor/tomotopy/src/Utils/rtnorm.hpp +2690 -0
  413. data/vendor/tomotopy/src/Utils/sample.hpp +192 -0
  414. data/vendor/tomotopy/src/Utils/serializer.hpp +695 -0
  415. data/vendor/tomotopy/src/Utils/slp.hpp +131 -0
  416. data/vendor/tomotopy/src/Utils/sse_gamma.h +48 -0
  417. data/vendor/tomotopy/src/Utils/sse_mathfun.h +710 -0
  418. data/vendor/tomotopy/src/Utils/text.hpp +49 -0
  419. data/vendor/tomotopy/src/Utils/tvector.hpp +543 -0
  420. metadata +531 -0
@@ -0,0 +1,99 @@
1
+ /*
2
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without modification,
5
+ are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+ * Redistributions in binary form must reproduce the above copyright notice,
10
+ this list of conditions and the following disclaimer in the documentation
11
+ and/or other materials provided with the distribution.
12
+ * Neither the name of Intel Corporation nor the names of its contributors may
13
+ be used to endorse or promote products derived from this software without
14
+ specific prior written permission.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
+
27
+ ********************************************************************************
28
+ * Content : Eigen bindings to LAPACKe
29
+ * LLt decomposition based on LAPACKE_?potrf function.
30
+ ********************************************************************************
31
+ */
32
+
33
+ #ifndef EIGEN_LLT_LAPACKE_H
34
+ #define EIGEN_LLT_LAPACKE_H
35
+
36
+ namespace Eigen {
37
+
38
+ namespace internal {
39
+
40
+ template<typename Scalar> struct lapacke_llt;
41
+
42
+ #define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \
43
+ template<> struct lapacke_llt<EIGTYPE> \
44
+ { \
45
+ template<typename MatrixType> \
46
+ static inline Index potrf(MatrixType& m, char uplo) \
47
+ { \
48
+ lapack_int matrix_order; \
49
+ lapack_int size, lda, info, StorageOrder; \
50
+ EIGTYPE* a; \
51
+ eigen_assert(m.rows()==m.cols()); \
52
+ /* Set up parameters for ?potrf */ \
53
+ size = convert_index<lapack_int>(m.rows()); \
54
+ StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
55
+ matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
56
+ a = &(m.coeffRef(0,0)); \
57
+ lda = convert_index<lapack_int>(m.outerStride()); \
58
+ \
59
+ info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \
60
+ info = (info==0) ? -1 : info>0 ? info-1 : size; \
61
+ return info; \
62
+ } \
63
+ }; \
64
+ template<> struct llt_inplace<EIGTYPE, Lower> \
65
+ { \
66
+ template<typename MatrixType> \
67
+ static Index blocked(MatrixType& m) \
68
+ { \
69
+ return lapacke_llt<EIGTYPE>::potrf(m, 'L'); \
70
+ } \
71
+ template<typename MatrixType, typename VectorType> \
72
+ static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
73
+ { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
74
+ }; \
75
+ template<> struct llt_inplace<EIGTYPE, Upper> \
76
+ { \
77
+ template<typename MatrixType> \
78
+ static Index blocked(MatrixType& m) \
79
+ { \
80
+ return lapacke_llt<EIGTYPE>::potrf(m, 'U'); \
81
+ } \
82
+ template<typename MatrixType, typename VectorType> \
83
+ static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
84
+ { \
85
+ Transpose<MatrixType> matt(mat); \
86
+ return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
87
+ } \
88
+ };
89
+
90
+ EIGEN_LAPACKE_LLT(double, double, d)
91
+ EIGEN_LAPACKE_LLT(float, float, s)
92
+ EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z)
93
+ EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c)
94
+
95
+ } // end namespace internal
96
+
97
+ } // end namespace Eigen
98
+
99
+ #endif // EIGEN_LLT_LAPACKE_H
@@ -0,0 +1,639 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_CHOLMODSUPPORT_H
11
+ #define EIGEN_CHOLMODSUPPORT_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+ template<typename Scalar> struct cholmod_configure_matrix;
18
+
19
+ template<> struct cholmod_configure_matrix<double> {
20
+ template<typename CholmodType>
21
+ static void run(CholmodType& mat) {
22
+ mat.xtype = CHOLMOD_REAL;
23
+ mat.dtype = CHOLMOD_DOUBLE;
24
+ }
25
+ };
26
+
27
+ template<> struct cholmod_configure_matrix<std::complex<double> > {
28
+ template<typename CholmodType>
29
+ static void run(CholmodType& mat) {
30
+ mat.xtype = CHOLMOD_COMPLEX;
31
+ mat.dtype = CHOLMOD_DOUBLE;
32
+ }
33
+ };
34
+
35
+ // Other scalar types are not yet suppotred by Cholmod
36
+ // template<> struct cholmod_configure_matrix<float> {
37
+ // template<typename CholmodType>
38
+ // static void run(CholmodType& mat) {
39
+ // mat.xtype = CHOLMOD_REAL;
40
+ // mat.dtype = CHOLMOD_SINGLE;
41
+ // }
42
+ // };
43
+ //
44
+ // template<> struct cholmod_configure_matrix<std::complex<float> > {
45
+ // template<typename CholmodType>
46
+ // static void run(CholmodType& mat) {
47
+ // mat.xtype = CHOLMOD_COMPLEX;
48
+ // mat.dtype = CHOLMOD_SINGLE;
49
+ // }
50
+ // };
51
+
52
+ } // namespace internal
53
+
54
+ /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
55
+ * Note that the data are shared.
56
+ */
57
+ template<typename _Scalar, int _Options, typename _StorageIndex>
58
+ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
59
+ {
60
+ cholmod_sparse res;
61
+ res.nzmax = mat.nonZeros();
62
+ res.nrow = mat.rows();
63
+ res.ncol = mat.cols();
64
+ res.p = mat.outerIndexPtr();
65
+ res.i = mat.innerIndexPtr();
66
+ res.x = mat.valuePtr();
67
+ res.z = 0;
68
+ res.sorted = 1;
69
+ if(mat.isCompressed())
70
+ {
71
+ res.packed = 1;
72
+ res.nz = 0;
73
+ }
74
+ else
75
+ {
76
+ res.packed = 0;
77
+ res.nz = mat.innerNonZeroPtr();
78
+ }
79
+
80
+ res.dtype = 0;
81
+ res.stype = -1;
82
+
83
+ if (internal::is_same<_StorageIndex,int>::value)
84
+ {
85
+ res.itype = CHOLMOD_INT;
86
+ }
87
+ else if (internal::is_same<_StorageIndex,long>::value)
88
+ {
89
+ res.itype = CHOLMOD_LONG;
90
+ }
91
+ else
92
+ {
93
+ eigen_assert(false && "Index type not supported yet");
94
+ }
95
+
96
+ // setup res.xtype
97
+ internal::cholmod_configure_matrix<_Scalar>::run(res);
98
+
99
+ res.stype = 0;
100
+
101
+ return res;
102
+ }
103
+
104
+ template<typename _Scalar, int _Options, typename _Index>
105
+ const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
106
+ {
107
+ cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
108
+ return res;
109
+ }
110
+
111
+ template<typename _Scalar, int _Options, typename _Index>
112
+ const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
113
+ {
114
+ cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
115
+ return res;
116
+ }
117
+
118
+ /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
119
+ * The data are not copied but shared. */
120
+ template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
121
+ cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
122
+ {
123
+ cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
124
+
125
+ if(UpLo==Upper) res.stype = 1;
126
+ if(UpLo==Lower) res.stype = -1;
127
+
128
+ return res;
129
+ }
130
+
131
+ /** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
132
+ * The data are not copied but shared. */
133
+ template<typename Derived>
134
+ cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
135
+ {
136
+ EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
137
+ typedef typename Derived::Scalar Scalar;
138
+
139
+ cholmod_dense res;
140
+ res.nrow = mat.rows();
141
+ res.ncol = mat.cols();
142
+ res.nzmax = res.nrow * res.ncol;
143
+ res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
144
+ res.x = (void*)(mat.derived().data());
145
+ res.z = 0;
146
+
147
+ internal::cholmod_configure_matrix<Scalar>::run(res);
148
+
149
+ return res;
150
+ }
151
+
152
+ /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
153
+ * The data are not copied but shared. */
154
+ template<typename Scalar, int Flags, typename StorageIndex>
155
+ MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
156
+ {
157
+ return MappedSparseMatrix<Scalar,Flags,StorageIndex>
158
+ (cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
159
+ static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
160
+ }
161
+
162
+ enum CholmodMode {
163
+ CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
164
+ };
165
+
166
+
167
+ /** \ingroup CholmodSupport_Module
168
+ * \class CholmodBase
169
+ * \brief The base class for the direct Cholesky factorization of Cholmod
170
+ * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
171
+ */
172
+ template<typename _MatrixType, int _UpLo, typename Derived>
173
+ class CholmodBase : public SparseSolverBase<Derived>
174
+ {
175
+ protected:
176
+ typedef SparseSolverBase<Derived> Base;
177
+ using Base::derived;
178
+ using Base::m_isInitialized;
179
+ public:
180
+ typedef _MatrixType MatrixType;
181
+ enum { UpLo = _UpLo };
182
+ typedef typename MatrixType::Scalar Scalar;
183
+ typedef typename MatrixType::RealScalar RealScalar;
184
+ typedef MatrixType CholMatrixType;
185
+ typedef typename MatrixType::StorageIndex StorageIndex;
186
+ enum {
187
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
188
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
189
+ };
190
+
191
+ public:
192
+
193
+ CholmodBase()
194
+ : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
195
+ {
196
+ EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
197
+ m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
198
+ cholmod_start(&m_cholmod);
199
+ }
200
+
201
+ explicit CholmodBase(const MatrixType& matrix)
202
+ : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
203
+ {
204
+ EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
205
+ m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
206
+ cholmod_start(&m_cholmod);
207
+ compute(matrix);
208
+ }
209
+
210
+ ~CholmodBase()
211
+ {
212
+ if(m_cholmodFactor)
213
+ cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
214
+ cholmod_finish(&m_cholmod);
215
+ }
216
+
217
+ inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
218
+ inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
219
+
220
+ /** \brief Reports whether previous computation was successful.
221
+ *
222
+ * \returns \c Success if computation was succesful,
223
+ * \c NumericalIssue if the matrix.appears to be negative.
224
+ */
225
+ ComputationInfo info() const
226
+ {
227
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
228
+ return m_info;
229
+ }
230
+
231
+ /** Computes the sparse Cholesky decomposition of \a matrix */
232
+ Derived& compute(const MatrixType& matrix)
233
+ {
234
+ analyzePattern(matrix);
235
+ factorize(matrix);
236
+ return derived();
237
+ }
238
+
239
+ /** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
240
+ *
241
+ * This function is particularly useful when solving for several problems having the same structure.
242
+ *
243
+ * \sa factorize()
244
+ */
245
+ void analyzePattern(const MatrixType& matrix)
246
+ {
247
+ if(m_cholmodFactor)
248
+ {
249
+ cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
250
+ m_cholmodFactor = 0;
251
+ }
252
+ cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
253
+ m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
254
+
255
+ this->m_isInitialized = true;
256
+ this->m_info = Success;
257
+ m_analysisIsOk = true;
258
+ m_factorizationIsOk = false;
259
+ }
260
+
261
+ /** Performs a numeric decomposition of \a matrix
262
+ *
263
+ * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
264
+ *
265
+ * \sa analyzePattern()
266
+ */
267
+ void factorize(const MatrixType& matrix)
268
+ {
269
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
270
+ cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
271
+ cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
272
+
273
+ // If the factorization failed, minor is the column at which it did. On success minor == n.
274
+ this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
275
+ m_factorizationIsOk = true;
276
+ }
277
+
278
+ /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
279
+ * See the Cholmod user guide for details. */
280
+ cholmod_common& cholmod() { return m_cholmod; }
281
+
282
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
283
+ /** \internal */
284
+ template<typename Rhs,typename Dest>
285
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
286
+ {
287
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
288
+ const Index size = m_cholmodFactor->n;
289
+ EIGEN_UNUSED_VARIABLE(size);
290
+ eigen_assert(size==b.rows());
291
+
292
+ // Cholmod needs column-major stoarge without inner-stride, which corresponds to the default behavior of Ref.
293
+ Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
294
+
295
+ cholmod_dense b_cd = viewAsCholmod(b_ref);
296
+ cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
297
+ if(!x_cd)
298
+ {
299
+ this->m_info = NumericalIssue;
300
+ return;
301
+ }
302
+ // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
303
+ dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
304
+ cholmod_free_dense(&x_cd, &m_cholmod);
305
+ }
306
+
307
+ /** \internal */
308
+ template<typename RhsDerived, typename DestDerived>
309
+ void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
310
+ {
311
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
312
+ const Index size = m_cholmodFactor->n;
313
+ EIGEN_UNUSED_VARIABLE(size);
314
+ eigen_assert(size==b.rows());
315
+
316
+ // note: cs stands for Cholmod Sparse
317
+ Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
318
+ cholmod_sparse b_cs = viewAsCholmod(b_ref);
319
+ cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
320
+ if(!x_cs)
321
+ {
322
+ this->m_info = NumericalIssue;
323
+ return;
324
+ }
325
+ // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
326
+ dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
327
+ cholmod_free_sparse(&x_cs, &m_cholmod);
328
+ }
329
+ #endif // EIGEN_PARSED_BY_DOXYGEN
330
+
331
+
332
+ /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
333
+ *
334
+ * During the numerical factorization, an offset term is added to the diagonal coefficients:\n
335
+ * \c d_ii = \a offset + \c d_ii
336
+ *
337
+ * The default is \a offset=0.
338
+ *
339
+ * \returns a reference to \c *this.
340
+ */
341
+ Derived& setShift(const RealScalar& offset)
342
+ {
343
+ m_shiftOffset[0] = double(offset);
344
+ return derived();
345
+ }
346
+
347
+ /** \returns the determinant of the underlying matrix from the current factorization */
348
+ Scalar determinant() const
349
+ {
350
+ using std::exp;
351
+ return exp(logDeterminant());
352
+ }
353
+
354
+ /** \returns the log determinant of the underlying matrix from the current factorization */
355
+ Scalar logDeterminant() const
356
+ {
357
+ using std::log;
358
+ using numext::real;
359
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
360
+
361
+ RealScalar logDet = 0;
362
+ Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
363
+ if (m_cholmodFactor->is_super)
364
+ {
365
+ // Supernodal factorization stored as a packed list of dense column-major blocs,
366
+ // as described by the following structure:
367
+
368
+ // super[k] == index of the first column of the j-th super node
369
+ StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
370
+ // pi[k] == offset to the description of row indices
371
+ StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
372
+ // px[k] == offset to the respective dense block
373
+ StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
374
+
375
+ Index nb_super_nodes = m_cholmodFactor->nsuper;
376
+ for (Index k=0; k < nb_super_nodes; ++k)
377
+ {
378
+ StorageIndex ncols = super[k + 1] - super[k];
379
+ StorageIndex nrows = pi[k + 1] - pi[k];
380
+
381
+ Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
382
+ logDet += sk.real().log().sum();
383
+ }
384
+ }
385
+ else
386
+ {
387
+ // Simplicial factorization stored as standard CSC matrix.
388
+ StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
389
+ Index size = m_cholmodFactor->n;
390
+ for (Index k=0; k<size; ++k)
391
+ logDet += log(real( x[p[k]] ));
392
+ }
393
+ if (m_cholmodFactor->is_ll)
394
+ logDet *= 2.0;
395
+ return logDet;
396
+ };
397
+
398
+ template<typename Stream>
399
+ void dumpMemory(Stream& /*s*/)
400
+ {}
401
+
402
+ protected:
403
+ mutable cholmod_common m_cholmod;
404
+ cholmod_factor* m_cholmodFactor;
405
+ double m_shiftOffset[2];
406
+ mutable ComputationInfo m_info;
407
+ int m_factorizationIsOk;
408
+ int m_analysisIsOk;
409
+ };
410
+
411
+ /** \ingroup CholmodSupport_Module
412
+ * \class CholmodSimplicialLLT
413
+ * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
414
+ *
415
+ * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
416
+ * using the Cholmod library.
417
+ * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
418
+ * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
419
+ * X and B can be either dense or sparse.
420
+ *
421
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
422
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
423
+ * or Upper. Default is Lower.
424
+ *
425
+ * \implsparsesolverconcept
426
+ *
427
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
428
+ *
429
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
430
+ *
431
+ * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
432
+ */
433
+ template<typename _MatrixType, int _UpLo = Lower>
434
+ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
435
+ {
436
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
437
+ using Base::m_cholmod;
438
+
439
+ public:
440
+
441
+ typedef _MatrixType MatrixType;
442
+
443
+ CholmodSimplicialLLT() : Base() { init(); }
444
+
445
+ CholmodSimplicialLLT(const MatrixType& matrix) : Base()
446
+ {
447
+ init();
448
+ this->compute(matrix);
449
+ }
450
+
451
+ ~CholmodSimplicialLLT() {}
452
+ protected:
453
+ void init()
454
+ {
455
+ m_cholmod.final_asis = 0;
456
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
457
+ m_cholmod.final_ll = 1;
458
+ }
459
+ };
460
+
461
+
462
+ /** \ingroup CholmodSupport_Module
463
+ * \class CholmodSimplicialLDLT
464
+ * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
465
+ *
466
+ * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
467
+ * using the Cholmod library.
468
+ * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
469
+ * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
470
+ * X and B can be either dense or sparse.
471
+ *
472
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
473
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
474
+ * or Upper. Default is Lower.
475
+ *
476
+ * \implsparsesolverconcept
477
+ *
478
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
479
+ *
480
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
481
+ *
482
+ * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
483
+ */
484
+ template<typename _MatrixType, int _UpLo = Lower>
485
+ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
486
+ {
487
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
488
+ using Base::m_cholmod;
489
+
490
+ public:
491
+
492
+ typedef _MatrixType MatrixType;
493
+
494
+ CholmodSimplicialLDLT() : Base() { init(); }
495
+
496
+ CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
497
+ {
498
+ init();
499
+ this->compute(matrix);
500
+ }
501
+
502
+ ~CholmodSimplicialLDLT() {}
503
+ protected:
504
+ void init()
505
+ {
506
+ m_cholmod.final_asis = 1;
507
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
508
+ }
509
+ };
510
+
511
+ /** \ingroup CholmodSupport_Module
512
+ * \class CholmodSupernodalLLT
513
+ * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
514
+ *
515
+ * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
516
+ * using the Cholmod library.
517
+ * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
518
+ * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
519
+ * X and B can be either dense or sparse.
520
+ *
521
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
522
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
523
+ * or Upper. Default is Lower.
524
+ *
525
+ * \implsparsesolverconcept
526
+ *
527
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
528
+ *
529
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
530
+ *
531
+ * \sa \ref TutorialSparseSolverConcept
532
+ */
533
+ template<typename _MatrixType, int _UpLo = Lower>
534
+ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
535
+ {
536
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
537
+ using Base::m_cholmod;
538
+
539
+ public:
540
+
541
+ typedef _MatrixType MatrixType;
542
+
543
+ CholmodSupernodalLLT() : Base() { init(); }
544
+
545
+ CholmodSupernodalLLT(const MatrixType& matrix) : Base()
546
+ {
547
+ init();
548
+ this->compute(matrix);
549
+ }
550
+
551
+ ~CholmodSupernodalLLT() {}
552
+ protected:
553
+ void init()
554
+ {
555
+ m_cholmod.final_asis = 1;
556
+ m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
557
+ }
558
+ };
559
+
560
+ /** \ingroup CholmodSupport_Module
561
+ * \class CholmodDecomposition
562
+ * \brief A general Cholesky factorization and solver based on Cholmod
563
+ *
564
+ * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
565
+ * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
566
+ * X and B can be either dense or sparse.
567
+ *
568
+ * This variant permits to change the underlying Cholesky method at runtime.
569
+ * On the other hand, it does not provide access to the result of the factorization.
570
+ * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
571
+ *
572
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
573
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
574
+ * or Upper. Default is Lower.
575
+ *
576
+ * \implsparsesolverconcept
577
+ *
578
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
579
+ *
580
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
581
+ *
582
+ * \sa \ref TutorialSparseSolverConcept
583
+ */
584
+ template<typename _MatrixType, int _UpLo = Lower>
585
+ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
586
+ {
587
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
588
+ using Base::m_cholmod;
589
+
590
+ public:
591
+
592
+ typedef _MatrixType MatrixType;
593
+
594
+ CholmodDecomposition() : Base() { init(); }
595
+
596
+ CholmodDecomposition(const MatrixType& matrix) : Base()
597
+ {
598
+ init();
599
+ this->compute(matrix);
600
+ }
601
+
602
+ ~CholmodDecomposition() {}
603
+
604
+ void setMode(CholmodMode mode)
605
+ {
606
+ switch(mode)
607
+ {
608
+ case CholmodAuto:
609
+ m_cholmod.final_asis = 1;
610
+ m_cholmod.supernodal = CHOLMOD_AUTO;
611
+ break;
612
+ case CholmodSimplicialLLt:
613
+ m_cholmod.final_asis = 0;
614
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
615
+ m_cholmod.final_ll = 1;
616
+ break;
617
+ case CholmodSupernodalLLt:
618
+ m_cholmod.final_asis = 1;
619
+ m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
620
+ break;
621
+ case CholmodLDLt:
622
+ m_cholmod.final_asis = 1;
623
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
624
+ break;
625
+ default:
626
+ break;
627
+ }
628
+ }
629
+ protected:
630
+ void init()
631
+ {
632
+ m_cholmod.final_asis = 1;
633
+ m_cholmod.supernodal = CHOLMOD_AUTO;
634
+ }
635
+ };
636
+
637
+ } // end namespace Eigen
638
+
639
+ #endif // EIGEN_CHOLMODSUPPORT_H