diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1501 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
30
+
31
+ from diffusers.utils.import_utils import is_invisible_watermark_available
32
+
33
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
34
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
35
+ from ...loaders import (
36
+ FromSingleFileMixin,
37
+ IPAdapterMixin,
38
+ StableDiffusionXLLoraLoaderMixin,
39
+ TextualInversionLoaderMixin,
40
+ )
41
+ from ...models import AutoencoderKL, ControlNetModel, ControlNetUnionModel, ImageProjection, UNet2DConditionModel
42
+ from ...models.attention_processor import (
43
+ AttnProcessor2_0,
44
+ XFormersAttnProcessor,
45
+ )
46
+ from ...models.lora import adjust_lora_scale_text_encoder
47
+ from ...schedulers import KarrasDiffusionSchedulers
48
+ from ...utils import (
49
+ USE_PEFT_BACKEND,
50
+ logging,
51
+ replace_example_docstring,
52
+ scale_lora_layers,
53
+ unscale_lora_layers,
54
+ )
55
+ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
56
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
57
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
58
+
59
+
60
+ if is_invisible_watermark_available():
61
+ from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
62
+
63
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
64
+
65
+
66
+ EXAMPLE_DOC_STRING = """
67
+ Examples:
68
+ ```py
69
+ >>> # !pip install controlnet_aux
70
+ >>> from controlnet_aux import LineartAnimeDetector
71
+ >>> from diffusers import StableDiffusionXLControlNetUnionPipeline, ControlNetUnionModel, AutoencoderKL
72
+ >>> from diffusers.utils import load_image
73
+ >>> import torch
74
+
75
+ >>> prompt = "A cat"
76
+ >>> # download an image
77
+ >>> image = load_image(
78
+ ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
79
+ ... ).resize((1024, 1024))
80
+ >>> # initialize the models and pipeline
81
+ >>> controlnet = ControlNetUnionModel.from_pretrained(
82
+ ... "xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16
83
+ ... )
84
+ >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
85
+ >>> pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained(
86
+ ... "stabilityai/stable-diffusion-xl-base-1.0",
87
+ ... controlnet=controlnet,
88
+ ... vae=vae,
89
+ ... torch_dtype=torch.float16,
90
+ ... variant="fp16",
91
+ ... )
92
+ >>> pipe.enable_model_cpu_offload()
93
+ >>> # prepare image
94
+ >>> processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
95
+ >>> controlnet_img = processor(image, output_type="pil")
96
+ >>> # generate image
97
+ >>> image = pipe(prompt, control_image=[controlnet_img], control_mode=[3], height=1024, width=1024).images[0]
98
+ ```
99
+ """
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
103
+ def retrieve_timesteps(
104
+ scheduler,
105
+ num_inference_steps: Optional[int] = None,
106
+ device: Optional[Union[str, torch.device]] = None,
107
+ timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
109
+ **kwargs,
110
+ ):
111
+ r"""
112
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
113
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
114
+
115
+ Args:
116
+ scheduler (`SchedulerMixin`):
117
+ The scheduler to get timesteps from.
118
+ num_inference_steps (`int`):
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
121
+ device (`str` or `torch.device`, *optional*):
122
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
123
+ timesteps (`List[int]`, *optional*):
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
129
+
130
+ Returns:
131
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
132
+ second element is the number of inference steps.
133
+ """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
136
+ if timesteps is not None:
137
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accepts_timesteps:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" timestep schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ else:
157
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ return timesteps, num_inference_steps
160
+
161
+
162
+ class StableDiffusionXLControlNetUnionPipeline(
163
+ DiffusionPipeline,
164
+ StableDiffusionMixin,
165
+ TextualInversionLoaderMixin,
166
+ StableDiffusionXLLoraLoaderMixin,
167
+ IPAdapterMixin,
168
+ FromSingleFileMixin,
169
+ ):
170
+ r"""
171
+ Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
172
+
173
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
174
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
175
+
176
+ The pipeline also inherits the following loading methods:
177
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
178
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
179
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
180
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
181
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
182
+
183
+ Args:
184
+ vae ([`AutoencoderKL`]):
185
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
186
+ text_encoder ([`~transformers.CLIPTextModel`]):
187
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
188
+ text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
189
+ Second frozen text-encoder
190
+ ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
191
+ tokenizer ([`~transformers.CLIPTokenizer`]):
192
+ A `CLIPTokenizer` to tokenize text.
193
+ tokenizer_2 ([`~transformers.CLIPTokenizer`]):
194
+ A `CLIPTokenizer` to tokenize text.
195
+ unet ([`UNet2DConditionModel`]):
196
+ A `UNet2DConditionModel` to denoise the encoded image latents.
197
+ controlnet ([`ControlNetUnionModel`]`):
198
+ Provides additional conditioning to the `unet` during the denoising process.
199
+ scheduler ([`SchedulerMixin`]):
200
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
201
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
202
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
203
+ Whether the negative prompt embeddings should always be set to 0. Also see the config of
204
+ `stabilityai/stable-diffusion-xl-base-1-0`.
205
+ add_watermarker (`bool`, *optional*):
206
+ Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
207
+ watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
208
+ watermarker is used.
209
+ """
210
+
211
+ # leave controlnet out on purpose because it iterates with unet
212
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
213
+ _optional_components = [
214
+ "tokenizer",
215
+ "tokenizer_2",
216
+ "text_encoder",
217
+ "text_encoder_2",
218
+ "feature_extractor",
219
+ "image_encoder",
220
+ ]
221
+ _callback_tensor_inputs = [
222
+ "latents",
223
+ "prompt_embeds",
224
+ "add_text_embeds",
225
+ "add_time_ids",
226
+ ]
227
+
228
+ def __init__(
229
+ self,
230
+ vae: AutoencoderKL,
231
+ text_encoder: CLIPTextModel,
232
+ text_encoder_2: CLIPTextModelWithProjection,
233
+ tokenizer: CLIPTokenizer,
234
+ tokenizer_2: CLIPTokenizer,
235
+ unet: UNet2DConditionModel,
236
+ controlnet: ControlNetUnionModel,
237
+ scheduler: KarrasDiffusionSchedulers,
238
+ force_zeros_for_empty_prompt: bool = True,
239
+ add_watermarker: Optional[bool] = None,
240
+ feature_extractor: CLIPImageProcessor = None,
241
+ image_encoder: CLIPVisionModelWithProjection = None,
242
+ ):
243
+ super().__init__()
244
+
245
+ if not isinstance(controlnet, ControlNetUnionModel):
246
+ raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
247
+
248
+ self.register_modules(
249
+ vae=vae,
250
+ text_encoder=text_encoder,
251
+ text_encoder_2=text_encoder_2,
252
+ tokenizer=tokenizer,
253
+ tokenizer_2=tokenizer_2,
254
+ unet=unet,
255
+ controlnet=controlnet,
256
+ scheduler=scheduler,
257
+ feature_extractor=feature_extractor,
258
+ image_encoder=image_encoder,
259
+ )
260
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
261
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
262
+ self.control_image_processor = VaeImageProcessor(
263
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
264
+ )
265
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
266
+
267
+ if add_watermarker:
268
+ self.watermark = StableDiffusionXLWatermarker()
269
+ else:
270
+ self.watermark = None
271
+
272
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
273
+
274
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
275
+ def encode_prompt(
276
+ self,
277
+ prompt: str,
278
+ prompt_2: Optional[str] = None,
279
+ device: Optional[torch.device] = None,
280
+ num_images_per_prompt: int = 1,
281
+ do_classifier_free_guidance: bool = True,
282
+ negative_prompt: Optional[str] = None,
283
+ negative_prompt_2: Optional[str] = None,
284
+ prompt_embeds: Optional[torch.Tensor] = None,
285
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
286
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
287
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
288
+ lora_scale: Optional[float] = None,
289
+ clip_skip: Optional[int] = None,
290
+ ):
291
+ r"""
292
+ Encodes the prompt into text encoder hidden states.
293
+
294
+ Args:
295
+ prompt (`str` or `List[str]`, *optional*):
296
+ prompt to be encoded
297
+ prompt_2 (`str` or `List[str]`, *optional*):
298
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
299
+ used in both text-encoders
300
+ device: (`torch.device`):
301
+ torch device
302
+ num_images_per_prompt (`int`):
303
+ number of images that should be generated per prompt
304
+ do_classifier_free_guidance (`bool`):
305
+ whether to use classifier free guidance or not
306
+ negative_prompt (`str` or `List[str]`, *optional*):
307
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
308
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
309
+ less than `1`).
310
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
311
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
312
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
313
+ prompt_embeds (`torch.Tensor`, *optional*):
314
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
315
+ provided, text embeddings will be generated from `prompt` input argument.
316
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
317
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
318
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
319
+ argument.
320
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
321
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
322
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
323
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
324
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
325
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
326
+ input argument.
327
+ lora_scale (`float`, *optional*):
328
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
329
+ clip_skip (`int`, *optional*):
330
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
331
+ the output of the pre-final layer will be used for computing the prompt embeddings.
332
+ """
333
+ device = device or self._execution_device
334
+
335
+ # set lora scale so that monkey patched LoRA
336
+ # function of text encoder can correctly access it
337
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
338
+ self._lora_scale = lora_scale
339
+
340
+ # dynamically adjust the LoRA scale
341
+ if self.text_encoder is not None:
342
+ if not USE_PEFT_BACKEND:
343
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
344
+ else:
345
+ scale_lora_layers(self.text_encoder, lora_scale)
346
+
347
+ if self.text_encoder_2 is not None:
348
+ if not USE_PEFT_BACKEND:
349
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
350
+ else:
351
+ scale_lora_layers(self.text_encoder_2, lora_scale)
352
+
353
+ prompt = [prompt] if isinstance(prompt, str) else prompt
354
+
355
+ if prompt is not None:
356
+ batch_size = len(prompt)
357
+ else:
358
+ batch_size = prompt_embeds.shape[0]
359
+
360
+ # Define tokenizers and text encoders
361
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
362
+ text_encoders = (
363
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
364
+ )
365
+
366
+ if prompt_embeds is None:
367
+ prompt_2 = prompt_2 or prompt
368
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
369
+
370
+ # textual inversion: process multi-vector tokens if necessary
371
+ prompt_embeds_list = []
372
+ prompts = [prompt, prompt_2]
373
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
374
+ if isinstance(self, TextualInversionLoaderMixin):
375
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
376
+
377
+ text_inputs = tokenizer(
378
+ prompt,
379
+ padding="max_length",
380
+ max_length=tokenizer.model_max_length,
381
+ truncation=True,
382
+ return_tensors="pt",
383
+ )
384
+
385
+ text_input_ids = text_inputs.input_ids
386
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
387
+
388
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
389
+ text_input_ids, untruncated_ids
390
+ ):
391
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
392
+ logger.warning(
393
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
394
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
395
+ )
396
+
397
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
398
+
399
+ # We are only ALWAYS interested in the pooled output of the final text encoder
400
+ pooled_prompt_embeds = prompt_embeds[0]
401
+ if clip_skip is None:
402
+ prompt_embeds = prompt_embeds.hidden_states[-2]
403
+ else:
404
+ # "2" because SDXL always indexes from the penultimate layer.
405
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
406
+
407
+ prompt_embeds_list.append(prompt_embeds)
408
+
409
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
410
+
411
+ # get unconditional embeddings for classifier free guidance
412
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
413
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
414
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
415
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
416
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
417
+ negative_prompt = negative_prompt or ""
418
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
419
+
420
+ # normalize str to list
421
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
422
+ negative_prompt_2 = (
423
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
424
+ )
425
+
426
+ uncond_tokens: List[str]
427
+ if prompt is not None and type(prompt) is not type(negative_prompt):
428
+ raise TypeError(
429
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
430
+ f" {type(prompt)}."
431
+ )
432
+ elif batch_size != len(negative_prompt):
433
+ raise ValueError(
434
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
435
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
436
+ " the batch size of `prompt`."
437
+ )
438
+ else:
439
+ uncond_tokens = [negative_prompt, negative_prompt_2]
440
+
441
+ negative_prompt_embeds_list = []
442
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
443
+ if isinstance(self, TextualInversionLoaderMixin):
444
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
445
+
446
+ max_length = prompt_embeds.shape[1]
447
+ uncond_input = tokenizer(
448
+ negative_prompt,
449
+ padding="max_length",
450
+ max_length=max_length,
451
+ truncation=True,
452
+ return_tensors="pt",
453
+ )
454
+
455
+ negative_prompt_embeds = text_encoder(
456
+ uncond_input.input_ids.to(device),
457
+ output_hidden_states=True,
458
+ )
459
+ # We are only ALWAYS interested in the pooled output of the final text encoder
460
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
461
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
462
+
463
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
464
+
465
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
466
+
467
+ if self.text_encoder_2 is not None:
468
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
469
+ else:
470
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
471
+
472
+ bs_embed, seq_len, _ = prompt_embeds.shape
473
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
474
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
475
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
476
+
477
+ if do_classifier_free_guidance:
478
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
479
+ seq_len = negative_prompt_embeds.shape[1]
480
+
481
+ if self.text_encoder_2 is not None:
482
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
483
+ else:
484
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
485
+
486
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
487
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
488
+
489
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
490
+ bs_embed * num_images_per_prompt, -1
491
+ )
492
+ if do_classifier_free_guidance:
493
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
494
+ bs_embed * num_images_per_prompt, -1
495
+ )
496
+
497
+ if self.text_encoder is not None:
498
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
499
+ # Retrieve the original scale by scaling back the LoRA layers
500
+ unscale_lora_layers(self.text_encoder, lora_scale)
501
+
502
+ if self.text_encoder_2 is not None:
503
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
504
+ # Retrieve the original scale by scaling back the LoRA layers
505
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
506
+
507
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
508
+
509
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
510
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
511
+ dtype = next(self.image_encoder.parameters()).dtype
512
+
513
+ if not isinstance(image, torch.Tensor):
514
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
515
+
516
+ image = image.to(device=device, dtype=dtype)
517
+ if output_hidden_states:
518
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
519
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
520
+ uncond_image_enc_hidden_states = self.image_encoder(
521
+ torch.zeros_like(image), output_hidden_states=True
522
+ ).hidden_states[-2]
523
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
524
+ num_images_per_prompt, dim=0
525
+ )
526
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
527
+ else:
528
+ image_embeds = self.image_encoder(image).image_embeds
529
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
530
+ uncond_image_embeds = torch.zeros_like(image_embeds)
531
+
532
+ return image_embeds, uncond_image_embeds
533
+
534
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
535
+ def prepare_ip_adapter_image_embeds(
536
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
537
+ ):
538
+ image_embeds = []
539
+ if do_classifier_free_guidance:
540
+ negative_image_embeds = []
541
+ if ip_adapter_image_embeds is None:
542
+ if not isinstance(ip_adapter_image, list):
543
+ ip_adapter_image = [ip_adapter_image]
544
+
545
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
546
+ raise ValueError(
547
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
548
+ )
549
+
550
+ for single_ip_adapter_image, image_proj_layer in zip(
551
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
552
+ ):
553
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
554
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
555
+ single_ip_adapter_image, device, 1, output_hidden_state
556
+ )
557
+
558
+ image_embeds.append(single_image_embeds[None, :])
559
+ if do_classifier_free_guidance:
560
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
561
+ else:
562
+ for single_image_embeds in ip_adapter_image_embeds:
563
+ if do_classifier_free_guidance:
564
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
565
+ negative_image_embeds.append(single_negative_image_embeds)
566
+ image_embeds.append(single_image_embeds)
567
+
568
+ ip_adapter_image_embeds = []
569
+ for i, single_image_embeds in enumerate(image_embeds):
570
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
571
+ if do_classifier_free_guidance:
572
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
573
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
574
+
575
+ single_image_embeds = single_image_embeds.to(device=device)
576
+ ip_adapter_image_embeds.append(single_image_embeds)
577
+
578
+ return ip_adapter_image_embeds
579
+
580
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
581
+ def prepare_extra_step_kwargs(self, generator, eta):
582
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
583
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
584
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
585
+ # and should be between [0, 1]
586
+
587
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
588
+ extra_step_kwargs = {}
589
+ if accepts_eta:
590
+ extra_step_kwargs["eta"] = eta
591
+
592
+ # check if the scheduler accepts generator
593
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
594
+ if accepts_generator:
595
+ extra_step_kwargs["generator"] = generator
596
+ return extra_step_kwargs
597
+
598
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
599
+ def check_image(self, image, prompt, prompt_embeds):
600
+ image_is_pil = isinstance(image, PIL.Image.Image)
601
+ image_is_tensor = isinstance(image, torch.Tensor)
602
+ image_is_np = isinstance(image, np.ndarray)
603
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
604
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
605
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
606
+
607
+ if (
608
+ not image_is_pil
609
+ and not image_is_tensor
610
+ and not image_is_np
611
+ and not image_is_pil_list
612
+ and not image_is_tensor_list
613
+ and not image_is_np_list
614
+ ):
615
+ raise TypeError(
616
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
617
+ )
618
+
619
+ if image_is_pil:
620
+ image_batch_size = 1
621
+ else:
622
+ image_batch_size = len(image)
623
+
624
+ if prompt is not None and isinstance(prompt, str):
625
+ prompt_batch_size = 1
626
+ elif prompt is not None and isinstance(prompt, list):
627
+ prompt_batch_size = len(prompt)
628
+ elif prompt_embeds is not None:
629
+ prompt_batch_size = prompt_embeds.shape[0]
630
+
631
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
632
+ raise ValueError(
633
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
634
+ )
635
+
636
+ def check_inputs(
637
+ self,
638
+ prompt,
639
+ prompt_2,
640
+ image: PipelineImageInput,
641
+ negative_prompt=None,
642
+ negative_prompt_2=None,
643
+ prompt_embeds=None,
644
+ negative_prompt_embeds=None,
645
+ pooled_prompt_embeds=None,
646
+ ip_adapter_image=None,
647
+ ip_adapter_image_embeds=None,
648
+ negative_pooled_prompt_embeds=None,
649
+ controlnet_conditioning_scale=1.0,
650
+ control_guidance_start=0.0,
651
+ control_guidance_end=1.0,
652
+ callback_on_step_end_tensor_inputs=None,
653
+ ):
654
+ if callback_on_step_end_tensor_inputs is not None and not all(
655
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
656
+ ):
657
+ raise ValueError(
658
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
659
+ )
660
+
661
+ if prompt is not None and prompt_embeds is not None:
662
+ raise ValueError(
663
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
664
+ " only forward one of the two."
665
+ )
666
+ elif prompt_2 is not None and prompt_embeds is not None:
667
+ raise ValueError(
668
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
669
+ " only forward one of the two."
670
+ )
671
+ elif prompt is None and prompt_embeds is None:
672
+ raise ValueError(
673
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
674
+ )
675
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
676
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
677
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
678
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
679
+
680
+ if negative_prompt is not None and negative_prompt_embeds is not None:
681
+ raise ValueError(
682
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
683
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
684
+ )
685
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
686
+ raise ValueError(
687
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
688
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
689
+ )
690
+
691
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
692
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
693
+ raise ValueError(
694
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
695
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
696
+ f" {negative_prompt_embeds.shape}."
697
+ )
698
+
699
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
700
+ raise ValueError(
701
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
702
+ )
703
+
704
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
705
+ raise ValueError(
706
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
707
+ )
708
+
709
+ # Check `image`
710
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
711
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
712
+ )
713
+ if (
714
+ isinstance(self.controlnet, ControlNetModel)
715
+ or is_compiled
716
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
717
+ ):
718
+ self.check_image(image, prompt, prompt_embeds)
719
+ elif (
720
+ isinstance(self.controlnet, ControlNetUnionModel)
721
+ or is_compiled
722
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
723
+ ):
724
+ self.check_image(image, prompt, prompt_embeds)
725
+
726
+ else:
727
+ assert False
728
+
729
+ # Check `controlnet_conditioning_scale`
730
+ if (
731
+ isinstance(self.controlnet, ControlNetModel)
732
+ or is_compiled
733
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
734
+ ):
735
+ if not isinstance(controlnet_conditioning_scale, float):
736
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
737
+
738
+ elif (
739
+ isinstance(self.controlnet, ControlNetUnionModel)
740
+ or is_compiled
741
+ and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
742
+ ):
743
+ if not isinstance(controlnet_conditioning_scale, float):
744
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
745
+
746
+ else:
747
+ assert False
748
+
749
+ if not isinstance(control_guidance_start, (tuple, list)):
750
+ control_guidance_start = [control_guidance_start]
751
+
752
+ if not isinstance(control_guidance_end, (tuple, list)):
753
+ control_guidance_end = [control_guidance_end]
754
+
755
+ if len(control_guidance_start) != len(control_guidance_end):
756
+ raise ValueError(
757
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
758
+ )
759
+
760
+ for start, end in zip(control_guidance_start, control_guidance_end):
761
+ if start >= end:
762
+ raise ValueError(
763
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
764
+ )
765
+ if start < 0.0:
766
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
767
+ if end > 1.0:
768
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
769
+
770
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
771
+ raise ValueError(
772
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
773
+ )
774
+
775
+ if ip_adapter_image_embeds is not None:
776
+ if not isinstance(ip_adapter_image_embeds, list):
777
+ raise ValueError(
778
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
779
+ )
780
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
781
+ raise ValueError(
782
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
783
+ )
784
+
785
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
786
+ def prepare_image(
787
+ self,
788
+ image,
789
+ width,
790
+ height,
791
+ batch_size,
792
+ num_images_per_prompt,
793
+ device,
794
+ dtype,
795
+ do_classifier_free_guidance=False,
796
+ guess_mode=False,
797
+ ):
798
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
799
+ image_batch_size = image.shape[0]
800
+
801
+ if image_batch_size == 1:
802
+ repeat_by = batch_size
803
+ else:
804
+ # image batch size is the same as prompt batch size
805
+ repeat_by = num_images_per_prompt
806
+
807
+ image = image.repeat_interleave(repeat_by, dim=0)
808
+
809
+ image = image.to(device=device, dtype=dtype)
810
+
811
+ if do_classifier_free_guidance and not guess_mode:
812
+ image = torch.cat([image] * 2)
813
+
814
+ return image
815
+
816
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
817
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
818
+ shape = (
819
+ batch_size,
820
+ num_channels_latents,
821
+ int(height) // self.vae_scale_factor,
822
+ int(width) // self.vae_scale_factor,
823
+ )
824
+ if isinstance(generator, list) and len(generator) != batch_size:
825
+ raise ValueError(
826
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
827
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
828
+ )
829
+
830
+ if latents is None:
831
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
832
+ else:
833
+ latents = latents.to(device)
834
+
835
+ # scale the initial noise by the standard deviation required by the scheduler
836
+ latents = latents * self.scheduler.init_noise_sigma
837
+ return latents
838
+
839
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
840
+ def _get_add_time_ids(
841
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
842
+ ):
843
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
844
+
845
+ passed_add_embed_dim = (
846
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
847
+ )
848
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
849
+
850
+ if expected_add_embed_dim != passed_add_embed_dim:
851
+ raise ValueError(
852
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
853
+ )
854
+
855
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
856
+ return add_time_ids
857
+
858
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
859
+ def upcast_vae(self):
860
+ dtype = self.vae.dtype
861
+ self.vae.to(dtype=torch.float32)
862
+ use_torch_2_0_or_xformers = isinstance(
863
+ self.vae.decoder.mid_block.attentions[0].processor,
864
+ (
865
+ AttnProcessor2_0,
866
+ XFormersAttnProcessor,
867
+ ),
868
+ )
869
+ # if xformers or torch_2_0 is used attention block does not need
870
+ # to be in float32 which can save lots of memory
871
+ if use_torch_2_0_or_xformers:
872
+ self.vae.post_quant_conv.to(dtype)
873
+ self.vae.decoder.conv_in.to(dtype)
874
+ self.vae.decoder.mid_block.to(dtype)
875
+
876
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
877
+ def get_guidance_scale_embedding(
878
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
879
+ ) -> torch.Tensor:
880
+ """
881
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
882
+
883
+ Args:
884
+ w (`torch.Tensor`):
885
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
886
+ embedding_dim (`int`, *optional*, defaults to 512):
887
+ Dimension of the embeddings to generate.
888
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
889
+ Data type of the generated embeddings.
890
+
891
+ Returns:
892
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
893
+ """
894
+ assert len(w.shape) == 1
895
+ w = w * 1000.0
896
+
897
+ half_dim = embedding_dim // 2
898
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
899
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
900
+ emb = w.to(dtype)[:, None] * emb[None, :]
901
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
902
+ if embedding_dim % 2 == 1: # zero pad
903
+ emb = torch.nn.functional.pad(emb, (0, 1))
904
+ assert emb.shape == (w.shape[0], embedding_dim)
905
+ return emb
906
+
907
+ @property
908
+ def guidance_scale(self):
909
+ return self._guidance_scale
910
+
911
+ @property
912
+ def clip_skip(self):
913
+ return self._clip_skip
914
+
915
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
916
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
917
+ # corresponds to doing no classifier free guidance.
918
+ @property
919
+ def do_classifier_free_guidance(self):
920
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
921
+
922
+ @property
923
+ def cross_attention_kwargs(self):
924
+ return self._cross_attention_kwargs
925
+
926
+ @property
927
+ def denoising_end(self):
928
+ return self._denoising_end
929
+
930
+ @property
931
+ def num_timesteps(self):
932
+ return self._num_timesteps
933
+
934
+ @property
935
+ def interrupt(self):
936
+ return self._interrupt
937
+
938
+ @torch.no_grad()
939
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
940
+ def __call__(
941
+ self,
942
+ prompt: Union[str, List[str]] = None,
943
+ prompt_2: Optional[Union[str, List[str]]] = None,
944
+ control_image: PipelineImageInput = None,
945
+ height: Optional[int] = None,
946
+ width: Optional[int] = None,
947
+ num_inference_steps: int = 50,
948
+ timesteps: List[int] = None,
949
+ sigmas: List[float] = None,
950
+ denoising_end: Optional[float] = None,
951
+ guidance_scale: float = 5.0,
952
+ negative_prompt: Optional[Union[str, List[str]]] = None,
953
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
954
+ num_images_per_prompt: Optional[int] = 1,
955
+ eta: float = 0.0,
956
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
957
+ latents: Optional[torch.Tensor] = None,
958
+ prompt_embeds: Optional[torch.Tensor] = None,
959
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
960
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
961
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
962
+ ip_adapter_image: Optional[PipelineImageInput] = None,
963
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
964
+ output_type: Optional[str] = "pil",
965
+ return_dict: bool = True,
966
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
967
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
968
+ guess_mode: bool = False,
969
+ control_guidance_start: Union[float, List[float]] = 0.0,
970
+ control_guidance_end: Union[float, List[float]] = 1.0,
971
+ control_mode: Optional[Union[int, List[int]]] = None,
972
+ original_size: Tuple[int, int] = None,
973
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
974
+ target_size: Tuple[int, int] = None,
975
+ negative_original_size: Optional[Tuple[int, int]] = None,
976
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
977
+ negative_target_size: Optional[Tuple[int, int]] = None,
978
+ clip_skip: Optional[int] = None,
979
+ callback_on_step_end: Optional[
980
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
981
+ ] = None,
982
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
983
+ ):
984
+ r"""
985
+ The call function to the pipeline for generation.
986
+
987
+ Args:
988
+ prompt (`str` or `List[str]`, *optional*):
989
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
990
+ prompt_2 (`str` or `List[str]`, *optional*):
991
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
992
+ used in both text-encoders.
993
+ control_image (`PipelineImageInput`):
994
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
995
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
996
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
997
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
998
+ images must be passed as a list such that each element of the list can be correctly batched for input
999
+ to a single ControlNet.
1000
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1001
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1002
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1003
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1004
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1005
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1006
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1007
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1008
+ num_inference_steps (`int`, *optional*, defaults to 50):
1009
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1010
+ expense of slower inference.
1011
+ timesteps (`List[int]`, *optional*):
1012
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
1013
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
1014
+ passed will be used. Must be in descending order.
1015
+ sigmas (`List[float]`, *optional*):
1016
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
1017
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
1018
+ will be used.
1019
+ denoising_end (`float`, *optional*):
1020
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
1021
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
1022
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
1023
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
1024
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
1025
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
1026
+ guidance_scale (`float`, *optional*, defaults to 5.0):
1027
+ A higher guidance scale value encourages the model to generate images closely linked to the text
1028
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1029
+ negative_prompt (`str` or `List[str]`, *optional*):
1030
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
1031
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1032
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1033
+ The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
1034
+ and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
1035
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1036
+ The number of images to generate per prompt.
1037
+ eta (`float`, *optional*, defaults to 0.0):
1038
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
1039
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1040
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1041
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
1042
+ generation deterministic.
1043
+ latents (`torch.Tensor`, *optional*):
1044
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1045
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1046
+ tensor is generated by sampling using the supplied random `generator`.
1047
+ prompt_embeds (`torch.Tensor`, *optional*):
1048
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
1049
+ provided, text embeddings are generated from the `prompt` input argument.
1050
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1051
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1052
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1053
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1054
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1055
+ not provided, pooled text embeddings are generated from `prompt` input argument.
1056
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1057
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
1058
+ weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
1059
+ argument.
1060
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1061
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1062
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1063
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1064
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1065
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1066
+ output_type (`str`, *optional*, defaults to `"pil"`):
1067
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1068
+ return_dict (`bool`, *optional*, defaults to `True`):
1069
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1070
+ plain tuple.
1071
+ cross_attention_kwargs (`dict`, *optional*):
1072
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1073
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1074
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1075
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
1076
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
1077
+ the corresponding scale as a list.
1078
+ guess_mode (`bool`, *optional*, defaults to `False`):
1079
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
1080
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1081
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1082
+ The percentage of total steps at which the ControlNet starts applying.
1083
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1084
+ The percentage of total steps at which the ControlNet stops applying.
1085
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1086
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1087
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1088
+ explained in section 2.2 of
1089
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1090
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1091
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1092
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1093
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1094
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1095
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1096
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1097
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1098
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1099
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1100
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1101
+ micro-conditioning as explained in section 2.2 of
1102
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1103
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1104
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1105
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1106
+ micro-conditioning as explained in section 2.2 of
1107
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1108
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1109
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1110
+ To negatively condition the generation process based on a target image resolution. It should be as same
1111
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1112
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1113
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1114
+ clip_skip (`int`, *optional*):
1115
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1116
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1117
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1118
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1119
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1120
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1121
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1122
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1123
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1124
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1125
+ `._callback_tensor_inputs` attribute of your pipeline class.
1126
+
1127
+ Examples:
1128
+
1129
+ Returns:
1130
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1131
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
1132
+ otherwise a `tuple` is returned containing the output images.
1133
+ """
1134
+
1135
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1136
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1137
+
1138
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1139
+
1140
+ # align format for control guidance
1141
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1142
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1143
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1144
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1145
+
1146
+ if not isinstance(control_image, list):
1147
+ control_image = [control_image]
1148
+
1149
+ if not isinstance(control_mode, list):
1150
+ control_mode = [control_mode]
1151
+
1152
+ if len(control_image) != len(control_mode):
1153
+ raise ValueError("Expected len(control_image) == len(control_type)")
1154
+
1155
+ num_control_type = controlnet.config.num_control_type
1156
+
1157
+ # 1. Check inputs
1158
+ control_type = [0 for _ in range(num_control_type)]
1159
+ # 1. Check inputs. Raise error if not correct
1160
+ for _image, control_idx in zip(control_image, control_mode):
1161
+ control_type[control_idx] = 1
1162
+ self.check_inputs(
1163
+ prompt,
1164
+ prompt_2,
1165
+ _image,
1166
+ negative_prompt,
1167
+ negative_prompt_2,
1168
+ prompt_embeds,
1169
+ negative_prompt_embeds,
1170
+ pooled_prompt_embeds,
1171
+ ip_adapter_image,
1172
+ ip_adapter_image_embeds,
1173
+ negative_pooled_prompt_embeds,
1174
+ controlnet_conditioning_scale,
1175
+ control_guidance_start,
1176
+ control_guidance_end,
1177
+ callback_on_step_end_tensor_inputs,
1178
+ )
1179
+
1180
+ control_type = torch.Tensor(control_type)
1181
+
1182
+ self._guidance_scale = guidance_scale
1183
+ self._clip_skip = clip_skip
1184
+ self._cross_attention_kwargs = cross_attention_kwargs
1185
+ self._denoising_end = denoising_end
1186
+ self._interrupt = False
1187
+
1188
+ # 2. Define call parameters
1189
+ if prompt is not None and isinstance(prompt, str):
1190
+ batch_size = 1
1191
+ elif prompt is not None and isinstance(prompt, list):
1192
+ batch_size = len(prompt)
1193
+ else:
1194
+ batch_size = prompt_embeds.shape[0]
1195
+
1196
+ device = self._execution_device
1197
+
1198
+ global_pool_conditions = controlnet.config.global_pool_conditions
1199
+ guess_mode = guess_mode or global_pool_conditions
1200
+
1201
+ # 3.1 Encode input prompt
1202
+ text_encoder_lora_scale = (
1203
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1204
+ )
1205
+ (
1206
+ prompt_embeds,
1207
+ negative_prompt_embeds,
1208
+ pooled_prompt_embeds,
1209
+ negative_pooled_prompt_embeds,
1210
+ ) = self.encode_prompt(
1211
+ prompt,
1212
+ prompt_2,
1213
+ device,
1214
+ num_images_per_prompt,
1215
+ self.do_classifier_free_guidance,
1216
+ negative_prompt,
1217
+ negative_prompt_2,
1218
+ prompt_embeds=prompt_embeds,
1219
+ negative_prompt_embeds=negative_prompt_embeds,
1220
+ pooled_prompt_embeds=pooled_prompt_embeds,
1221
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1222
+ lora_scale=text_encoder_lora_scale,
1223
+ clip_skip=self.clip_skip,
1224
+ )
1225
+
1226
+ # 3.2 Encode ip_adapter_image
1227
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1228
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1229
+ ip_adapter_image,
1230
+ ip_adapter_image_embeds,
1231
+ device,
1232
+ batch_size * num_images_per_prompt,
1233
+ self.do_classifier_free_guidance,
1234
+ )
1235
+
1236
+ # 4. Prepare image
1237
+ for idx, _ in enumerate(control_image):
1238
+ control_image[idx] = self.prepare_image(
1239
+ image=control_image[idx],
1240
+ width=width,
1241
+ height=height,
1242
+ batch_size=batch_size * num_images_per_prompt,
1243
+ num_images_per_prompt=num_images_per_prompt,
1244
+ device=device,
1245
+ dtype=controlnet.dtype,
1246
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1247
+ guess_mode=guess_mode,
1248
+ )
1249
+ height, width = control_image[idx].shape[-2:]
1250
+
1251
+ # 5. Prepare timesteps
1252
+ timesteps, num_inference_steps = retrieve_timesteps(
1253
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1254
+ )
1255
+ self._num_timesteps = len(timesteps)
1256
+
1257
+ # 6. Prepare latent variables
1258
+ num_channels_latents = self.unet.config.in_channels
1259
+ latents = self.prepare_latents(
1260
+ batch_size * num_images_per_prompt,
1261
+ num_channels_latents,
1262
+ height,
1263
+ width,
1264
+ prompt_embeds.dtype,
1265
+ device,
1266
+ generator,
1267
+ latents,
1268
+ )
1269
+
1270
+ # 6.5 Optionally get Guidance Scale Embedding
1271
+ timestep_cond = None
1272
+ if self.unet.config.time_cond_proj_dim is not None:
1273
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1274
+ timestep_cond = self.get_guidance_scale_embedding(
1275
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1276
+ ).to(device=device, dtype=latents.dtype)
1277
+
1278
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1279
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1280
+
1281
+ # 7.1 Create tensor stating which controlnets to keep
1282
+ controlnet_keep = []
1283
+ for i in range(len(timesteps)):
1284
+ controlnet_keep.append(
1285
+ 1.0
1286
+ - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
1287
+ )
1288
+
1289
+ # 7.2 Prepare added time ids & embeddings
1290
+ original_size = original_size or (height, width)
1291
+ target_size = target_size or (height, width)
1292
+ for _image in control_image:
1293
+ if isinstance(_image, torch.Tensor):
1294
+ original_size = original_size or _image.shape[-2:]
1295
+ add_text_embeds = pooled_prompt_embeds
1296
+ if self.text_encoder_2 is None:
1297
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1298
+ else:
1299
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1300
+
1301
+ add_time_ids = self._get_add_time_ids(
1302
+ original_size,
1303
+ crops_coords_top_left,
1304
+ target_size,
1305
+ dtype=prompt_embeds.dtype,
1306
+ text_encoder_projection_dim=text_encoder_projection_dim,
1307
+ )
1308
+
1309
+ if negative_original_size is not None and negative_target_size is not None:
1310
+ negative_add_time_ids = self._get_add_time_ids(
1311
+ negative_original_size,
1312
+ negative_crops_coords_top_left,
1313
+ negative_target_size,
1314
+ dtype=prompt_embeds.dtype,
1315
+ text_encoder_projection_dim=text_encoder_projection_dim,
1316
+ )
1317
+ else:
1318
+ negative_add_time_ids = add_time_ids
1319
+
1320
+ if self.do_classifier_free_guidance:
1321
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1322
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1323
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1324
+
1325
+ prompt_embeds = prompt_embeds.to(device)
1326
+ add_text_embeds = add_text_embeds.to(device)
1327
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1328
+
1329
+ # 8. Denoising loop
1330
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1331
+
1332
+ # 8.1 Apply denoising_end
1333
+ if (
1334
+ self.denoising_end is not None
1335
+ and isinstance(self.denoising_end, float)
1336
+ and self.denoising_end > 0
1337
+ and self.denoising_end < 1
1338
+ ):
1339
+ discrete_timestep_cutoff = int(
1340
+ round(
1341
+ self.scheduler.config.num_train_timesteps
1342
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1343
+ )
1344
+ )
1345
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1346
+ timesteps = timesteps[:num_inference_steps]
1347
+
1348
+ is_unet_compiled = is_compiled_module(self.unet)
1349
+ is_controlnet_compiled = is_compiled_module(self.controlnet)
1350
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1351
+
1352
+ control_type = (
1353
+ control_type.reshape(1, -1)
1354
+ .to(device, dtype=prompt_embeds.dtype)
1355
+ .repeat(batch_size * num_images_per_prompt * 2, 1)
1356
+ )
1357
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1358
+ for i, t in enumerate(timesteps):
1359
+ if self.interrupt:
1360
+ continue
1361
+
1362
+ # Relevant thread:
1363
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1364
+ if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1365
+ torch._inductor.cudagraph_mark_step_begin()
1366
+ # expand the latents if we are doing classifier free guidance
1367
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1368
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1369
+
1370
+ added_cond_kwargs = {
1371
+ "text_embeds": add_text_embeds,
1372
+ "time_ids": add_time_ids,
1373
+ }
1374
+
1375
+ # controlnet(s) inference
1376
+ if guess_mode and self.do_classifier_free_guidance:
1377
+ # Infer ControlNet only for the conditional batch.
1378
+ control_model_input = latents
1379
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1380
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1381
+ controlnet_added_cond_kwargs = {
1382
+ "text_embeds": add_text_embeds.chunk(2)[1],
1383
+ "time_ids": add_time_ids.chunk(2)[1],
1384
+ }
1385
+ else:
1386
+ control_model_input = latent_model_input
1387
+ controlnet_prompt_embeds = prompt_embeds
1388
+ controlnet_added_cond_kwargs = added_cond_kwargs
1389
+
1390
+ if isinstance(controlnet_keep[i], list):
1391
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1392
+ else:
1393
+ controlnet_cond_scale = controlnet_conditioning_scale
1394
+ if isinstance(controlnet_cond_scale, list):
1395
+ controlnet_cond_scale = controlnet_cond_scale[0]
1396
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1397
+
1398
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1399
+ control_model_input,
1400
+ t,
1401
+ encoder_hidden_states=controlnet_prompt_embeds,
1402
+ controlnet_cond=control_image,
1403
+ control_type=control_type,
1404
+ control_type_idx=control_mode,
1405
+ conditioning_scale=cond_scale,
1406
+ guess_mode=guess_mode,
1407
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1408
+ return_dict=False,
1409
+ )
1410
+
1411
+ if guess_mode and self.do_classifier_free_guidance:
1412
+ # Inferred ControlNet only for the conditional batch.
1413
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1414
+ # add 0 to the unconditional batch to keep it unchanged.
1415
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1416
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1417
+
1418
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1419
+ added_cond_kwargs["image_embeds"] = image_embeds
1420
+
1421
+ # predict the noise residual
1422
+ noise_pred = self.unet(
1423
+ latent_model_input,
1424
+ t,
1425
+ encoder_hidden_states=prompt_embeds,
1426
+ timestep_cond=timestep_cond,
1427
+ cross_attention_kwargs=self.cross_attention_kwargs,
1428
+ down_block_additional_residuals=down_block_res_samples,
1429
+ mid_block_additional_residual=mid_block_res_sample,
1430
+ added_cond_kwargs=added_cond_kwargs,
1431
+ return_dict=False,
1432
+ )[0]
1433
+
1434
+ # perform guidance
1435
+ if self.do_classifier_free_guidance:
1436
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1437
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1438
+
1439
+ # compute the previous noisy sample x_t -> x_t-1
1440
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1441
+
1442
+ if callback_on_step_end is not None:
1443
+ callback_kwargs = {}
1444
+ for k in callback_on_step_end_tensor_inputs:
1445
+ callback_kwargs[k] = locals()[k]
1446
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1447
+
1448
+ latents = callback_outputs.pop("latents", latents)
1449
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1450
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1451
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1452
+
1453
+ # call the callback, if provided
1454
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1455
+ progress_bar.update()
1456
+
1457
+ if not output_type == "latent":
1458
+ # make sure the VAE is in float32 mode, as it overflows in float16
1459
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1460
+
1461
+ if needs_upcasting:
1462
+ self.upcast_vae()
1463
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1464
+
1465
+ # unscale/denormalize the latents
1466
+ # denormalize with the mean and std if available and not None
1467
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1468
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1469
+ if has_latents_mean and has_latents_std:
1470
+ latents_mean = (
1471
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1472
+ )
1473
+ latents_std = (
1474
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1475
+ )
1476
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1477
+ else:
1478
+ latents = latents / self.vae.config.scaling_factor
1479
+
1480
+ image = self.vae.decode(latents, return_dict=False)[0]
1481
+
1482
+ # cast back to fp16 if needed
1483
+ if needs_upcasting:
1484
+ self.vae.to(dtype=torch.float16)
1485
+ else:
1486
+ image = latents
1487
+
1488
+ if not output_type == "latent":
1489
+ # apply watermark if available
1490
+ if self.watermark is not None:
1491
+ image = self.watermark.apply_watermark(image)
1492
+
1493
+ image = self.image_processor.postprocess(image, output_type=output_type)
1494
+
1495
+ # Offload all models
1496
+ self.maybe_free_model_hooks()
1497
+
1498
+ if not return_dict:
1499
+ return (image,)
1500
+
1501
+ return StableDiffusionXLPipelineOutput(images=image)