diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,489 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
17
+ # and https://github.com/hojonathanho/diffusion
18
+
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import numpy as np
24
+ import torch
25
+
26
+ from ..configuration_utils import ConfigMixin, register_to_config
27
+ from ..utils import BaseOutput
28
+ from ..utils.torch_utils import randn_tensor
29
+ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
30
+
31
+
32
+ @dataclass
33
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
34
+ class DDIMSchedulerOutput(BaseOutput):
35
+ """
36
+ Output class for the scheduler's `step` function output.
37
+
38
+ Args:
39
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
41
+ denoising loop.
42
+ pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
43
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
44
+ `pred_original_sample` can be used to preview progress or for guidance.
45
+ """
46
+
47
+ prev_sample: torch.Tensor
48
+ pred_original_sample: Optional[torch.Tensor] = None
49
+
50
+
51
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
52
+ def betas_for_alpha_bar(
53
+ num_diffusion_timesteps,
54
+ max_beta=0.999,
55
+ alpha_transform_type="cosine",
56
+ ):
57
+ """
58
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
59
+ (1-beta) over time from t = [0,1].
60
+
61
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
62
+ to that part of the diffusion process.
63
+
64
+
65
+ Args:
66
+ num_diffusion_timesteps (`int`): the number of betas to produce.
67
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
68
+ prevent singularities.
69
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
70
+ Choose from `cosine` or `exp`
71
+
72
+ Returns:
73
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
74
+ """
75
+ if alpha_transform_type == "cosine":
76
+
77
+ def alpha_bar_fn(t):
78
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
79
+
80
+ elif alpha_transform_type == "exp":
81
+
82
+ def alpha_bar_fn(t):
83
+ return math.exp(t * -12.0)
84
+
85
+ else:
86
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
87
+
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
93
+ return torch.tensor(betas, dtype=torch.float32)
94
+
95
+
96
+ def rescale_zero_terminal_snr(alphas_cumprod):
97
+ """
98
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
99
+
100
+
101
+ Args:
102
+ betas (`torch.Tensor`):
103
+ the betas that the scheduler is being initialized with.
104
+
105
+ Returns:
106
+ `torch.Tensor`: rescaled betas with zero terminal SNR
107
+ """
108
+
109
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
110
+
111
+ # Store old values.
112
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
113
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
114
+
115
+ # Shift so the last timestep is zero.
116
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
117
+
118
+ # Scale so the first timestep is back to the old value.
119
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
120
+
121
+ # Convert alphas_bar_sqrt to betas
122
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
123
+
124
+ return alphas_bar
125
+
126
+
127
+ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
128
+ """
129
+ `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
130
+ non-Markovian guidance.
131
+
132
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
133
+ methods the library implements for all schedulers such as loading and saving.
134
+
135
+ Args:
136
+ num_train_timesteps (`int`, defaults to 1000):
137
+ The number of diffusion steps to train the model.
138
+ beta_start (`float`, defaults to 0.0001):
139
+ The starting `beta` value of inference.
140
+ beta_end (`float`, defaults to 0.02):
141
+ The final `beta` value.
142
+ beta_schedule (`str`, defaults to `"linear"`):
143
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
144
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
145
+ trained_betas (`np.ndarray`, *optional*):
146
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
147
+ clip_sample (`bool`, defaults to `True`):
148
+ Clip the predicted sample for numerical stability.
149
+ clip_sample_range (`float`, defaults to 1.0):
150
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
151
+ set_alpha_to_one (`bool`, defaults to `True`):
152
+ Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
153
+ there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
154
+ otherwise it uses the alpha value at step 0.
155
+ steps_offset (`int`, defaults to 0):
156
+ An offset added to the inference steps, as required by some model families.
157
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
158
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
159
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
160
+ Video](https://imagen.research.google/video/paper.pdf) paper).
161
+ thresholding (`bool`, defaults to `False`):
162
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
163
+ as Stable Diffusion.
164
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
165
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
166
+ sample_max_value (`float`, defaults to 1.0):
167
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
168
+ timestep_spacing (`str`, defaults to `"leading"`):
169
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
170
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
171
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
172
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
173
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
174
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
175
+ """
176
+
177
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
178
+ order = 1
179
+
180
+ @register_to_config
181
+ def __init__(
182
+ self,
183
+ num_train_timesteps: int = 1000,
184
+ beta_start: float = 0.00085,
185
+ beta_end: float = 0.0120,
186
+ beta_schedule: str = "scaled_linear",
187
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
188
+ clip_sample: bool = True,
189
+ set_alpha_to_one: bool = True,
190
+ steps_offset: int = 0,
191
+ prediction_type: str = "epsilon",
192
+ clip_sample_range: float = 1.0,
193
+ sample_max_value: float = 1.0,
194
+ timestep_spacing: str = "leading",
195
+ rescale_betas_zero_snr: bool = False,
196
+ snr_shift_scale: float = 3.0,
197
+ ):
198
+ if trained_betas is not None:
199
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
200
+ elif beta_schedule == "linear":
201
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
202
+ elif beta_schedule == "scaled_linear":
203
+ # this schedule is very specific to the latent diffusion model.
204
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
205
+ elif beta_schedule == "squaredcos_cap_v2":
206
+ # Glide cosine schedule
207
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
208
+ else:
209
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
210
+
211
+ self.alphas = 1.0 - self.betas
212
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
213
+
214
+ # Modify: SNR shift following SD3
215
+ self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
216
+
217
+ # Rescale for zero SNR
218
+ if rescale_betas_zero_snr:
219
+ self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
220
+
221
+ # At every step in ddim, we are looking into the previous alphas_cumprod
222
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
223
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
224
+ # whether we use the final alpha of the "non-previous" one.
225
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
226
+
227
+ # standard deviation of the initial noise distribution
228
+ self.init_noise_sigma = 1.0
229
+
230
+ # setable values
231
+ self.num_inference_steps = None
232
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
233
+
234
+ def _get_variance(self, timestep, prev_timestep):
235
+ alpha_prod_t = self.alphas_cumprod[timestep]
236
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
237
+ beta_prod_t = 1 - alpha_prod_t
238
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
239
+
240
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
241
+
242
+ return variance
243
+
244
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
245
+ """
246
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
247
+ current timestep.
248
+
249
+ Args:
250
+ sample (`torch.Tensor`):
251
+ The input sample.
252
+ timestep (`int`, *optional*):
253
+ The current timestep in the diffusion chain.
254
+
255
+ Returns:
256
+ `torch.Tensor`:
257
+ A scaled input sample.
258
+ """
259
+ return sample
260
+
261
+ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
262
+ """
263
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
264
+
265
+ Args:
266
+ num_inference_steps (`int`):
267
+ The number of diffusion steps used when generating samples with a pre-trained model.
268
+ """
269
+
270
+ if num_inference_steps > self.config.num_train_timesteps:
271
+ raise ValueError(
272
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
273
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
274
+ f" maximal {self.config.num_train_timesteps} timesteps."
275
+ )
276
+
277
+ self.num_inference_steps = num_inference_steps
278
+
279
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
280
+ if self.config.timestep_spacing == "linspace":
281
+ timesteps = (
282
+ np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
283
+ .round()[::-1]
284
+ .copy()
285
+ .astype(np.int64)
286
+ )
287
+ elif self.config.timestep_spacing == "leading":
288
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
289
+ # creates integer timesteps by multiplying by ratio
290
+ # casting to int to avoid issues when num_inference_step is power of 3
291
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
292
+ timesteps += self.config.steps_offset
293
+ elif self.config.timestep_spacing == "trailing":
294
+ step_ratio = self.config.num_train_timesteps / self.num_inference_steps
295
+ # creates integer timesteps by multiplying by ratio
296
+ # casting to int to avoid issues when num_inference_step is power of 3
297
+ timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
298
+ timesteps -= 1
299
+ else:
300
+ raise ValueError(
301
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
302
+ )
303
+
304
+ self.timesteps = torch.from_numpy(timesteps).to(device)
305
+
306
+ def get_variables(self, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back=None):
307
+ lamb = ((alpha_prod_t / (1 - alpha_prod_t)) ** 0.5).log()
308
+ lamb_next = ((alpha_prod_t_prev / (1 - alpha_prod_t_prev)) ** 0.5).log()
309
+ h = lamb_next - lamb
310
+
311
+ if alpha_prod_t_back is not None:
312
+ lamb_previous = ((alpha_prod_t_back / (1 - alpha_prod_t_back)) ** 0.5).log()
313
+ h_last = lamb - lamb_previous
314
+ r = h_last / h
315
+ return h, r, lamb, lamb_next
316
+ else:
317
+ return h, None, lamb, lamb_next
318
+
319
+ def get_mult(self, h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back):
320
+ mult1 = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 * (-h).exp()
321
+ mult2 = (-2 * h).expm1() * alpha_prod_t_prev**0.5
322
+
323
+ if alpha_prod_t_back is not None:
324
+ mult3 = 1 + 1 / (2 * r)
325
+ mult4 = 1 / (2 * r)
326
+ return mult1, mult2, mult3, mult4
327
+ else:
328
+ return mult1, mult2
329
+
330
+ def step(
331
+ self,
332
+ model_output: torch.Tensor,
333
+ old_pred_original_sample: torch.Tensor,
334
+ timestep: int,
335
+ timestep_back: int,
336
+ sample: torch.Tensor,
337
+ eta: float = 0.0,
338
+ use_clipped_model_output: bool = False,
339
+ generator=None,
340
+ variance_noise: Optional[torch.Tensor] = None,
341
+ return_dict: bool = False,
342
+ ) -> Union[DDIMSchedulerOutput, Tuple]:
343
+ """
344
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
345
+ process from the learned model outputs (most often the predicted noise).
346
+
347
+ Args:
348
+ model_output (`torch.Tensor`):
349
+ The direct output from learned diffusion model.
350
+ timestep (`float`):
351
+ The current discrete timestep in the diffusion chain.
352
+ sample (`torch.Tensor`):
353
+ A current instance of a sample created by the diffusion process.
354
+ eta (`float`):
355
+ The weight of noise for added noise in diffusion step.
356
+ use_clipped_model_output (`bool`, defaults to `False`):
357
+ If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
358
+ because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
359
+ clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
360
+ `use_clipped_model_output` has no effect.
361
+ generator (`torch.Generator`, *optional*):
362
+ A random number generator.
363
+ variance_noise (`torch.Tensor`):
364
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
365
+ itself. Useful for methods such as [`CycleDiffusion`].
366
+ return_dict (`bool`, *optional*, defaults to `True`):
367
+ Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
368
+
369
+ Returns:
370
+ [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
371
+ If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
372
+ tuple is returned where the first element is the sample tensor.
373
+
374
+ """
375
+ if self.num_inference_steps is None:
376
+ raise ValueError(
377
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
378
+ )
379
+
380
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
381
+ # Ideally, read DDIM paper in-detail understanding
382
+
383
+ # Notation (<variable name> -> <name in paper>
384
+ # - pred_noise_t -> e_theta(x_t, t)
385
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
386
+ # - std_dev_t -> sigma_t
387
+ # - eta -> η
388
+ # - pred_sample_direction -> "direction pointing to x_t"
389
+ # - pred_prev_sample -> "x_t-1"
390
+
391
+ # 1. get previous step value (=t-1)
392
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
393
+
394
+ # 2. compute alphas, betas
395
+ alpha_prod_t = self.alphas_cumprod[timestep]
396
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
397
+ alpha_prod_t_back = self.alphas_cumprod[timestep_back] if timestep_back is not None else None
398
+
399
+ beta_prod_t = 1 - alpha_prod_t
400
+
401
+ # 3. compute predicted original sample from predicted noise also called
402
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
403
+ # To make style tests pass, commented out `pred_epsilon` as it is an unused variable
404
+ if self.config.prediction_type == "epsilon":
405
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
406
+ # pred_epsilon = model_output
407
+ elif self.config.prediction_type == "sample":
408
+ pred_original_sample = model_output
409
+ # pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
410
+ elif self.config.prediction_type == "v_prediction":
411
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
412
+ # pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
413
+ else:
414
+ raise ValueError(
415
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
416
+ " `v_prediction`"
417
+ )
418
+
419
+ h, r, lamb, lamb_next = self.get_variables(alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back)
420
+ mult = list(self.get_mult(h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back))
421
+ mult_noise = (1 - alpha_prod_t_prev) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5
422
+
423
+ noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
424
+ prev_sample = mult[0] * sample - mult[1] * pred_original_sample + mult_noise * noise
425
+
426
+ if old_pred_original_sample is None or prev_timestep < 0:
427
+ # Save a network evaluation if all noise levels are 0 or on the first step
428
+ return prev_sample, pred_original_sample
429
+ else:
430
+ denoised_d = mult[2] * pred_original_sample - mult[3] * old_pred_original_sample
431
+ noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
432
+ x_advanced = mult[0] * sample - mult[1] * denoised_d + mult_noise * noise
433
+
434
+ prev_sample = x_advanced
435
+
436
+ if not return_dict:
437
+ return (prev_sample, pred_original_sample)
438
+
439
+ return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
440
+
441
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
442
+ def add_noise(
443
+ self,
444
+ original_samples: torch.Tensor,
445
+ noise: torch.Tensor,
446
+ timesteps: torch.IntTensor,
447
+ ) -> torch.Tensor:
448
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
449
+ # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
450
+ # for the subsequent add_noise calls
451
+ self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
452
+ alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
453
+ timesteps = timesteps.to(original_samples.device)
454
+
455
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
456
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
457
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
458
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
459
+
460
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
461
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
462
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
463
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
464
+
465
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
466
+ return noisy_samples
467
+
468
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
469
+ def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
470
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
471
+ self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
472
+ alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
473
+ timesteps = timesteps.to(sample.device)
474
+
475
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
476
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
477
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
478
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
479
+
480
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
481
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
482
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
483
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
484
+
485
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
486
+ return velocity
487
+
488
+ def __len__(self):
489
+ return self.config.num_train_timesteps