diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1006 @@
1
+ # Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModel,
22
+ CLIPTokenizer,
23
+ T5EncoderModel,
24
+ T5TokenizerFast,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
29
+ from ...models.autoencoders import AutoencoderKL
30
+ from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
31
+ from ...models.transformers import FluxTransformer2DModel
32
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
33
+ from ...utils import (
34
+ USE_PEFT_BACKEND,
35
+ is_torch_xla_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ scale_lora_layers,
39
+ unscale_lora_layers,
40
+ )
41
+ from ...utils.torch_utils import randn_tensor
42
+ from ..pipeline_utils import DiffusionPipeline
43
+ from .pipeline_output import FluxPipelineOutput
44
+
45
+
46
+ if is_torch_xla_available():
47
+ import torch_xla.core.xla_model as xm
48
+
49
+ XLA_AVAILABLE = True
50
+ else:
51
+ XLA_AVAILABLE = False
52
+
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+ EXAMPLE_DOC_STRING = """
57
+ Examples:
58
+ ```py
59
+ >>> import torch
60
+ >>> from diffusers.utils import load_image
61
+ >>> from diffusers import FluxControlNetPipeline
62
+ >>> from diffusers import FluxControlNetModel
63
+
64
+ >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
65
+ >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
66
+ >>> pipe = FluxControlNetPipeline.from_pretrained(
67
+ ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
68
+ ... )
69
+ >>> pipe.to("cuda")
70
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
71
+ >>> prompt = "A girl in city, 25 years old, cool, futuristic"
72
+ >>> image = pipe(
73
+ ... prompt,
74
+ ... control_image=control_image,
75
+ ... control_guidance_start=0.2,
76
+ ... control_guidance_end=0.8,
77
+ ... controlnet_conditioning_scale=1.0,
78
+ ... num_inference_steps=28,
79
+ ... guidance_scale=3.5,
80
+ ... ).images[0]
81
+ >>> image.save("flux.png")
82
+ ```
83
+ """
84
+
85
+
86
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
87
+ def calculate_shift(
88
+ image_seq_len,
89
+ base_seq_len: int = 256,
90
+ max_seq_len: int = 4096,
91
+ base_shift: float = 0.5,
92
+ max_shift: float = 1.16,
93
+ ):
94
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
95
+ b = base_shift - m * base_seq_len
96
+ mu = image_seq_len * m + b
97
+ return mu
98
+
99
+
100
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
101
+ def retrieve_latents(
102
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
103
+ ):
104
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
105
+ return encoder_output.latent_dist.sample(generator)
106
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
107
+ return encoder_output.latent_dist.mode()
108
+ elif hasattr(encoder_output, "latents"):
109
+ return encoder_output.latents
110
+ else:
111
+ raise AttributeError("Could not access latents of provided encoder_output")
112
+
113
+
114
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
115
+ def retrieve_timesteps(
116
+ scheduler,
117
+ num_inference_steps: Optional[int] = None,
118
+ device: Optional[Union[str, torch.device]] = None,
119
+ timesteps: Optional[List[int]] = None,
120
+ sigmas: Optional[List[float]] = None,
121
+ **kwargs,
122
+ ):
123
+ r"""
124
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
125
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
126
+
127
+ Args:
128
+ scheduler (`SchedulerMixin`):
129
+ The scheduler to get timesteps from.
130
+ num_inference_steps (`int`):
131
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
132
+ must be `None`.
133
+ device (`str` or `torch.device`, *optional*):
134
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
135
+ timesteps (`List[int]`, *optional*):
136
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
137
+ `num_inference_steps` and `sigmas` must be `None`.
138
+ sigmas (`List[float]`, *optional*):
139
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
140
+ `num_inference_steps` and `timesteps` must be `None`.
141
+
142
+ Returns:
143
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
144
+ second element is the number of inference steps.
145
+ """
146
+ if timesteps is not None and sigmas is not None:
147
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
148
+ if timesteps is not None:
149
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
150
+ if not accepts_timesteps:
151
+ raise ValueError(
152
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
153
+ f" timestep schedules. Please check whether you are using the correct scheduler."
154
+ )
155
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
156
+ timesteps = scheduler.timesteps
157
+ num_inference_steps = len(timesteps)
158
+ elif sigmas is not None:
159
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
160
+ if not accept_sigmas:
161
+ raise ValueError(
162
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
163
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
164
+ )
165
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
166
+ timesteps = scheduler.timesteps
167
+ num_inference_steps = len(timesteps)
168
+ else:
169
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
170
+ timesteps = scheduler.timesteps
171
+ return timesteps, num_inference_steps
172
+
173
+
174
+ class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
175
+ r"""
176
+ The Flux pipeline for text-to-image generation.
177
+
178
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
179
+
180
+ Args:
181
+ transformer ([`FluxTransformer2DModel`]):
182
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
183
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
184
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
185
+ vae ([`AutoencoderKL`]):
186
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
187
+ text_encoder ([`CLIPTextModel`]):
188
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
189
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
190
+ text_encoder_2 ([`T5EncoderModel`]):
191
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
192
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
193
+ tokenizer (`CLIPTokenizer`):
194
+ Tokenizer of class
195
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
196
+ tokenizer_2 (`T5TokenizerFast`):
197
+ Second Tokenizer of class
198
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
199
+ """
200
+
201
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
202
+ _optional_components = []
203
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
204
+
205
+ def __init__(
206
+ self,
207
+ scheduler: FlowMatchEulerDiscreteScheduler,
208
+ vae: AutoencoderKL,
209
+ text_encoder: CLIPTextModel,
210
+ tokenizer: CLIPTokenizer,
211
+ text_encoder_2: T5EncoderModel,
212
+ tokenizer_2: T5TokenizerFast,
213
+ transformer: FluxTransformer2DModel,
214
+ controlnet: Union[
215
+ FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
216
+ ],
217
+ ):
218
+ super().__init__()
219
+ if isinstance(controlnet, (list, tuple)):
220
+ controlnet = FluxMultiControlNetModel(controlnet)
221
+
222
+ self.register_modules(
223
+ vae=vae,
224
+ text_encoder=text_encoder,
225
+ text_encoder_2=text_encoder_2,
226
+ tokenizer=tokenizer,
227
+ tokenizer_2=tokenizer_2,
228
+ transformer=transformer,
229
+ scheduler=scheduler,
230
+ controlnet=controlnet,
231
+ )
232
+ self.vae_scale_factor = (
233
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
234
+ )
235
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
236
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
237
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
238
+ self.tokenizer_max_length = (
239
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
240
+ )
241
+ self.default_sample_size = 128
242
+
243
+ def _get_t5_prompt_embeds(
244
+ self,
245
+ prompt: Union[str, List[str]] = None,
246
+ num_images_per_prompt: int = 1,
247
+ max_sequence_length: int = 512,
248
+ device: Optional[torch.device] = None,
249
+ dtype: Optional[torch.dtype] = None,
250
+ ):
251
+ device = device or self._execution_device
252
+ dtype = dtype or self.text_encoder.dtype
253
+
254
+ prompt = [prompt] if isinstance(prompt, str) else prompt
255
+ batch_size = len(prompt)
256
+
257
+ if isinstance(self, TextualInversionLoaderMixin):
258
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
259
+
260
+ text_inputs = self.tokenizer_2(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_sequence_length,
264
+ truncation=True,
265
+ return_length=False,
266
+ return_overflowing_tokens=False,
267
+ return_tensors="pt",
268
+ )
269
+ text_input_ids = text_inputs.input_ids
270
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
271
+
272
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
273
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
274
+ logger.warning(
275
+ "The following part of your input was truncated because `max_sequence_length` is set to "
276
+ f" {max_sequence_length} tokens: {removed_text}"
277
+ )
278
+
279
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
280
+
281
+ dtype = self.text_encoder_2.dtype
282
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
283
+
284
+ _, seq_len, _ = prompt_embeds.shape
285
+
286
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
287
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
288
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
289
+
290
+ return prompt_embeds
291
+
292
+ def _get_clip_prompt_embeds(
293
+ self,
294
+ prompt: Union[str, List[str]],
295
+ num_images_per_prompt: int = 1,
296
+ device: Optional[torch.device] = None,
297
+ ):
298
+ device = device or self._execution_device
299
+
300
+ prompt = [prompt] if isinstance(prompt, str) else prompt
301
+ batch_size = len(prompt)
302
+
303
+ if isinstance(self, TextualInversionLoaderMixin):
304
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
305
+
306
+ text_inputs = self.tokenizer(
307
+ prompt,
308
+ padding="max_length",
309
+ max_length=self.tokenizer_max_length,
310
+ truncation=True,
311
+ return_overflowing_tokens=False,
312
+ return_length=False,
313
+ return_tensors="pt",
314
+ )
315
+
316
+ text_input_ids = text_inputs.input_ids
317
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
318
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
319
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
320
+ logger.warning(
321
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
322
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
323
+ )
324
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
325
+
326
+ # Use pooled output of CLIPTextModel
327
+ prompt_embeds = prompt_embeds.pooler_output
328
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
329
+
330
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
331
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
332
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
333
+
334
+ return prompt_embeds
335
+
336
+ def encode_prompt(
337
+ self,
338
+ prompt: Union[str, List[str]],
339
+ prompt_2: Union[str, List[str]],
340
+ device: Optional[torch.device] = None,
341
+ num_images_per_prompt: int = 1,
342
+ prompt_embeds: Optional[torch.FloatTensor] = None,
343
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
344
+ max_sequence_length: int = 512,
345
+ lora_scale: Optional[float] = None,
346
+ ):
347
+ r"""
348
+
349
+ Args:
350
+ prompt (`str` or `List[str]`, *optional*):
351
+ prompt to be encoded
352
+ prompt_2 (`str` or `List[str]`, *optional*):
353
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
354
+ used in all text-encoders
355
+ device: (`torch.device`):
356
+ torch device
357
+ num_images_per_prompt (`int`):
358
+ number of images that should be generated per prompt
359
+ prompt_embeds (`torch.FloatTensor`, *optional*):
360
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
361
+ provided, text embeddings will be generated from `prompt` input argument.
362
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
363
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
364
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
365
+ clip_skip (`int`, *optional*):
366
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
367
+ the output of the pre-final layer will be used for computing the prompt embeddings.
368
+ lora_scale (`float`, *optional*):
369
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
370
+ """
371
+ device = device or self._execution_device
372
+
373
+ # set lora scale so that monkey patched LoRA
374
+ # function of text encoder can correctly access it
375
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
376
+ self._lora_scale = lora_scale
377
+
378
+ # dynamically adjust the LoRA scale
379
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
380
+ scale_lora_layers(self.text_encoder, lora_scale)
381
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
382
+ scale_lora_layers(self.text_encoder_2, lora_scale)
383
+
384
+ prompt = [prompt] if isinstance(prompt, str) else prompt
385
+
386
+ if prompt_embeds is None:
387
+ prompt_2 = prompt_2 or prompt
388
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
389
+
390
+ # We only use the pooled prompt output from the CLIPTextModel
391
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
392
+ prompt=prompt,
393
+ device=device,
394
+ num_images_per_prompt=num_images_per_prompt,
395
+ )
396
+ prompt_embeds = self._get_t5_prompt_embeds(
397
+ prompt=prompt_2,
398
+ num_images_per_prompt=num_images_per_prompt,
399
+ max_sequence_length=max_sequence_length,
400
+ device=device,
401
+ )
402
+
403
+ if self.text_encoder is not None:
404
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
405
+ # Retrieve the original scale by scaling back the LoRA layers
406
+ unscale_lora_layers(self.text_encoder, lora_scale)
407
+
408
+ if self.text_encoder_2 is not None:
409
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
410
+ # Retrieve the original scale by scaling back the LoRA layers
411
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
412
+
413
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
414
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
415
+
416
+ return prompt_embeds, pooled_prompt_embeds, text_ids
417
+
418
+ def check_inputs(
419
+ self,
420
+ prompt,
421
+ prompt_2,
422
+ height,
423
+ width,
424
+ prompt_embeds=None,
425
+ pooled_prompt_embeds=None,
426
+ callback_on_step_end_tensor_inputs=None,
427
+ max_sequence_length=None,
428
+ ):
429
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
430
+ logger.warning(
431
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
432
+ )
433
+
434
+ if callback_on_step_end_tensor_inputs is not None and not all(
435
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
436
+ ):
437
+ raise ValueError(
438
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
439
+ )
440
+
441
+ if prompt is not None and prompt_embeds is not None:
442
+ raise ValueError(
443
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
444
+ " only forward one of the two."
445
+ )
446
+ elif prompt_2 is not None and prompt_embeds is not None:
447
+ raise ValueError(
448
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
449
+ " only forward one of the two."
450
+ )
451
+ elif prompt is None and prompt_embeds is None:
452
+ raise ValueError(
453
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
454
+ )
455
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
456
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
457
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
458
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
459
+
460
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
461
+ raise ValueError(
462
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
463
+ )
464
+
465
+ if max_sequence_length is not None and max_sequence_length > 512:
466
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
467
+
468
+ @staticmethod
469
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
470
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
471
+ latent_image_ids = torch.zeros(height, width, 3)
472
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
473
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
474
+
475
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
476
+
477
+ latent_image_ids = latent_image_ids.reshape(
478
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
479
+ )
480
+
481
+ return latent_image_ids.to(device=device, dtype=dtype)
482
+
483
+ @staticmethod
484
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
485
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
486
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
487
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
488
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
489
+
490
+ return latents
491
+
492
+ @staticmethod
493
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
494
+ def _unpack_latents(latents, height, width, vae_scale_factor):
495
+ batch_size, num_patches, channels = latents.shape
496
+
497
+ # VAE applies 8x compression on images but we must also account for packing which requires
498
+ # latent height and width to be divisible by 2.
499
+ height = 2 * (int(height) // (vae_scale_factor * 2))
500
+ width = 2 * (int(width) // (vae_scale_factor * 2))
501
+
502
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
503
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
504
+
505
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
506
+
507
+ return latents
508
+
509
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
510
+ def prepare_latents(
511
+ self,
512
+ batch_size,
513
+ num_channels_latents,
514
+ height,
515
+ width,
516
+ dtype,
517
+ device,
518
+ generator,
519
+ latents=None,
520
+ ):
521
+ # VAE applies 8x compression on images but we must also account for packing which requires
522
+ # latent height and width to be divisible by 2.
523
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
524
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
525
+
526
+ shape = (batch_size, num_channels_latents, height, width)
527
+
528
+ if latents is not None:
529
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
530
+ return latents.to(device=device, dtype=dtype), latent_image_ids
531
+
532
+ if isinstance(generator, list) and len(generator) != batch_size:
533
+ raise ValueError(
534
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
535
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
536
+ )
537
+
538
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
539
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
540
+
541
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
542
+
543
+ return latents, latent_image_ids
544
+
545
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
546
+ def prepare_image(
547
+ self,
548
+ image,
549
+ width,
550
+ height,
551
+ batch_size,
552
+ num_images_per_prompt,
553
+ device,
554
+ dtype,
555
+ do_classifier_free_guidance=False,
556
+ guess_mode=False,
557
+ ):
558
+ if isinstance(image, torch.Tensor):
559
+ pass
560
+ else:
561
+ image = self.image_processor.preprocess(image, height=height, width=width)
562
+
563
+ image_batch_size = image.shape[0]
564
+
565
+ if image_batch_size == 1:
566
+ repeat_by = batch_size
567
+ else:
568
+ # image batch size is the same as prompt batch size
569
+ repeat_by = num_images_per_prompt
570
+
571
+ image = image.repeat_interleave(repeat_by, dim=0)
572
+
573
+ image = image.to(device=device, dtype=dtype)
574
+
575
+ if do_classifier_free_guidance and not guess_mode:
576
+ image = torch.cat([image] * 2)
577
+
578
+ return image
579
+
580
+ @property
581
+ def guidance_scale(self):
582
+ return self._guidance_scale
583
+
584
+ @property
585
+ def joint_attention_kwargs(self):
586
+ return self._joint_attention_kwargs
587
+
588
+ @property
589
+ def num_timesteps(self):
590
+ return self._num_timesteps
591
+
592
+ @property
593
+ def interrupt(self):
594
+ return self._interrupt
595
+
596
+ @torch.no_grad()
597
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
598
+ def __call__(
599
+ self,
600
+ prompt: Union[str, List[str]] = None,
601
+ prompt_2: Optional[Union[str, List[str]]] = None,
602
+ height: Optional[int] = None,
603
+ width: Optional[int] = None,
604
+ num_inference_steps: int = 28,
605
+ sigmas: Optional[List[float]] = None,
606
+ guidance_scale: float = 7.0,
607
+ control_guidance_start: Union[float, List[float]] = 0.0,
608
+ control_guidance_end: Union[float, List[float]] = 1.0,
609
+ control_image: PipelineImageInput = None,
610
+ control_mode: Optional[Union[int, List[int]]] = None,
611
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
612
+ num_images_per_prompt: Optional[int] = 1,
613
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
614
+ latents: Optional[torch.FloatTensor] = None,
615
+ prompt_embeds: Optional[torch.FloatTensor] = None,
616
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
617
+ output_type: Optional[str] = "pil",
618
+ return_dict: bool = True,
619
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
620
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
621
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
622
+ max_sequence_length: int = 512,
623
+ ):
624
+ r"""
625
+ Function invoked when calling the pipeline for generation.
626
+
627
+ Args:
628
+ prompt (`str` or `List[str]`, *optional*):
629
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
630
+ instead.
631
+ prompt_2 (`str` or `List[str]`, *optional*):
632
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
633
+ will be used instead
634
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
635
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
636
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
637
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
638
+ num_inference_steps (`int`, *optional*, defaults to 50):
639
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
640
+ expense of slower inference.
641
+ sigmas (`List[float]`, *optional*):
642
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
643
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
644
+ will be used.
645
+ guidance_scale (`float`, *optional*, defaults to 7.0):
646
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
647
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
648
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
649
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
650
+ usually at the expense of lower image quality.
651
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
652
+ The percentage of total steps at which the ControlNet starts applying.
653
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
654
+ The percentage of total steps at which the ControlNet stops applying.
655
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
656
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
657
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
658
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
659
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
660
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
661
+ images must be passed as a list such that each element of the list can be correctly batched for input
662
+ to a single ControlNet.
663
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
664
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
665
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
666
+ the corresponding scale as a list.
667
+ control_mode (`int` or `List[int]`,, *optional*, defaults to None):
668
+ The control mode when applying ControlNet-Union.
669
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
670
+ The number of images to generate per prompt.
671
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
672
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
673
+ to make generation deterministic.
674
+ latents (`torch.FloatTensor`, *optional*):
675
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
676
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
677
+ tensor will ge generated by sampling using the supplied random `generator`.
678
+ prompt_embeds (`torch.FloatTensor`, *optional*):
679
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
680
+ provided, text embeddings will be generated from `prompt` input argument.
681
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
682
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
683
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
684
+ output_type (`str`, *optional*, defaults to `"pil"`):
685
+ The output format of the generate image. Choose between
686
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
687
+ return_dict (`bool`, *optional*, defaults to `True`):
688
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
689
+ joint_attention_kwargs (`dict`, *optional*):
690
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
691
+ `self.processor` in
692
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
693
+ callback_on_step_end (`Callable`, *optional*):
694
+ A function that calls at the end of each denoising steps during the inference. The function is called
695
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
696
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
697
+ `callback_on_step_end_tensor_inputs`.
698
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
699
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
700
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
701
+ `._callback_tensor_inputs` attribute of your pipeline class.
702
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
703
+
704
+ Examples:
705
+
706
+ Returns:
707
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
708
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
709
+ images.
710
+ """
711
+
712
+ height = height or self.default_sample_size * self.vae_scale_factor
713
+ width = width or self.default_sample_size * self.vae_scale_factor
714
+
715
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
716
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
717
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
718
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
719
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
720
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
721
+ control_guidance_start, control_guidance_end = (
722
+ mult * [control_guidance_start],
723
+ mult * [control_guidance_end],
724
+ )
725
+
726
+ # 1. Check inputs. Raise error if not correct
727
+ self.check_inputs(
728
+ prompt,
729
+ prompt_2,
730
+ height,
731
+ width,
732
+ prompt_embeds=prompt_embeds,
733
+ pooled_prompt_embeds=pooled_prompt_embeds,
734
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
735
+ max_sequence_length=max_sequence_length,
736
+ )
737
+
738
+ self._guidance_scale = guidance_scale
739
+ self._joint_attention_kwargs = joint_attention_kwargs
740
+ self._interrupt = False
741
+
742
+ # 2. Define call parameters
743
+ if prompt is not None and isinstance(prompt, str):
744
+ batch_size = 1
745
+ elif prompt is not None and isinstance(prompt, list):
746
+ batch_size = len(prompt)
747
+ else:
748
+ batch_size = prompt_embeds.shape[0]
749
+
750
+ device = self._execution_device
751
+ dtype = self.transformer.dtype
752
+
753
+ # 3. Prepare text embeddings
754
+ lora_scale = (
755
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
756
+ )
757
+ (
758
+ prompt_embeds,
759
+ pooled_prompt_embeds,
760
+ text_ids,
761
+ ) = self.encode_prompt(
762
+ prompt=prompt,
763
+ prompt_2=prompt_2,
764
+ prompt_embeds=prompt_embeds,
765
+ pooled_prompt_embeds=pooled_prompt_embeds,
766
+ device=device,
767
+ num_images_per_prompt=num_images_per_prompt,
768
+ max_sequence_length=max_sequence_length,
769
+ lora_scale=lora_scale,
770
+ )
771
+
772
+ # 3. Prepare control image
773
+ num_channels_latents = self.transformer.config.in_channels // 4
774
+ if isinstance(self.controlnet, FluxControlNetModel):
775
+ control_image = self.prepare_image(
776
+ image=control_image,
777
+ width=width,
778
+ height=height,
779
+ batch_size=batch_size * num_images_per_prompt,
780
+ num_images_per_prompt=num_images_per_prompt,
781
+ device=device,
782
+ dtype=self.vae.dtype,
783
+ )
784
+ height, width = control_image.shape[-2:]
785
+
786
+ # xlab controlnet has a input_hint_block and instantx controlnet does not
787
+ controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
788
+ if self.controlnet.input_hint_block is None:
789
+ # vae encode
790
+ control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
791
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
792
+
793
+ # pack
794
+ height_control_image, width_control_image = control_image.shape[2:]
795
+ control_image = self._pack_latents(
796
+ control_image,
797
+ batch_size * num_images_per_prompt,
798
+ num_channels_latents,
799
+ height_control_image,
800
+ width_control_image,
801
+ )
802
+
803
+ # Here we ensure that `control_mode` has the same length as the control_image.
804
+ if control_mode is not None:
805
+ if not isinstance(control_mode, int):
806
+ raise ValueError(" For `FluxControlNet`, `control_mode` should be an `int` or `None`")
807
+ control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
808
+ control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
809
+
810
+ elif isinstance(self.controlnet, FluxMultiControlNetModel):
811
+ control_images = []
812
+ # xlab controlnet has a input_hint_block and instantx controlnet does not
813
+ controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True
814
+ for i, control_image_ in enumerate(control_image):
815
+ control_image_ = self.prepare_image(
816
+ image=control_image_,
817
+ width=width,
818
+ height=height,
819
+ batch_size=batch_size * num_images_per_prompt,
820
+ num_images_per_prompt=num_images_per_prompt,
821
+ device=device,
822
+ dtype=self.vae.dtype,
823
+ )
824
+ height, width = control_image_.shape[-2:]
825
+
826
+ if self.controlnet.nets[0].input_hint_block is None:
827
+ # vae encode
828
+ control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
829
+ control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
830
+
831
+ # pack
832
+ height_control_image, width_control_image = control_image_.shape[2:]
833
+ control_image_ = self._pack_latents(
834
+ control_image_,
835
+ batch_size * num_images_per_prompt,
836
+ num_channels_latents,
837
+ height_control_image,
838
+ width_control_image,
839
+ )
840
+ control_images.append(control_image_)
841
+
842
+ control_image = control_images
843
+
844
+ # Here we ensure that `control_mode` has the same length as the control_image.
845
+ if isinstance(control_mode, list) and len(control_mode) != len(control_image):
846
+ raise ValueError(
847
+ "For Multi-ControlNet, `control_mode` must be a list of the same "
848
+ + " length as the number of controlnets (control images) specified"
849
+ )
850
+ if not isinstance(control_mode, list):
851
+ control_mode = [control_mode] * len(control_image)
852
+ # set control mode
853
+ control_modes = []
854
+ for cmode in control_mode:
855
+ if cmode is None:
856
+ cmode = -1
857
+ control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
858
+ control_modes.append(control_mode)
859
+ control_mode = control_modes
860
+
861
+ # 4. Prepare latent variables
862
+ num_channels_latents = self.transformer.config.in_channels // 4
863
+ latents, latent_image_ids = self.prepare_latents(
864
+ batch_size * num_images_per_prompt,
865
+ num_channels_latents,
866
+ height,
867
+ width,
868
+ prompt_embeds.dtype,
869
+ device,
870
+ generator,
871
+ latents,
872
+ )
873
+
874
+ # 5. Prepare timesteps
875
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
876
+ image_seq_len = latents.shape[1]
877
+ mu = calculate_shift(
878
+ image_seq_len,
879
+ self.scheduler.config.base_image_seq_len,
880
+ self.scheduler.config.max_image_seq_len,
881
+ self.scheduler.config.base_shift,
882
+ self.scheduler.config.max_shift,
883
+ )
884
+ timesteps, num_inference_steps = retrieve_timesteps(
885
+ self.scheduler,
886
+ num_inference_steps,
887
+ device,
888
+ sigmas=sigmas,
889
+ mu=mu,
890
+ )
891
+
892
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
893
+ self._num_timesteps = len(timesteps)
894
+
895
+ # 6. Create tensor stating which controlnets to keep
896
+ controlnet_keep = []
897
+ for i in range(len(timesteps)):
898
+ keeps = [
899
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
900
+ for s, e in zip(control_guidance_start, control_guidance_end)
901
+ ]
902
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
903
+
904
+ # 7. Denoising loop
905
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
906
+ for i, t in enumerate(timesteps):
907
+ if self.interrupt:
908
+ continue
909
+
910
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
911
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
912
+
913
+ if isinstance(self.controlnet, FluxMultiControlNetModel):
914
+ use_guidance = self.controlnet.nets[0].config.guidance_embeds
915
+ else:
916
+ use_guidance = self.controlnet.config.guidance_embeds
917
+
918
+ guidance = torch.tensor([guidance_scale], device=device) if use_guidance else None
919
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
920
+
921
+ if isinstance(controlnet_keep[i], list):
922
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
923
+ else:
924
+ controlnet_cond_scale = controlnet_conditioning_scale
925
+ if isinstance(controlnet_cond_scale, list):
926
+ controlnet_cond_scale = controlnet_cond_scale[0]
927
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
928
+
929
+ # controlnet
930
+ controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
931
+ hidden_states=latents,
932
+ controlnet_cond=control_image,
933
+ controlnet_mode=control_mode,
934
+ conditioning_scale=cond_scale,
935
+ timestep=timestep / 1000,
936
+ guidance=guidance,
937
+ pooled_projections=pooled_prompt_embeds,
938
+ encoder_hidden_states=prompt_embeds,
939
+ txt_ids=text_ids,
940
+ img_ids=latent_image_ids,
941
+ joint_attention_kwargs=self.joint_attention_kwargs,
942
+ return_dict=False,
943
+ )
944
+
945
+ guidance = (
946
+ torch.tensor([guidance_scale], device=device) if self.transformer.config.guidance_embeds else None
947
+ )
948
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
949
+
950
+ noise_pred = self.transformer(
951
+ hidden_states=latents,
952
+ timestep=timestep / 1000,
953
+ guidance=guidance,
954
+ pooled_projections=pooled_prompt_embeds,
955
+ encoder_hidden_states=prompt_embeds,
956
+ controlnet_block_samples=controlnet_block_samples,
957
+ controlnet_single_block_samples=controlnet_single_block_samples,
958
+ txt_ids=text_ids,
959
+ img_ids=latent_image_ids,
960
+ joint_attention_kwargs=self.joint_attention_kwargs,
961
+ return_dict=False,
962
+ controlnet_blocks_repeat=controlnet_blocks_repeat,
963
+ )[0]
964
+
965
+ # compute the previous noisy sample x_t -> x_t-1
966
+ latents_dtype = latents.dtype
967
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
968
+
969
+ if latents.dtype != latents_dtype:
970
+ if torch.backends.mps.is_available():
971
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
972
+ latents = latents.to(latents_dtype)
973
+
974
+ if callback_on_step_end is not None:
975
+ callback_kwargs = {}
976
+ for k in callback_on_step_end_tensor_inputs:
977
+ callback_kwargs[k] = locals()[k]
978
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
979
+
980
+ latents = callback_outputs.pop("latents", latents)
981
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
982
+
983
+ # call the callback, if provided
984
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
985
+ progress_bar.update()
986
+
987
+ if XLA_AVAILABLE:
988
+ xm.mark_step()
989
+
990
+ if output_type == "latent":
991
+ image = latents
992
+
993
+ else:
994
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
995
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
996
+
997
+ image = self.vae.decode(latents, return_dict=False)[0]
998
+ image = self.image_processor.postprocess(image, output_type=output_type)
999
+
1000
+ # Offload all models
1001
+ self.maybe_free_model_hooks()
1002
+
1003
+ if not return_dict:
1004
+ return (image,)
1005
+
1006
+ return FluxPipelineOutput(images=image)