diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -37,16 +37,16 @@ class LCMSchedulerOutput(BaseOutput):
|
|
37
37
|
Output class for the scheduler's `step` function output.
|
38
38
|
|
39
39
|
Args:
|
40
|
-
prev_sample (`torch.
|
40
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
41
41
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
42
42
|
denoising loop.
|
43
|
-
pred_original_sample (`torch.
|
43
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
44
44
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
45
45
|
`pred_original_sample` can be used to preview progress or for guidance.
|
46
46
|
"""
|
47
47
|
|
48
|
-
prev_sample: torch.
|
49
|
-
denoised: Optional[torch.
|
48
|
+
prev_sample: torch.Tensor
|
49
|
+
denoised: Optional[torch.Tensor] = None
|
50
50
|
|
51
51
|
|
52
52
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -84,7 +84,7 @@ def betas_for_alpha_bar(
|
|
84
84
|
return math.exp(t * -12.0)
|
85
85
|
|
86
86
|
else:
|
87
|
-
raise ValueError(f"Unsupported
|
87
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
88
88
|
|
89
89
|
betas = []
|
90
90
|
for i in range(num_diffusion_timesteps):
|
@@ -95,17 +95,17 @@ def betas_for_alpha_bar(
|
|
95
95
|
|
96
96
|
|
97
97
|
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
98
|
-
def rescale_zero_terminal_snr(betas: torch.
|
98
|
+
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
|
99
99
|
"""
|
100
100
|
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
101
101
|
|
102
102
|
|
103
103
|
Args:
|
104
|
-
betas (`torch.
|
104
|
+
betas (`torch.Tensor`):
|
105
105
|
the betas that the scheduler is being initialized with.
|
106
106
|
|
107
107
|
Returns:
|
108
|
-
`torch.
|
108
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
109
109
|
"""
|
110
110
|
# Convert betas to alphas_bar_sqrt
|
111
111
|
alphas = 1.0 - betas
|
@@ -224,7 +224,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
224
224
|
# Glide cosine schedule
|
225
225
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
226
226
|
else:
|
227
|
-
raise NotImplementedError(f"{beta_schedule}
|
227
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
228
228
|
|
229
229
|
# Rescale for zero SNR
|
230
230
|
if rescale_betas_zero_snr:
|
@@ -296,24 +296,24 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
296
296
|
"""
|
297
297
|
self._begin_index = begin_index
|
298
298
|
|
299
|
-
def scale_model_input(self, sample: torch.
|
299
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
300
300
|
"""
|
301
301
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
302
302
|
current timestep.
|
303
303
|
|
304
304
|
Args:
|
305
|
-
sample (`torch.
|
305
|
+
sample (`torch.Tensor`):
|
306
306
|
The input sample.
|
307
307
|
timestep (`int`, *optional*):
|
308
308
|
The current timestep in the diffusion chain.
|
309
309
|
Returns:
|
310
|
-
`torch.
|
310
|
+
`torch.Tensor`:
|
311
311
|
A scaled input sample.
|
312
312
|
"""
|
313
313
|
return sample
|
314
314
|
|
315
315
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
316
|
-
def _threshold_sample(self, sample: torch.
|
316
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
317
317
|
"""
|
318
318
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
319
319
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -497,9 +497,9 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
497
497
|
|
498
498
|
def step(
|
499
499
|
self,
|
500
|
-
model_output: torch.
|
500
|
+
model_output: torch.Tensor,
|
501
501
|
timestep: int,
|
502
|
-
sample: torch.
|
502
|
+
sample: torch.Tensor,
|
503
503
|
generator: Optional[torch.Generator] = None,
|
504
504
|
return_dict: bool = True,
|
505
505
|
) -> Union[LCMSchedulerOutput, Tuple]:
|
@@ -508,11 +508,11 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
508
508
|
process from the learned model outputs (most often the predicted noise).
|
509
509
|
|
510
510
|
Args:
|
511
|
-
model_output (`torch.
|
511
|
+
model_output (`torch.Tensor`):
|
512
512
|
The direct output from learned diffusion model.
|
513
513
|
timestep (`float`):
|
514
514
|
The current discrete timestep in the diffusion chain.
|
515
|
-
sample (`torch.
|
515
|
+
sample (`torch.Tensor`):
|
516
516
|
A current instance of a sample created by the diffusion process.
|
517
517
|
generator (`torch.Generator`, *optional*):
|
518
518
|
A random number generator.
|
@@ -594,10 +594,10 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
594
594
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
595
595
|
def add_noise(
|
596
596
|
self,
|
597
|
-
original_samples: torch.
|
598
|
-
noise: torch.
|
597
|
+
original_samples: torch.Tensor,
|
598
|
+
noise: torch.Tensor,
|
599
599
|
timesteps: torch.IntTensor,
|
600
|
-
) -> torch.
|
600
|
+
) -> torch.Tensor:
|
601
601
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
602
602
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
603
603
|
# for the subsequent add_noise calls
|
@@ -619,9 +619,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
619
619
|
return noisy_samples
|
620
620
|
|
621
621
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
622
|
-
def get_velocity(
|
623
|
-
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
624
|
-
) -> torch.FloatTensor:
|
622
|
+
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
|
625
623
|
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
626
624
|
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
627
625
|
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
@@ -645,16 +643,12 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
645
643
|
|
646
644
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
|
647
645
|
def previous_timestep(self, timestep):
|
648
|
-
if self.custom_timesteps:
|
646
|
+
if self.custom_timesteps or self.num_inference_steps:
|
649
647
|
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
|
650
648
|
if index == self.timesteps.shape[0] - 1:
|
651
649
|
prev_t = torch.tensor(-1)
|
652
650
|
else:
|
653
651
|
prev_t = self.timesteps[index + 1]
|
654
652
|
else:
|
655
|
-
|
656
|
-
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
657
|
-
)
|
658
|
-
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
|
659
|
-
|
653
|
+
prev_t = timestep - 1
|
660
654
|
return prev_t
|
@@ -17,6 +17,7 @@ from dataclasses import dataclass
|
|
17
17
|
from typing import List, Optional, Tuple, Union
|
18
18
|
|
19
19
|
import numpy as np
|
20
|
+
import scipy.stats
|
20
21
|
import torch
|
21
22
|
from scipy import integrate
|
22
23
|
|
@@ -32,16 +33,16 @@ class LMSDiscreteSchedulerOutput(BaseOutput):
|
|
32
33
|
Output class for the scheduler's `step` function output.
|
33
34
|
|
34
35
|
Args:
|
35
|
-
prev_sample (`torch.
|
36
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
36
37
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
37
38
|
denoising loop.
|
38
|
-
pred_original_sample (`torch.
|
39
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
39
40
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
40
41
|
`pred_original_sample` can be used to preview progress or for guidance.
|
41
42
|
"""
|
42
43
|
|
43
|
-
prev_sample: torch.
|
44
|
-
pred_original_sample: Optional[torch.
|
44
|
+
prev_sample: torch.Tensor
|
45
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
45
46
|
|
46
47
|
|
47
48
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -79,7 +80,7 @@ def betas_for_alpha_bar(
|
|
79
80
|
return math.exp(t * -12.0)
|
80
81
|
|
81
82
|
else:
|
82
|
-
raise ValueError(f"Unsupported
|
83
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
83
84
|
|
84
85
|
betas = []
|
85
86
|
for i in range(num_diffusion_timesteps):
|
@@ -111,6 +112,11 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
111
112
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
112
113
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
113
114
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
115
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
116
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
117
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
118
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
119
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
114
120
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
115
121
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
116
122
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
@@ -134,10 +140,16 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
134
140
|
beta_schedule: str = "linear",
|
135
141
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
136
142
|
use_karras_sigmas: Optional[bool] = False,
|
143
|
+
use_exponential_sigmas: Optional[bool] = False,
|
144
|
+
use_beta_sigmas: Optional[bool] = False,
|
137
145
|
prediction_type: str = "epsilon",
|
138
146
|
timestep_spacing: str = "linspace",
|
139
147
|
steps_offset: int = 0,
|
140
148
|
):
|
149
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
150
|
+
raise ValueError(
|
151
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
152
|
+
)
|
141
153
|
if trained_betas is not None:
|
142
154
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
143
155
|
elif beta_schedule == "linear":
|
@@ -149,7 +161,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
149
161
|
# Glide cosine schedule
|
150
162
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
151
163
|
else:
|
152
|
-
raise NotImplementedError(f"{beta_schedule}
|
164
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
153
165
|
|
154
166
|
self.alphas = 1.0 - self.betas
|
155
167
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -180,7 +192,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
180
192
|
@property
|
181
193
|
def step_index(self):
|
182
194
|
"""
|
183
|
-
The index counter for current timestep. It will
|
195
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
184
196
|
"""
|
185
197
|
return self._step_index
|
186
198
|
|
@@ -202,21 +214,19 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
202
214
|
"""
|
203
215
|
self._begin_index = begin_index
|
204
216
|
|
205
|
-
def scale_model_input(
|
206
|
-
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
207
|
-
) -> torch.FloatTensor:
|
217
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
208
218
|
"""
|
209
219
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
210
220
|
current timestep.
|
211
221
|
|
212
222
|
Args:
|
213
|
-
sample (`torch.
|
223
|
+
sample (`torch.Tensor`):
|
214
224
|
The input sample.
|
215
|
-
timestep (`float` or `torch.
|
225
|
+
timestep (`float` or `torch.Tensor`):
|
216
226
|
The current timestep in the diffusion chain.
|
217
227
|
|
218
228
|
Returns:
|
219
|
-
`torch.
|
229
|
+
`torch.Tensor`:
|
220
230
|
A scaled input sample.
|
221
231
|
"""
|
222
232
|
|
@@ -288,9 +298,15 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
288
298
|
log_sigmas = np.log(sigmas)
|
289
299
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
290
300
|
|
291
|
-
if self.use_karras_sigmas:
|
301
|
+
if self.config.use_karras_sigmas:
|
292
302
|
sigmas = self._convert_to_karras(in_sigmas=sigmas)
|
293
303
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
304
|
+
elif self.config.use_exponential_sigmas:
|
305
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
306
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
307
|
+
elif self.config.use_beta_sigmas:
|
308
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
309
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
294
310
|
|
295
311
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
296
312
|
|
@@ -326,7 +342,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
326
342
|
else:
|
327
343
|
self._step_index = self._begin_index
|
328
344
|
|
329
|
-
#
|
345
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
330
346
|
def _sigma_to_t(self, sigma, log_sigmas):
|
331
347
|
# get log sigma
|
332
348
|
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
@@ -350,8 +366,8 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
350
366
|
t = t.reshape(sigma.shape)
|
351
367
|
return t
|
352
368
|
|
353
|
-
# copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
|
354
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
369
|
+
# copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
370
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
|
355
371
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
356
372
|
|
357
373
|
sigma_min: float = in_sigmas[-1].item()
|
@@ -364,11 +380,65 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
364
380
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
365
381
|
return sigmas
|
366
382
|
|
383
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
384
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
385
|
+
"""Constructs an exponential noise schedule."""
|
386
|
+
|
387
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
388
|
+
# TODO: Add this logic to the other schedulers
|
389
|
+
if hasattr(self.config, "sigma_min"):
|
390
|
+
sigma_min = self.config.sigma_min
|
391
|
+
else:
|
392
|
+
sigma_min = None
|
393
|
+
|
394
|
+
if hasattr(self.config, "sigma_max"):
|
395
|
+
sigma_max = self.config.sigma_max
|
396
|
+
else:
|
397
|
+
sigma_max = None
|
398
|
+
|
399
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
400
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
401
|
+
|
402
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
403
|
+
return sigmas
|
404
|
+
|
405
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
406
|
+
def _convert_to_beta(
|
407
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
408
|
+
) -> torch.Tensor:
|
409
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
410
|
+
|
411
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
412
|
+
# TODO: Add this logic to the other schedulers
|
413
|
+
if hasattr(self.config, "sigma_min"):
|
414
|
+
sigma_min = self.config.sigma_min
|
415
|
+
else:
|
416
|
+
sigma_min = None
|
417
|
+
|
418
|
+
if hasattr(self.config, "sigma_max"):
|
419
|
+
sigma_max = self.config.sigma_max
|
420
|
+
else:
|
421
|
+
sigma_max = None
|
422
|
+
|
423
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
424
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
425
|
+
|
426
|
+
sigmas = np.array(
|
427
|
+
[
|
428
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
429
|
+
for ppf in [
|
430
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
431
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
432
|
+
]
|
433
|
+
]
|
434
|
+
)
|
435
|
+
return sigmas
|
436
|
+
|
367
437
|
def step(
|
368
438
|
self,
|
369
|
-
model_output: torch.
|
370
|
-
timestep: Union[float, torch.
|
371
|
-
sample: torch.
|
439
|
+
model_output: torch.Tensor,
|
440
|
+
timestep: Union[float, torch.Tensor],
|
441
|
+
sample: torch.Tensor,
|
372
442
|
order: int = 4,
|
373
443
|
return_dict: bool = True,
|
374
444
|
) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
|
@@ -377,11 +447,11 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
377
447
|
process from the learned model outputs (most often the predicted noise).
|
378
448
|
|
379
449
|
Args:
|
380
|
-
model_output (`torch.
|
450
|
+
model_output (`torch.Tensor`):
|
381
451
|
The direct output from learned diffusion model.
|
382
|
-
timestep (`float` or `torch.
|
452
|
+
timestep (`float` or `torch.Tensor`):
|
383
453
|
The current discrete timestep in the diffusion chain.
|
384
|
-
sample (`torch.
|
454
|
+
sample (`torch.Tensor`):
|
385
455
|
A current instance of a sample created by the diffusion process.
|
386
456
|
order (`int`, defaults to 4):
|
387
457
|
The order of the linear multistep method.
|
@@ -437,17 +507,20 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
437
507
|
self._step_index += 1
|
438
508
|
|
439
509
|
if not return_dict:
|
440
|
-
return (
|
510
|
+
return (
|
511
|
+
prev_sample,
|
512
|
+
pred_original_sample,
|
513
|
+
)
|
441
514
|
|
442
515
|
return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
443
516
|
|
444
517
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
445
518
|
def add_noise(
|
446
519
|
self,
|
447
|
-
original_samples: torch.
|
448
|
-
noise: torch.
|
449
|
-
timesteps: torch.
|
450
|
-
) -> torch.
|
520
|
+
original_samples: torch.Tensor,
|
521
|
+
noise: torch.Tensor,
|
522
|
+
timesteps: torch.Tensor,
|
523
|
+
) -> torch.Tensor:
|
451
524
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
452
525
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
453
526
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -461,7 +534,11 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
461
534
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
462
535
|
if self.begin_index is None:
|
463
536
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
537
|
+
elif self.step_index is not None:
|
538
|
+
# add_noise is called after first denoising step (for inpainting)
|
539
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
464
540
|
else:
|
541
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
465
542
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
466
543
|
|
467
544
|
sigma = sigmas[step_indices].flatten()
|
@@ -59,7 +59,7 @@ def betas_for_alpha_bar(
|
|
59
59
|
return math.exp(t * -12.0)
|
60
60
|
|
61
61
|
else:
|
62
|
-
raise ValueError(f"Unsupported
|
62
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
63
63
|
|
64
64
|
betas = []
|
65
65
|
for i in range(num_diffusion_timesteps):
|
@@ -135,7 +135,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
135
135
|
# Glide cosine schedule
|
136
136
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
137
137
|
else:
|
138
|
-
raise NotImplementedError(f"{beta_schedule}
|
138
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
139
139
|
|
140
140
|
self.alphas = 1.0 - self.betas
|
141
141
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -225,9 +225,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
225
225
|
|
226
226
|
def step(
|
227
227
|
self,
|
228
|
-
model_output: torch.
|
228
|
+
model_output: torch.Tensor,
|
229
229
|
timestep: int,
|
230
|
-
sample: torch.
|
230
|
+
sample: torch.Tensor,
|
231
231
|
return_dict: bool = True,
|
232
232
|
) -> Union[SchedulerOutput, Tuple]:
|
233
233
|
"""
|
@@ -236,11 +236,11 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
236
236
|
or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
|
237
237
|
|
238
238
|
Args:
|
239
|
-
model_output (`torch.
|
239
|
+
model_output (`torch.Tensor`):
|
240
240
|
The direct output from learned diffusion model.
|
241
241
|
timestep (`int`):
|
242
242
|
The current discrete timestep in the diffusion chain.
|
243
|
-
sample (`torch.
|
243
|
+
sample (`torch.Tensor`):
|
244
244
|
A current instance of a sample created by the diffusion process.
|
245
245
|
return_dict (`bool`):
|
246
246
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
@@ -258,9 +258,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
258
258
|
|
259
259
|
def step_prk(
|
260
260
|
self,
|
261
|
-
model_output: torch.
|
261
|
+
model_output: torch.Tensor,
|
262
262
|
timestep: int,
|
263
|
-
sample: torch.
|
263
|
+
sample: torch.Tensor,
|
264
264
|
return_dict: bool = True,
|
265
265
|
) -> Union[SchedulerOutput, Tuple]:
|
266
266
|
"""
|
@@ -269,11 +269,11 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
269
269
|
equation.
|
270
270
|
|
271
271
|
Args:
|
272
|
-
model_output (`torch.
|
272
|
+
model_output (`torch.Tensor`):
|
273
273
|
The direct output from learned diffusion model.
|
274
274
|
timestep (`int`):
|
275
275
|
The current discrete timestep in the diffusion chain.
|
276
|
-
sample (`torch.
|
276
|
+
sample (`torch.Tensor`):
|
277
277
|
A current instance of a sample created by the diffusion process.
|
278
278
|
return_dict (`bool`):
|
279
279
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
|
@@ -318,9 +318,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
318
318
|
|
319
319
|
def step_plms(
|
320
320
|
self,
|
321
|
-
model_output: torch.
|
321
|
+
model_output: torch.Tensor,
|
322
322
|
timestep: int,
|
323
|
-
sample: torch.
|
323
|
+
sample: torch.Tensor,
|
324
324
|
return_dict: bool = True,
|
325
325
|
) -> Union[SchedulerOutput, Tuple]:
|
326
326
|
"""
|
@@ -328,11 +328,11 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
328
328
|
the linear multistep method. It performs one forward pass multiple times to approximate the solution.
|
329
329
|
|
330
330
|
Args:
|
331
|
-
model_output (`torch.
|
331
|
+
model_output (`torch.Tensor`):
|
332
332
|
The direct output from learned diffusion model.
|
333
333
|
timestep (`int`):
|
334
334
|
The current discrete timestep in the diffusion chain.
|
335
|
-
sample (`torch.
|
335
|
+
sample (`torch.Tensor`):
|
336
336
|
A current instance of a sample created by the diffusion process.
|
337
337
|
return_dict (`bool`):
|
338
338
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
|
@@ -387,17 +387,17 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
387
387
|
|
388
388
|
return SchedulerOutput(prev_sample=prev_sample)
|
389
389
|
|
390
|
-
def scale_model_input(self, sample: torch.
|
390
|
+
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
391
391
|
"""
|
392
392
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
393
393
|
current timestep.
|
394
394
|
|
395
395
|
Args:
|
396
|
-
sample (`torch.
|
396
|
+
sample (`torch.Tensor`):
|
397
397
|
The input sample.
|
398
398
|
|
399
399
|
Returns:
|
400
|
-
`torch.
|
400
|
+
`torch.Tensor`:
|
401
401
|
A scaled input sample.
|
402
402
|
"""
|
403
403
|
return sample
|
@@ -448,10 +448,10 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
448
448
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
449
449
|
def add_noise(
|
450
450
|
self,
|
451
|
-
original_samples: torch.
|
452
|
-
noise: torch.
|
451
|
+
original_samples: torch.Tensor,
|
452
|
+
noise: torch.Tensor,
|
453
453
|
timesteps: torch.IntTensor,
|
454
|
-
) -> torch.
|
454
|
+
) -> torch.Tensor:
|
455
455
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
456
456
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
457
457
|
# for the subsequent add_noise calls
|
@@ -31,16 +31,16 @@ class RePaintSchedulerOutput(BaseOutput):
|
|
31
31
|
Output class for the scheduler's step function output.
|
32
32
|
|
33
33
|
Args:
|
34
|
-
prev_sample (`torch.
|
34
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
35
35
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
36
36
|
denoising loop.
|
37
|
-
pred_original_sample (`torch.
|
37
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
38
38
|
The predicted denoised sample (x_{0}) based on the model output from
|
39
39
|
the current timestep. `pred_original_sample` can be used to preview progress or for guidance.
|
40
40
|
"""
|
41
41
|
|
42
|
-
prev_sample: torch.
|
43
|
-
pred_original_sample: torch.
|
42
|
+
prev_sample: torch.Tensor
|
43
|
+
pred_original_sample: torch.Tensor
|
44
44
|
|
45
45
|
|
46
46
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -78,7 +78,7 @@ def betas_for_alpha_bar(
|
|
78
78
|
return math.exp(t * -12.0)
|
79
79
|
|
80
80
|
else:
|
81
|
-
raise ValueError(f"Unsupported
|
81
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
82
82
|
|
83
83
|
betas = []
|
84
84
|
for i in range(num_diffusion_timesteps):
|
@@ -143,7 +143,7 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
|
143
143
|
betas = torch.linspace(-6, 6, num_train_timesteps)
|
144
144
|
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
145
145
|
else:
|
146
|
-
raise NotImplementedError(f"{beta_schedule}
|
146
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
147
147
|
|
148
148
|
self.alphas = 1.0 - self.betas
|
149
149
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -160,19 +160,19 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
|
160
160
|
|
161
161
|
self.eta = eta
|
162
162
|
|
163
|
-
def scale_model_input(self, sample: torch.
|
163
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
164
164
|
"""
|
165
165
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
166
166
|
current timestep.
|
167
167
|
|
168
168
|
Args:
|
169
|
-
sample (`torch.
|
169
|
+
sample (`torch.Tensor`):
|
170
170
|
The input sample.
|
171
171
|
timestep (`int`, *optional*):
|
172
172
|
The current timestep in the diffusion chain.
|
173
173
|
|
174
174
|
Returns:
|
175
|
-
`torch.
|
175
|
+
`torch.Tensor`:
|
176
176
|
A scaled input sample.
|
177
177
|
"""
|
178
178
|
return sample
|
@@ -245,11 +245,11 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
|
245
245
|
|
246
246
|
def step(
|
247
247
|
self,
|
248
|
-
model_output: torch.
|
248
|
+
model_output: torch.Tensor,
|
249
249
|
timestep: int,
|
250
|
-
sample: torch.
|
251
|
-
original_image: torch.
|
252
|
-
mask: torch.
|
250
|
+
sample: torch.Tensor,
|
251
|
+
original_image: torch.Tensor,
|
252
|
+
mask: torch.Tensor,
|
253
253
|
generator: Optional[torch.Generator] = None,
|
254
254
|
return_dict: bool = True,
|
255
255
|
) -> Union[RePaintSchedulerOutput, Tuple]:
|
@@ -258,15 +258,15 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
|
258
258
|
process from the learned model outputs (most often the predicted noise).
|
259
259
|
|
260
260
|
Args:
|
261
|
-
model_output (`torch.
|
261
|
+
model_output (`torch.Tensor`):
|
262
262
|
The direct output from learned diffusion model.
|
263
263
|
timestep (`int`):
|
264
264
|
The current discrete timestep in the diffusion chain.
|
265
|
-
sample (`torch.
|
265
|
+
sample (`torch.Tensor`):
|
266
266
|
A current instance of a sample created by the diffusion process.
|
267
|
-
original_image (`torch.
|
267
|
+
original_image (`torch.Tensor`):
|
268
268
|
The original image to inpaint on.
|
269
|
-
mask (`torch.
|
269
|
+
mask (`torch.Tensor`):
|
270
270
|
The mask where a value of 0.0 indicates which part of the original image to inpaint.
|
271
271
|
generator (`torch.Generator`, *optional*):
|
272
272
|
A random number generator.
|
@@ -319,7 +319,7 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
|
319
319
|
prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance
|
320
320
|
|
321
321
|
# 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf
|
322
|
-
prev_known_part = (alpha_prod_t_prev**0.5) * original_image + (
|
322
|
+
prev_known_part = (alpha_prod_t_prev**0.5) * original_image + (1 - alpha_prod_t_prev) * noise
|
323
323
|
|
324
324
|
# 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf
|
325
325
|
pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part
|
@@ -351,10 +351,10 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
|
|
351
351
|
|
352
352
|
def add_noise(
|
353
353
|
self,
|
354
|
-
original_samples: torch.
|
355
|
-
noise: torch.
|
354
|
+
original_samples: torch.Tensor,
|
355
|
+
noise: torch.Tensor,
|
356
356
|
timesteps: torch.IntTensor,
|
357
|
-
) -> torch.
|
357
|
+
) -> torch.Tensor:
|
358
358
|
raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.")
|
359
359
|
|
360
360
|
def __len__(self):
|