diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,17 +22,17 @@ class UNetSpatioTemporalConditionOutput(BaseOutput):
22
22
  The output of [`UNetSpatioTemporalConditionModel`].
23
23
 
24
24
  Args:
25
- sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
25
+ sample (`torch.Tensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
26
26
  The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
27
27
  """
28
28
 
29
- sample: torch.FloatTensor = None
29
+ sample: torch.Tensor = None
30
30
 
31
31
 
32
32
  class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
33
33
  r"""
34
- A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
35
- shaped output.
34
+ A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
35
+ returns a sample shaped output.
36
36
 
37
37
  This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
38
38
  for all models (such as downloading or saving).
@@ -57,8 +57,9 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
57
57
  The dimension of the cross attention features.
58
58
  transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
59
59
  The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
60
- [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
61
- [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
60
+ [`~models.unets.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
61
+ [`~models.unets.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
62
+ [`~models.unets.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
62
63
  num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
63
64
  The number of attention heads.
64
65
  dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
@@ -260,7 +261,7 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
260
261
  processors: Dict[str, AttentionProcessor],
261
262
  ):
262
263
  if hasattr(module, "get_processor"):
263
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
264
+ processors[f"{name}.processor"] = module.get_processor()
264
265
 
265
266
  for sub_name, child in module.named_children():
266
267
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -355,7 +356,7 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
355
356
 
356
357
  def forward(
357
358
  self,
358
- sample: torch.FloatTensor,
359
+ sample: torch.Tensor,
359
360
  timestep: Union[torch.Tensor, float, int],
360
361
  encoder_hidden_states: torch.Tensor,
361
362
  added_time_ids: torch.Tensor,
@@ -365,22 +366,36 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
365
366
  The [`UNetSpatioTemporalConditionModel`] forward method.
366
367
 
367
368
  Args:
368
- sample (`torch.FloatTensor`):
369
+ sample (`torch.Tensor`):
369
370
  The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
370
- timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
371
- encoder_hidden_states (`torch.FloatTensor`):
371
+ timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
372
+ encoder_hidden_states (`torch.Tensor`):
372
373
  The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
373
- added_time_ids: (`torch.FloatTensor`):
374
+ added_time_ids: (`torch.Tensor`):
374
375
  The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
375
376
  embeddings and added to the time embeddings.
376
377
  return_dict (`bool`, *optional*, defaults to `True`):
377
- Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
378
- tuple.
378
+ Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead
379
+ of a plain tuple.
379
380
  Returns:
380
381
  [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
381
- If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
382
- a `tuple` is returned where the first element is the sample tensor.
382
+ If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is
383
+ returned, otherwise a `tuple` is returned where the first element is the sample tensor.
383
384
  """
385
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
386
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
387
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
388
+ # on the fly if necessary.
389
+ default_overall_up_factor = 2**self.num_upsamplers
390
+
391
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
392
+ forward_upsample_size = False
393
+ upsample_size = None
394
+
395
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
396
+ logger.info("Forward upsample size to force interpolation output size.")
397
+ forward_upsample_size = True
398
+
384
399
  # 1. time
385
400
  timesteps = timestep
386
401
  if not torch.is_tensor(timesteps):
@@ -456,15 +471,23 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
456
471
 
457
472
  # 5. up
458
473
  for i, upsample_block in enumerate(self.up_blocks):
474
+ is_final_block = i == len(self.up_blocks) - 1
475
+
459
476
  res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
460
477
  down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
461
478
 
479
+ # if we have not reached the final block and need to forward the
480
+ # upsample size, we do it here
481
+ if not is_final_block and forward_upsample_size:
482
+ upsample_size = down_block_res_samples[-1].shape[2:]
483
+
462
484
  if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
463
485
  sample = upsample_block(
464
486
  hidden_states=sample,
465
487
  temb=emb,
466
488
  res_hidden_states_tuple=res_samples,
467
489
  encoder_hidden_states=encoder_hidden_states,
490
+ upsample_size=upsample_size,
468
491
  image_only_indicator=image_only_indicator,
469
492
  )
470
493
  else:
@@ -472,6 +495,7 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
472
495
  hidden_states=sample,
473
496
  temb=emb,
474
497
  res_hidden_states_tuple=res_samples,
498
+ upsample_size=upsample_size,
475
499
  image_only_indicator=image_only_indicator,
476
500
  )
477
501
 
@@ -21,7 +21,7 @@ import torch
21
21
  import torch.nn as nn
22
22
 
23
23
  from ...configuration_utils import ConfigMixin, register_to_config
24
- from ...loaders.unet import FromOriginalUNetMixin
24
+ from ...loaders import FromOriginalModelMixin
25
25
  from ...utils import BaseOutput
26
26
  from ..attention_processor import Attention
27
27
  from ..modeling_utils import ModelMixin
@@ -41,11 +41,11 @@ class SDCascadeLayerNorm(nn.LayerNorm):
41
41
  class SDCascadeTimestepBlock(nn.Module):
42
42
  def __init__(self, c, c_timestep, conds=[]):
43
43
  super().__init__()
44
- linear_cls = nn.Linear
45
- self.mapper = linear_cls(c_timestep, c * 2)
44
+
45
+ self.mapper = nn.Linear(c_timestep, c * 2)
46
46
  self.conds = conds
47
47
  for cname in conds:
48
- setattr(self, f"mapper_{cname}", linear_cls(c_timestep, c * 2))
48
+ setattr(self, f"mapper_{cname}", nn.Linear(c_timestep, c * 2))
49
49
 
50
50
  def forward(self, x, t):
51
51
  t = t.chunk(len(self.conds) + 1, dim=1)
@@ -94,12 +94,11 @@ class GlobalResponseNorm(nn.Module):
94
94
  class SDCascadeAttnBlock(nn.Module):
95
95
  def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
96
96
  super().__init__()
97
- linear_cls = nn.Linear
98
97
 
99
98
  self.self_attn = self_attn
100
99
  self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6)
101
100
  self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True)
102
- self.kv_mapper = nn.Sequential(nn.SiLU(), linear_cls(c_cond, c))
101
+ self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c))
103
102
 
104
103
  def forward(self, x, kv):
105
104
  kv = self.kv_mapper(kv)
@@ -132,10 +131,10 @@ class UpDownBlock2d(nn.Module):
132
131
 
133
132
  @dataclass
134
133
  class StableCascadeUNetOutput(BaseOutput):
135
- sample: torch.FloatTensor = None
134
+ sample: torch.Tensor = None
136
135
 
137
136
 
138
- class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
137
+ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalModelMixin):
139
138
  _supports_gradient_checkpointing = True
140
139
 
141
140
  @register_to_config
@@ -187,7 +186,8 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
187
186
  block_out_channels (Tuple[int], defaults to (2048, 2048)):
188
187
  Tuple of output channels for each block.
189
188
  num_attention_heads (Tuple[int], defaults to (32, 32)):
190
- Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have attention.
189
+ Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have
190
+ attention.
191
191
  down_num_layers_per_block (Tuple[int], defaults to [8, 24]):
192
192
  Number of layers in each down block.
193
193
  up_num_layers_per_block (Tuple[int], defaults to [24, 8]):
@@ -198,10 +198,9 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
198
198
  Number of 1x1 Convolutional layers to repeat in each up block.
199
199
  block_types_per_layer (Tuple[Tuple[str]], optional,
200
200
  defaults to (
201
- ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
202
- ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock")
203
- ):
204
- Block types used in each layer of the up/down blocks.
201
+ ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ("SDCascadeResBlock",
202
+ "SDCascadeTimestepBlock", "SDCascadeAttnBlock")
203
+ ): Block types used in each layer of the up/down blocks.
205
204
  clip_text_in_channels (`int`, *optional*, defaults to `None`):
206
205
  Number of input channels for CLIP based text conditioning.
207
206
  clip_text_pooled_in_channels (`int`, *optional*, defaults to 1280):
@@ -456,7 +455,7 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
456
455
  level_outputs = []
457
456
  block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
458
457
 
459
- if self.training and self.gradient_checkpointing:
458
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
460
459
 
461
460
  def create_custom_forward(module):
462
461
  def custom_forward(*inputs):
@@ -479,9 +478,7 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
479
478
  create_custom_forward(block), x, r_embed, use_reentrant=False
480
479
  )
481
480
  else:
482
- x = x = torch.utils.checkpoint.checkpoint(
483
- create_custom_forward(block), use_reentrant=False
484
- )
481
+ x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), use_reentrant=False)
485
482
  if i < len(repmap):
486
483
  x = repmap[i](x)
487
484
  level_outputs.insert(0, x)
@@ -507,7 +504,7 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
507
504
  x = level_outputs[0]
508
505
  block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
509
506
 
510
- if self.training and self.gradient_checkpointing:
507
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
511
508
 
512
509
  def create_custom_forward(module):
513
510
  def custom_forward(*inputs):
@@ -521,9 +518,11 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
521
518
  if isinstance(block, SDCascadeResBlock):
522
519
  skip = level_outputs[i] if k == 0 and i > 0 else None
523
520
  if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
521
+ orig_type = x.dtype
524
522
  x = torch.nn.functional.interpolate(
525
523
  x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
526
524
  )
525
+ x = x.to(orig_type)
527
526
  x = torch.utils.checkpoint.checkpoint(
528
527
  create_custom_forward(block), x, skip, use_reentrant=False
529
528
  )
@@ -547,9 +546,11 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
547
546
  if isinstance(block, SDCascadeResBlock):
548
547
  skip = level_outputs[i] if k == 0 and i > 0 else None
549
548
  if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
549
+ orig_type = x.dtype
550
550
  x = torch.nn.functional.interpolate(
551
551
  x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
552
552
  )
553
+ x = x.to(orig_type)
553
554
  x = block(x, skip)
554
555
  elif isinstance(block, SDCascadeAttnBlock):
555
556
  x = block(x, clip)
@@ -181,7 +181,7 @@ class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
181
181
  hidden_states = self.project_to_hidden(hidden_states)
182
182
 
183
183
  for layer in self.transformer_layers:
184
- if self.training and self.gradient_checkpointing:
184
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
185
185
 
186
186
  def layer_(*args):
187
187
  return checkpoint(layer, *args)
@@ -225,7 +225,7 @@ class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
225
225
 
226
226
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
227
227
  if hasattr(module, "get_processor"):
228
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
228
+ processors[f"{name}.processor"] = module.get_processor()
229
229
 
230
230
  for sub_name, child in module.named_children():
231
231
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -19,6 +19,7 @@ import torch.nn as nn
19
19
  import torch.nn.functional as F
20
20
 
21
21
  from ..utils import deprecate
22
+ from ..utils.import_utils import is_torch_version
22
23
  from .normalization import RMSNorm
23
24
 
24
25
 
@@ -110,7 +111,6 @@ class Upsample2D(nn.Module):
110
111
  self.use_conv_transpose = use_conv_transpose
111
112
  self.name = name
112
113
  self.interpolate = interpolate
113
- conv_cls = nn.Conv2d
114
114
 
115
115
  if norm_type == "ln_norm":
116
116
  self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
@@ -131,7 +131,7 @@ class Upsample2D(nn.Module):
131
131
  elif use_conv:
132
132
  if kernel_size is None:
133
133
  kernel_size = 3
134
- conv = conv_cls(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
134
+ conv = nn.Conv2d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
135
135
 
136
136
  # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
137
137
  if name == "conv":
@@ -139,9 +139,7 @@ class Upsample2D(nn.Module):
139
139
  else:
140
140
  self.Conv2d_0 = conv
141
141
 
142
- def forward(
143
- self, hidden_states: torch.FloatTensor, output_size: Optional[int] = None, *args, **kwargs
144
- ) -> torch.FloatTensor:
142
+ def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None, *args, **kwargs) -> torch.Tensor:
145
143
  if len(args) > 0 or kwargs.get("scale", None) is not None:
146
144
  deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
147
145
  deprecate("scale", "1.0.0", deprecation_message)
@@ -154,11 +152,10 @@ class Upsample2D(nn.Module):
154
152
  if self.use_conv_transpose:
155
153
  return self.conv(hidden_states)
156
154
 
157
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
158
- # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
159
- # https://github.com/pytorch/pytorch/issues/86679
155
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 until PyTorch 2.1
156
+ # https://github.com/pytorch/pytorch/issues/86679#issuecomment-1783978767
160
157
  dtype = hidden_states.dtype
161
- if dtype == torch.bfloat16:
158
+ if dtype == torch.bfloat16 and is_torch_version("<", "2.1"):
162
159
  hidden_states = hidden_states.to(torch.float32)
163
160
 
164
161
  # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
@@ -168,13 +165,21 @@ class Upsample2D(nn.Module):
168
165
  # if `output_size` is passed we force the interpolation output
169
166
  # size and do not make use of `scale_factor=2`
170
167
  if self.interpolate:
168
+ # upsample_nearest_nhwc also fails when the number of output elements is large
169
+ # https://github.com/pytorch/pytorch/issues/141831
170
+ scale_factor = (
171
+ 2 if output_size is None else max([f / s for f, s in zip(output_size, hidden_states.shape[-2:])])
172
+ )
173
+ if hidden_states.numel() * scale_factor > pow(2, 31):
174
+ hidden_states = hidden_states.contiguous()
175
+
171
176
  if output_size is None:
172
177
  hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
173
178
  else:
174
179
  hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
175
180
 
176
- # If the input is bfloat16, we cast back to bfloat16
177
- if dtype == torch.bfloat16:
181
+ # Cast back to original dtype
182
+ if dtype == torch.bfloat16 and is_torch_version("<", "2.1"):
178
183
  hidden_states = hidden_states.to(dtype)
179
184
 
180
185
  # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
@@ -218,12 +223,12 @@ class FirUpsample2D(nn.Module):
218
223
 
219
224
  def _upsample_2d(
220
225
  self,
221
- hidden_states: torch.FloatTensor,
222
- weight: Optional[torch.FloatTensor] = None,
223
- kernel: Optional[torch.FloatTensor] = None,
226
+ hidden_states: torch.Tensor,
227
+ weight: Optional[torch.Tensor] = None,
228
+ kernel: Optional[torch.Tensor] = None,
224
229
  factor: int = 2,
225
230
  gain: float = 1,
226
- ) -> torch.FloatTensor:
231
+ ) -> torch.Tensor:
227
232
  """Fused `upsample_2d()` followed by `Conv2d()`.
228
233
 
229
234
  Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
@@ -231,19 +236,19 @@ class FirUpsample2D(nn.Module):
231
236
  arbitrary order.
232
237
 
233
238
  Args:
234
- hidden_states (`torch.FloatTensor`):
239
+ hidden_states (`torch.Tensor`):
235
240
  Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
236
- weight (`torch.FloatTensor`, *optional*):
241
+ weight (`torch.Tensor`, *optional*):
237
242
  Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
238
243
  performed by `inChannels = x.shape[0] // numGroups`.
239
- kernel (`torch.FloatTensor`, *optional*):
244
+ kernel (`torch.Tensor`, *optional*):
240
245
  FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
241
246
  corresponds to nearest-neighbor upsampling.
242
247
  factor (`int`, *optional*): Integer upsampling factor (default: 2).
243
248
  gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0).
244
249
 
245
250
  Returns:
246
- output (`torch.FloatTensor`):
251
+ output (`torch.Tensor`):
247
252
  Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
248
253
  datatype as `hidden_states`.
249
254
  """
@@ -311,7 +316,7 @@ class FirUpsample2D(nn.Module):
311
316
 
312
317
  return output
313
318
 
314
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
319
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
315
320
  if self.use_conv:
316
321
  height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
317
322
  height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
@@ -351,6 +356,70 @@ class KUpsample2D(nn.Module):
351
356
  return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
352
357
 
353
358
 
359
+ class CogVideoXUpsample3D(nn.Module):
360
+ r"""
361
+ A 3D Upsample layer using in CogVideoX by Tsinghua University & ZhipuAI # Todo: Wait for paper relase.
362
+
363
+ Args:
364
+ in_channels (`int`):
365
+ Number of channels in the input image.
366
+ out_channels (`int`):
367
+ Number of channels produced by the convolution.
368
+ kernel_size (`int`, defaults to `3`):
369
+ Size of the convolving kernel.
370
+ stride (`int`, defaults to `1`):
371
+ Stride of the convolution.
372
+ padding (`int`, defaults to `1`):
373
+ Padding added to all four sides of the input.
374
+ compress_time (`bool`, defaults to `False`):
375
+ Whether or not to compress the time dimension.
376
+ """
377
+
378
+ def __init__(
379
+ self,
380
+ in_channels: int,
381
+ out_channels: int,
382
+ kernel_size: int = 3,
383
+ stride: int = 1,
384
+ padding: int = 1,
385
+ compress_time: bool = False,
386
+ ) -> None:
387
+ super().__init__()
388
+
389
+ self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
390
+ self.compress_time = compress_time
391
+
392
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
393
+ if self.compress_time:
394
+ if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1:
395
+ # split first frame
396
+ x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:]
397
+
398
+ x_first = F.interpolate(x_first, scale_factor=2.0)
399
+ x_rest = F.interpolate(x_rest, scale_factor=2.0)
400
+ x_first = x_first[:, :, None, :, :]
401
+ inputs = torch.cat([x_first, x_rest], dim=2)
402
+ elif inputs.shape[2] > 1:
403
+ inputs = F.interpolate(inputs, scale_factor=2.0)
404
+ else:
405
+ inputs = inputs.squeeze(2)
406
+ inputs = F.interpolate(inputs, scale_factor=2.0)
407
+ inputs = inputs[:, :, None, :, :]
408
+ else:
409
+ # only interpolate 2D
410
+ b, c, t, h, w = inputs.shape
411
+ inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
412
+ inputs = F.interpolate(inputs, scale_factor=2.0)
413
+ inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4)
414
+
415
+ b, c, t, h, w = inputs.shape
416
+ inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
417
+ inputs = self.conv(inputs)
418
+ inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4)
419
+
420
+ return inputs
421
+
422
+
354
423
  def upfirdn2d_native(
355
424
  tensor: torch.Tensor,
356
425
  kernel: torch.Tensor,
@@ -402,11 +471,11 @@ def upfirdn2d_native(
402
471
 
403
472
 
404
473
  def upsample_2d(
405
- hidden_states: torch.FloatTensor,
406
- kernel: Optional[torch.FloatTensor] = None,
474
+ hidden_states: torch.Tensor,
475
+ kernel: Optional[torch.Tensor] = None,
407
476
  factor: int = 2,
408
477
  gain: float = 1,
409
- ) -> torch.FloatTensor:
478
+ ) -> torch.Tensor:
410
479
  r"""Upsample2D a batch of 2D images with the given filter.
411
480
  Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
412
481
  filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
@@ -414,9 +483,9 @@ def upsample_2d(
414
483
  a: multiple of the upsampling factor.
415
484
 
416
485
  Args:
417
- hidden_states (`torch.FloatTensor`):
486
+ hidden_states (`torch.Tensor`):
418
487
  Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
419
- kernel (`torch.FloatTensor`, *optional*):
488
+ kernel (`torch.Tensor`, *optional*):
420
489
  FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
421
490
  corresponds to nearest-neighbor upsampling.
422
491
  factor (`int`, *optional*, default to `2`):
@@ -425,7 +494,7 @@ def upsample_2d(
425
494
  Scaling factor for signal magnitude (default: 1.0).
426
495
 
427
496
  Returns:
428
- output (`torch.FloatTensor`):
497
+ output (`torch.Tensor`):
429
498
  Tensor of the shape `[N, C, H * factor, W * factor]`
430
499
  """
431
500
  assert isinstance(factor, int) and factor >= 1