diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,17 +22,17 @@ class UNetSpatioTemporalConditionOutput(BaseOutput):
|
|
22
22
|
The output of [`UNetSpatioTemporalConditionModel`].
|
23
23
|
|
24
24
|
Args:
|
25
|
-
sample (`torch.
|
25
|
+
sample (`torch.Tensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
26
26
|
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
27
27
|
"""
|
28
28
|
|
29
|
-
sample: torch.
|
29
|
+
sample: torch.Tensor = None
|
30
30
|
|
31
31
|
|
32
32
|
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
33
33
|
r"""
|
34
|
-
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
|
35
|
-
shaped output.
|
34
|
+
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
|
35
|
+
returns a sample shaped output.
|
36
36
|
|
37
37
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
38
38
|
for all models (such as downloading or saving).
|
@@ -57,8 +57,9 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
|
|
57
57
|
The dimension of the cross attention features.
|
58
58
|
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
59
59
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
60
|
-
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
|
61
|
-
[`~models.unet_3d_blocks.
|
60
|
+
[`~models.unets.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
|
61
|
+
[`~models.unets.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
|
62
|
+
[`~models.unets.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
|
62
63
|
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
|
63
64
|
The number of attention heads.
|
64
65
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
@@ -260,7 +261,7 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
|
|
260
261
|
processors: Dict[str, AttentionProcessor],
|
261
262
|
):
|
262
263
|
if hasattr(module, "get_processor"):
|
263
|
-
processors[f"{name}.processor"] = module.get_processor(
|
264
|
+
processors[f"{name}.processor"] = module.get_processor()
|
264
265
|
|
265
266
|
for sub_name, child in module.named_children():
|
266
267
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -355,7 +356,7 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
|
|
355
356
|
|
356
357
|
def forward(
|
357
358
|
self,
|
358
|
-
sample: torch.
|
359
|
+
sample: torch.Tensor,
|
359
360
|
timestep: Union[torch.Tensor, float, int],
|
360
361
|
encoder_hidden_states: torch.Tensor,
|
361
362
|
added_time_ids: torch.Tensor,
|
@@ -365,22 +366,36 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
|
|
365
366
|
The [`UNetSpatioTemporalConditionModel`] forward method.
|
366
367
|
|
367
368
|
Args:
|
368
|
-
sample (`torch.
|
369
|
+
sample (`torch.Tensor`):
|
369
370
|
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
|
370
|
-
timestep (`torch.
|
371
|
-
encoder_hidden_states (`torch.
|
371
|
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
372
|
+
encoder_hidden_states (`torch.Tensor`):
|
372
373
|
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
|
373
|
-
added_time_ids: (`torch.
|
374
|
+
added_time_ids: (`torch.Tensor`):
|
374
375
|
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
|
375
376
|
embeddings and added to the time embeddings.
|
376
377
|
return_dict (`bool`, *optional*, defaults to `True`):
|
377
|
-
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead
|
378
|
-
tuple.
|
378
|
+
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead
|
379
|
+
of a plain tuple.
|
379
380
|
Returns:
|
380
381
|
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
|
381
|
-
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is
|
382
|
-
a `tuple` is returned where the first element is the sample tensor.
|
382
|
+
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is
|
383
|
+
returned, otherwise a `tuple` is returned where the first element is the sample tensor.
|
383
384
|
"""
|
385
|
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
386
|
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
387
|
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
388
|
+
# on the fly if necessary.
|
389
|
+
default_overall_up_factor = 2**self.num_upsamplers
|
390
|
+
|
391
|
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
392
|
+
forward_upsample_size = False
|
393
|
+
upsample_size = None
|
394
|
+
|
395
|
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
396
|
+
logger.info("Forward upsample size to force interpolation output size.")
|
397
|
+
forward_upsample_size = True
|
398
|
+
|
384
399
|
# 1. time
|
385
400
|
timesteps = timestep
|
386
401
|
if not torch.is_tensor(timesteps):
|
@@ -456,15 +471,23 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
|
|
456
471
|
|
457
472
|
# 5. up
|
458
473
|
for i, upsample_block in enumerate(self.up_blocks):
|
474
|
+
is_final_block = i == len(self.up_blocks) - 1
|
475
|
+
|
459
476
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
460
477
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
461
478
|
|
479
|
+
# if we have not reached the final block and need to forward the
|
480
|
+
# upsample size, we do it here
|
481
|
+
if not is_final_block and forward_upsample_size:
|
482
|
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
483
|
+
|
462
484
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
463
485
|
sample = upsample_block(
|
464
486
|
hidden_states=sample,
|
465
487
|
temb=emb,
|
466
488
|
res_hidden_states_tuple=res_samples,
|
467
489
|
encoder_hidden_states=encoder_hidden_states,
|
490
|
+
upsample_size=upsample_size,
|
468
491
|
image_only_indicator=image_only_indicator,
|
469
492
|
)
|
470
493
|
else:
|
@@ -472,6 +495,7 @@ class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionL
|
|
472
495
|
hidden_states=sample,
|
473
496
|
temb=emb,
|
474
497
|
res_hidden_states_tuple=res_samples,
|
498
|
+
upsample_size=upsample_size,
|
475
499
|
image_only_indicator=image_only_indicator,
|
476
500
|
)
|
477
501
|
|
@@ -21,7 +21,7 @@ import torch
|
|
21
21
|
import torch.nn as nn
|
22
22
|
|
23
23
|
from ...configuration_utils import ConfigMixin, register_to_config
|
24
|
-
from ...loaders
|
24
|
+
from ...loaders import FromOriginalModelMixin
|
25
25
|
from ...utils import BaseOutput
|
26
26
|
from ..attention_processor import Attention
|
27
27
|
from ..modeling_utils import ModelMixin
|
@@ -41,11 +41,11 @@ class SDCascadeLayerNorm(nn.LayerNorm):
|
|
41
41
|
class SDCascadeTimestepBlock(nn.Module):
|
42
42
|
def __init__(self, c, c_timestep, conds=[]):
|
43
43
|
super().__init__()
|
44
|
-
|
45
|
-
self.mapper =
|
44
|
+
|
45
|
+
self.mapper = nn.Linear(c_timestep, c * 2)
|
46
46
|
self.conds = conds
|
47
47
|
for cname in conds:
|
48
|
-
setattr(self, f"mapper_{cname}",
|
48
|
+
setattr(self, f"mapper_{cname}", nn.Linear(c_timestep, c * 2))
|
49
49
|
|
50
50
|
def forward(self, x, t):
|
51
51
|
t = t.chunk(len(self.conds) + 1, dim=1)
|
@@ -94,12 +94,11 @@ class GlobalResponseNorm(nn.Module):
|
|
94
94
|
class SDCascadeAttnBlock(nn.Module):
|
95
95
|
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
|
96
96
|
super().__init__()
|
97
|
-
linear_cls = nn.Linear
|
98
97
|
|
99
98
|
self.self_attn = self_attn
|
100
99
|
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6)
|
101
100
|
self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True)
|
102
|
-
self.kv_mapper = nn.Sequential(nn.SiLU(),
|
101
|
+
self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c))
|
103
102
|
|
104
103
|
def forward(self, x, kv):
|
105
104
|
kv = self.kv_mapper(kv)
|
@@ -132,10 +131,10 @@ class UpDownBlock2d(nn.Module):
|
|
132
131
|
|
133
132
|
@dataclass
|
134
133
|
class StableCascadeUNetOutput(BaseOutput):
|
135
|
-
sample: torch.
|
134
|
+
sample: torch.Tensor = None
|
136
135
|
|
137
136
|
|
138
|
-
class StableCascadeUNet(ModelMixin, ConfigMixin,
|
137
|
+
class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
139
138
|
_supports_gradient_checkpointing = True
|
140
139
|
|
141
140
|
@register_to_config
|
@@ -187,7 +186,8 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
187
186
|
block_out_channels (Tuple[int], defaults to (2048, 2048)):
|
188
187
|
Tuple of output channels for each block.
|
189
188
|
num_attention_heads (Tuple[int], defaults to (32, 32)):
|
190
|
-
Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have
|
189
|
+
Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have
|
190
|
+
attention.
|
191
191
|
down_num_layers_per_block (Tuple[int], defaults to [8, 24]):
|
192
192
|
Number of layers in each down block.
|
193
193
|
up_num_layers_per_block (Tuple[int], defaults to [24, 8]):
|
@@ -198,10 +198,9 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
198
198
|
Number of 1x1 Convolutional layers to repeat in each up block.
|
199
199
|
block_types_per_layer (Tuple[Tuple[str]], optional,
|
200
200
|
defaults to (
|
201
|
-
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
|
202
|
-
|
203
|
-
):
|
204
|
-
Block types used in each layer of the up/down blocks.
|
201
|
+
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ("SDCascadeResBlock",
|
202
|
+
"SDCascadeTimestepBlock", "SDCascadeAttnBlock")
|
203
|
+
): Block types used in each layer of the up/down blocks.
|
205
204
|
clip_text_in_channels (`int`, *optional*, defaults to `None`):
|
206
205
|
Number of input channels for CLIP based text conditioning.
|
207
206
|
clip_text_pooled_in_channels (`int`, *optional*, defaults to 1280):
|
@@ -456,7 +455,7 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
456
455
|
level_outputs = []
|
457
456
|
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
458
457
|
|
459
|
-
if
|
458
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
460
459
|
|
461
460
|
def create_custom_forward(module):
|
462
461
|
def custom_forward(*inputs):
|
@@ -479,9 +478,7 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
479
478
|
create_custom_forward(block), x, r_embed, use_reentrant=False
|
480
479
|
)
|
481
480
|
else:
|
482
|
-
x =
|
483
|
-
create_custom_forward(block), use_reentrant=False
|
484
|
-
)
|
481
|
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), use_reentrant=False)
|
485
482
|
if i < len(repmap):
|
486
483
|
x = repmap[i](x)
|
487
484
|
level_outputs.insert(0, x)
|
@@ -507,7 +504,7 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
507
504
|
x = level_outputs[0]
|
508
505
|
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
509
506
|
|
510
|
-
if
|
507
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
511
508
|
|
512
509
|
def create_custom_forward(module):
|
513
510
|
def custom_forward(*inputs):
|
@@ -521,9 +518,11 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
521
518
|
if isinstance(block, SDCascadeResBlock):
|
522
519
|
skip = level_outputs[i] if k == 0 and i > 0 else None
|
523
520
|
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
521
|
+
orig_type = x.dtype
|
524
522
|
x = torch.nn.functional.interpolate(
|
525
523
|
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
|
526
524
|
)
|
525
|
+
x = x.to(orig_type)
|
527
526
|
x = torch.utils.checkpoint.checkpoint(
|
528
527
|
create_custom_forward(block), x, skip, use_reentrant=False
|
529
528
|
)
|
@@ -547,9 +546,11 @@ class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
|
|
547
546
|
if isinstance(block, SDCascadeResBlock):
|
548
547
|
skip = level_outputs[i] if k == 0 and i > 0 else None
|
549
548
|
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
549
|
+
orig_type = x.dtype
|
550
550
|
x = torch.nn.functional.interpolate(
|
551
551
|
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
|
552
552
|
)
|
553
|
+
x = x.to(orig_type)
|
553
554
|
x = block(x, skip)
|
554
555
|
elif isinstance(block, SDCascadeAttnBlock):
|
555
556
|
x = block(x, clip)
|
@@ -181,7 +181,7 @@ class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
181
181
|
hidden_states = self.project_to_hidden(hidden_states)
|
182
182
|
|
183
183
|
for layer in self.transformer_layers:
|
184
|
-
if
|
184
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
185
185
|
|
186
186
|
def layer_(*args):
|
187
187
|
return checkpoint(layer, *args)
|
@@ -225,7 +225,7 @@ class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
225
225
|
|
226
226
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
227
227
|
if hasattr(module, "get_processor"):
|
228
|
-
processors[f"{name}.processor"] = module.get_processor(
|
228
|
+
processors[f"{name}.processor"] = module.get_processor()
|
229
229
|
|
230
230
|
for sub_name, child in module.named_children():
|
231
231
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
diffusers/models/upsampling.py
CHANGED
@@ -19,6 +19,7 @@ import torch.nn as nn
|
|
19
19
|
import torch.nn.functional as F
|
20
20
|
|
21
21
|
from ..utils import deprecate
|
22
|
+
from ..utils.import_utils import is_torch_version
|
22
23
|
from .normalization import RMSNorm
|
23
24
|
|
24
25
|
|
@@ -110,7 +111,6 @@ class Upsample2D(nn.Module):
|
|
110
111
|
self.use_conv_transpose = use_conv_transpose
|
111
112
|
self.name = name
|
112
113
|
self.interpolate = interpolate
|
113
|
-
conv_cls = nn.Conv2d
|
114
114
|
|
115
115
|
if norm_type == "ln_norm":
|
116
116
|
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
|
@@ -131,7 +131,7 @@ class Upsample2D(nn.Module):
|
|
131
131
|
elif use_conv:
|
132
132
|
if kernel_size is None:
|
133
133
|
kernel_size = 3
|
134
|
-
conv =
|
134
|
+
conv = nn.Conv2d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
|
135
135
|
|
136
136
|
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
137
137
|
if name == "conv":
|
@@ -139,9 +139,7 @@ class Upsample2D(nn.Module):
|
|
139
139
|
else:
|
140
140
|
self.Conv2d_0 = conv
|
141
141
|
|
142
|
-
def forward(
|
143
|
-
self, hidden_states: torch.FloatTensor, output_size: Optional[int] = None, *args, **kwargs
|
144
|
-
) -> torch.FloatTensor:
|
142
|
+
def forward(self, hidden_states: torch.Tensor, output_size: Optional[int] = None, *args, **kwargs) -> torch.Tensor:
|
145
143
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
146
144
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
147
145
|
deprecate("scale", "1.0.0", deprecation_message)
|
@@ -154,11 +152,10 @@ class Upsample2D(nn.Module):
|
|
154
152
|
if self.use_conv_transpose:
|
155
153
|
return self.conv(hidden_states)
|
156
154
|
|
157
|
-
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
158
|
-
#
|
159
|
-
# https://github.com/pytorch/pytorch/issues/86679
|
155
|
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 until PyTorch 2.1
|
156
|
+
# https://github.com/pytorch/pytorch/issues/86679#issuecomment-1783978767
|
160
157
|
dtype = hidden_states.dtype
|
161
|
-
if dtype == torch.bfloat16:
|
158
|
+
if dtype == torch.bfloat16 and is_torch_version("<", "2.1"):
|
162
159
|
hidden_states = hidden_states.to(torch.float32)
|
163
160
|
|
164
161
|
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
@@ -168,13 +165,21 @@ class Upsample2D(nn.Module):
|
|
168
165
|
# if `output_size` is passed we force the interpolation output
|
169
166
|
# size and do not make use of `scale_factor=2`
|
170
167
|
if self.interpolate:
|
168
|
+
# upsample_nearest_nhwc also fails when the number of output elements is large
|
169
|
+
# https://github.com/pytorch/pytorch/issues/141831
|
170
|
+
scale_factor = (
|
171
|
+
2 if output_size is None else max([f / s for f, s in zip(output_size, hidden_states.shape[-2:])])
|
172
|
+
)
|
173
|
+
if hidden_states.numel() * scale_factor > pow(2, 31):
|
174
|
+
hidden_states = hidden_states.contiguous()
|
175
|
+
|
171
176
|
if output_size is None:
|
172
177
|
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
173
178
|
else:
|
174
179
|
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
175
180
|
|
176
|
-
#
|
177
|
-
if dtype == torch.bfloat16:
|
181
|
+
# Cast back to original dtype
|
182
|
+
if dtype == torch.bfloat16 and is_torch_version("<", "2.1"):
|
178
183
|
hidden_states = hidden_states.to(dtype)
|
179
184
|
|
180
185
|
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
@@ -218,12 +223,12 @@ class FirUpsample2D(nn.Module):
|
|
218
223
|
|
219
224
|
def _upsample_2d(
|
220
225
|
self,
|
221
|
-
hidden_states: torch.
|
222
|
-
weight: Optional[torch.
|
223
|
-
kernel: Optional[torch.
|
226
|
+
hidden_states: torch.Tensor,
|
227
|
+
weight: Optional[torch.Tensor] = None,
|
228
|
+
kernel: Optional[torch.Tensor] = None,
|
224
229
|
factor: int = 2,
|
225
230
|
gain: float = 1,
|
226
|
-
) -> torch.
|
231
|
+
) -> torch.Tensor:
|
227
232
|
"""Fused `upsample_2d()` followed by `Conv2d()`.
|
228
233
|
|
229
234
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
|
@@ -231,19 +236,19 @@ class FirUpsample2D(nn.Module):
|
|
231
236
|
arbitrary order.
|
232
237
|
|
233
238
|
Args:
|
234
|
-
hidden_states (`torch.
|
239
|
+
hidden_states (`torch.Tensor`):
|
235
240
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
236
|
-
weight (`torch.
|
241
|
+
weight (`torch.Tensor`, *optional*):
|
237
242
|
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
|
238
243
|
performed by `inChannels = x.shape[0] // numGroups`.
|
239
|
-
kernel (`torch.
|
244
|
+
kernel (`torch.Tensor`, *optional*):
|
240
245
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
|
241
246
|
corresponds to nearest-neighbor upsampling.
|
242
247
|
factor (`int`, *optional*): Integer upsampling factor (default: 2).
|
243
248
|
gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0).
|
244
249
|
|
245
250
|
Returns:
|
246
|
-
output (`torch.
|
251
|
+
output (`torch.Tensor`):
|
247
252
|
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
|
248
253
|
datatype as `hidden_states`.
|
249
254
|
"""
|
@@ -311,7 +316,7 @@ class FirUpsample2D(nn.Module):
|
|
311
316
|
|
312
317
|
return output
|
313
318
|
|
314
|
-
def forward(self, hidden_states: torch.
|
319
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
315
320
|
if self.use_conv:
|
316
321
|
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
|
317
322
|
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
|
@@ -351,6 +356,70 @@ class KUpsample2D(nn.Module):
|
|
351
356
|
return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
|
352
357
|
|
353
358
|
|
359
|
+
class CogVideoXUpsample3D(nn.Module):
|
360
|
+
r"""
|
361
|
+
A 3D Upsample layer using in CogVideoX by Tsinghua University & ZhipuAI # Todo: Wait for paper relase.
|
362
|
+
|
363
|
+
Args:
|
364
|
+
in_channels (`int`):
|
365
|
+
Number of channels in the input image.
|
366
|
+
out_channels (`int`):
|
367
|
+
Number of channels produced by the convolution.
|
368
|
+
kernel_size (`int`, defaults to `3`):
|
369
|
+
Size of the convolving kernel.
|
370
|
+
stride (`int`, defaults to `1`):
|
371
|
+
Stride of the convolution.
|
372
|
+
padding (`int`, defaults to `1`):
|
373
|
+
Padding added to all four sides of the input.
|
374
|
+
compress_time (`bool`, defaults to `False`):
|
375
|
+
Whether or not to compress the time dimension.
|
376
|
+
"""
|
377
|
+
|
378
|
+
def __init__(
|
379
|
+
self,
|
380
|
+
in_channels: int,
|
381
|
+
out_channels: int,
|
382
|
+
kernel_size: int = 3,
|
383
|
+
stride: int = 1,
|
384
|
+
padding: int = 1,
|
385
|
+
compress_time: bool = False,
|
386
|
+
) -> None:
|
387
|
+
super().__init__()
|
388
|
+
|
389
|
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
|
390
|
+
self.compress_time = compress_time
|
391
|
+
|
392
|
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
393
|
+
if self.compress_time:
|
394
|
+
if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1:
|
395
|
+
# split first frame
|
396
|
+
x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:]
|
397
|
+
|
398
|
+
x_first = F.interpolate(x_first, scale_factor=2.0)
|
399
|
+
x_rest = F.interpolate(x_rest, scale_factor=2.0)
|
400
|
+
x_first = x_first[:, :, None, :, :]
|
401
|
+
inputs = torch.cat([x_first, x_rest], dim=2)
|
402
|
+
elif inputs.shape[2] > 1:
|
403
|
+
inputs = F.interpolate(inputs, scale_factor=2.0)
|
404
|
+
else:
|
405
|
+
inputs = inputs.squeeze(2)
|
406
|
+
inputs = F.interpolate(inputs, scale_factor=2.0)
|
407
|
+
inputs = inputs[:, :, None, :, :]
|
408
|
+
else:
|
409
|
+
# only interpolate 2D
|
410
|
+
b, c, t, h, w = inputs.shape
|
411
|
+
inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
412
|
+
inputs = F.interpolate(inputs, scale_factor=2.0)
|
413
|
+
inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4)
|
414
|
+
|
415
|
+
b, c, t, h, w = inputs.shape
|
416
|
+
inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
417
|
+
inputs = self.conv(inputs)
|
418
|
+
inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4)
|
419
|
+
|
420
|
+
return inputs
|
421
|
+
|
422
|
+
|
354
423
|
def upfirdn2d_native(
|
355
424
|
tensor: torch.Tensor,
|
356
425
|
kernel: torch.Tensor,
|
@@ -402,11 +471,11 @@ def upfirdn2d_native(
|
|
402
471
|
|
403
472
|
|
404
473
|
def upsample_2d(
|
405
|
-
hidden_states: torch.
|
406
|
-
kernel: Optional[torch.
|
474
|
+
hidden_states: torch.Tensor,
|
475
|
+
kernel: Optional[torch.Tensor] = None,
|
407
476
|
factor: int = 2,
|
408
477
|
gain: float = 1,
|
409
|
-
) -> torch.
|
478
|
+
) -> torch.Tensor:
|
410
479
|
r"""Upsample2D a batch of 2D images with the given filter.
|
411
480
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
412
481
|
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
@@ -414,9 +483,9 @@ def upsample_2d(
|
|
414
483
|
a: multiple of the upsampling factor.
|
415
484
|
|
416
485
|
Args:
|
417
|
-
hidden_states (`torch.
|
486
|
+
hidden_states (`torch.Tensor`):
|
418
487
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
419
|
-
kernel (`torch.
|
488
|
+
kernel (`torch.Tensor`, *optional*):
|
420
489
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
|
421
490
|
corresponds to nearest-neighbor upsampling.
|
422
491
|
factor (`int`, *optional*, default to `2`):
|
@@ -425,7 +494,7 @@ def upsample_2d(
|
|
425
494
|
Scaling factor for signal magnitude (default: 1.0).
|
426
495
|
|
427
496
|
Returns:
|
428
|
-
output (`torch.
|
497
|
+
output (`torch.Tensor`):
|
429
498
|
Tensor of the shape `[N, C, H * factor, W * factor]`
|
430
499
|
"""
|
431
500
|
assert isinstance(factor, int) and factor >= 1
|