diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1683 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
30
+
31
+ from diffusers.utils.import_utils import is_invisible_watermark_available
32
+
33
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
34
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
35
+ from ...loaders import (
36
+ FromSingleFileMixin,
37
+ IPAdapterMixin,
38
+ StableDiffusionXLLoraLoaderMixin,
39
+ TextualInversionLoaderMixin,
40
+ )
41
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
42
+ from ...models.attention_processor import (
43
+ AttnProcessor2_0,
44
+ XFormersAttnProcessor,
45
+ )
46
+ from ...models.lora import adjust_lora_scale_text_encoder
47
+ from ...schedulers import KarrasDiffusionSchedulers
48
+ from ...utils import (
49
+ USE_PEFT_BACKEND,
50
+ logging,
51
+ replace_example_docstring,
52
+ scale_lora_layers,
53
+ unscale_lora_layers,
54
+ )
55
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
56
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
57
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
58
+ from .pag_utils import PAGMixin
59
+
60
+
61
+ if is_invisible_watermark_available():
62
+ from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
63
+
64
+
65
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
66
+
67
+
68
+ EXAMPLE_DOC_STRING = """
69
+ Examples:
70
+ ```py
71
+ >>> # pip install accelerate transformers safetensors diffusers
72
+
73
+ >>> import torch
74
+ >>> import numpy as np
75
+ >>> from PIL import Image
76
+
77
+ >>> from transformers import DPTFeatureExtractor, DPTForDepthEstimation
78
+ >>> from diffusers import ControlNetModel, StableDiffusionXLControlNetPAGImg2ImgPipeline, AutoencoderKL
79
+ >>> from diffusers.utils import load_image
80
+
81
+
82
+ >>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
83
+ >>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
84
+ >>> controlnet = ControlNetModel.from_pretrained(
85
+ ... "diffusers/controlnet-depth-sdxl-1.0-small",
86
+ ... variant="fp16",
87
+ ... use_safetensors="True",
88
+ ... torch_dtype=torch.float16,
89
+ ... )
90
+ >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
91
+ >>> pipe = StableDiffusionXLControlNetPAGImg2ImgPipeline.from_pretrained(
92
+ ... "stabilityai/stable-diffusion-xl-base-1.0",
93
+ ... controlnet=controlnet,
94
+ ... vae=vae,
95
+ ... variant="fp16",
96
+ ... use_safetensors=True,
97
+ ... torch_dtype=torch.float16,
98
+ ... enable_pag=True,
99
+ ... )
100
+ >>> pipe.enable_model_cpu_offload()
101
+
102
+
103
+ >>> def get_depth_map(image):
104
+ ... image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
105
+ ... with torch.no_grad(), torch.autocast("cuda"):
106
+ ... depth_map = depth_estimator(image).predicted_depth
107
+
108
+ ... depth_map = torch.nn.fuctional.interpolate(
109
+ ... depth_map.unsqueeze(1),
110
+ ... size=(1024, 1024),
111
+ ... mode="bicubic",
112
+ ... align_corners=False,
113
+ ... )
114
+ ... depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
115
+ ... depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
116
+ ... depth_map = (depth_map - depth_min) / (depth_max - depth_min)
117
+ ... image = torch.cat([depth_map] * 3, dim=1)
118
+ ... image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
119
+ ... image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
120
+ ... return image
121
+
122
+
123
+ >>> prompt = "A robot, 4k photo"
124
+ >>> image = load_image(
125
+ ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
126
+ ... "/kandinsky/cat.png"
127
+ ... ).resize((1024, 1024))
128
+ >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
129
+ >>> depth_image = get_depth_map(image)
130
+
131
+ >>> images = pipe(
132
+ ... prompt,
133
+ ... image=image,
134
+ ... control_image=depth_image,
135
+ ... strength=0.99,
136
+ ... num_inference_steps=50,
137
+ ... controlnet_conditioning_scale=controlnet_conditioning_scale,
138
+ ... ).images
139
+ >>> images[0].save(f"robot_cat.png")
140
+ ```
141
+ """
142
+
143
+
144
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
145
+ def retrieve_latents(
146
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
147
+ ):
148
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
149
+ return encoder_output.latent_dist.sample(generator)
150
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
151
+ return encoder_output.latent_dist.mode()
152
+ elif hasattr(encoder_output, "latents"):
153
+ return encoder_output.latents
154
+ else:
155
+ raise AttributeError("Could not access latents of provided encoder_output")
156
+
157
+
158
+ class StableDiffusionXLControlNetPAGImg2ImgPipeline(
159
+ DiffusionPipeline,
160
+ StableDiffusionMixin,
161
+ TextualInversionLoaderMixin,
162
+ StableDiffusionXLLoraLoaderMixin,
163
+ FromSingleFileMixin,
164
+ IPAdapterMixin,
165
+ PAGMixin,
166
+ ):
167
+ r"""
168
+ Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
169
+
170
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
171
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
172
+
173
+ The pipeline also inherits the following loading methods:
174
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
175
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
176
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
177
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
178
+
179
+ Args:
180
+ vae ([`AutoencoderKL`]):
181
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
182
+ text_encoder ([`CLIPTextModel`]):
183
+ Frozen text-encoder. Stable Diffusion uses the text portion of
184
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
185
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
186
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
187
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
188
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
189
+ specifically the
190
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
191
+ variant.
192
+ tokenizer (`CLIPTokenizer`):
193
+ Tokenizer of class
194
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
195
+ tokenizer_2 (`CLIPTokenizer`):
196
+ Second Tokenizer of class
197
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
198
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
199
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
200
+ Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
201
+ as a list, the outputs from each ControlNet are added together to create one combined additional
202
+ conditioning.
203
+ scheduler ([`SchedulerMixin`]):
204
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
205
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
206
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
207
+ Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
208
+ config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
209
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
210
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
211
+ `stabilityai/stable-diffusion-xl-base-1-0`.
212
+ add_watermarker (`bool`, *optional*):
213
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
214
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
215
+ watermarker will be used.
216
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
217
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
218
+ """
219
+
220
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
221
+ _optional_components = [
222
+ "tokenizer",
223
+ "tokenizer_2",
224
+ "text_encoder",
225
+ "text_encoder_2",
226
+ "feature_extractor",
227
+ "image_encoder",
228
+ ]
229
+ _callback_tensor_inputs = [
230
+ "latents",
231
+ "prompt_embeds",
232
+ "negative_prompt_embeds",
233
+ "add_text_embeds",
234
+ "add_time_ids",
235
+ "negative_pooled_prompt_embeds",
236
+ "add_neg_time_ids",
237
+ ]
238
+
239
+ def __init__(
240
+ self,
241
+ vae: AutoencoderKL,
242
+ text_encoder: CLIPTextModel,
243
+ text_encoder_2: CLIPTextModelWithProjection,
244
+ tokenizer: CLIPTokenizer,
245
+ tokenizer_2: CLIPTokenizer,
246
+ unet: UNet2DConditionModel,
247
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
248
+ scheduler: KarrasDiffusionSchedulers,
249
+ requires_aesthetics_score: bool = False,
250
+ force_zeros_for_empty_prompt: bool = True,
251
+ add_watermarker: Optional[bool] = None,
252
+ feature_extractor: CLIPImageProcessor = None,
253
+ image_encoder: CLIPVisionModelWithProjection = None,
254
+ pag_applied_layers: Union[str, List[str]] = "mid", # ["mid"], ["down.block_1", "up.block_0.attentions_0"]
255
+ ):
256
+ super().__init__()
257
+
258
+ if isinstance(controlnet, (list, tuple)):
259
+ controlnet = MultiControlNetModel(controlnet)
260
+
261
+ self.register_modules(
262
+ vae=vae,
263
+ text_encoder=text_encoder,
264
+ text_encoder_2=text_encoder_2,
265
+ tokenizer=tokenizer,
266
+ tokenizer_2=tokenizer_2,
267
+ unet=unet,
268
+ controlnet=controlnet,
269
+ scheduler=scheduler,
270
+ feature_extractor=feature_extractor,
271
+ image_encoder=image_encoder,
272
+ )
273
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
274
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
275
+ self.control_image_processor = VaeImageProcessor(
276
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
277
+ )
278
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
279
+
280
+ if add_watermarker:
281
+ self.watermark = StableDiffusionXLWatermarker()
282
+ else:
283
+ self.watermark = None
284
+
285
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
286
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
287
+
288
+ self.set_pag_applied_layers(pag_applied_layers)
289
+
290
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
291
+ def encode_prompt(
292
+ self,
293
+ prompt: str,
294
+ prompt_2: Optional[str] = None,
295
+ device: Optional[torch.device] = None,
296
+ num_images_per_prompt: int = 1,
297
+ do_classifier_free_guidance: bool = True,
298
+ negative_prompt: Optional[str] = None,
299
+ negative_prompt_2: Optional[str] = None,
300
+ prompt_embeds: Optional[torch.Tensor] = None,
301
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
302
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
303
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
304
+ lora_scale: Optional[float] = None,
305
+ clip_skip: Optional[int] = None,
306
+ ):
307
+ r"""
308
+ Encodes the prompt into text encoder hidden states.
309
+
310
+ Args:
311
+ prompt (`str` or `List[str]`, *optional*):
312
+ prompt to be encoded
313
+ prompt_2 (`str` or `List[str]`, *optional*):
314
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
315
+ used in both text-encoders
316
+ device: (`torch.device`):
317
+ torch device
318
+ num_images_per_prompt (`int`):
319
+ number of images that should be generated per prompt
320
+ do_classifier_free_guidance (`bool`):
321
+ whether to use classifier free guidance or not
322
+ negative_prompt (`str` or `List[str]`, *optional*):
323
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
324
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
325
+ less than `1`).
326
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
327
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
328
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
329
+ prompt_embeds (`torch.Tensor`, *optional*):
330
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
331
+ provided, text embeddings will be generated from `prompt` input argument.
332
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
333
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
334
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
335
+ argument.
336
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
337
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
338
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
339
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
340
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
341
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
342
+ input argument.
343
+ lora_scale (`float`, *optional*):
344
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
345
+ clip_skip (`int`, *optional*):
346
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
347
+ the output of the pre-final layer will be used for computing the prompt embeddings.
348
+ """
349
+ device = device or self._execution_device
350
+
351
+ # set lora scale so that monkey patched LoRA
352
+ # function of text encoder can correctly access it
353
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
354
+ self._lora_scale = lora_scale
355
+
356
+ # dynamically adjust the LoRA scale
357
+ if self.text_encoder is not None:
358
+ if not USE_PEFT_BACKEND:
359
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
360
+ else:
361
+ scale_lora_layers(self.text_encoder, lora_scale)
362
+
363
+ if self.text_encoder_2 is not None:
364
+ if not USE_PEFT_BACKEND:
365
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
366
+ else:
367
+ scale_lora_layers(self.text_encoder_2, lora_scale)
368
+
369
+ prompt = [prompt] if isinstance(prompt, str) else prompt
370
+
371
+ if prompt is not None:
372
+ batch_size = len(prompt)
373
+ else:
374
+ batch_size = prompt_embeds.shape[0]
375
+
376
+ # Define tokenizers and text encoders
377
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
378
+ text_encoders = (
379
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
380
+ )
381
+
382
+ if prompt_embeds is None:
383
+ prompt_2 = prompt_2 or prompt
384
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
385
+
386
+ # textual inversion: process multi-vector tokens if necessary
387
+ prompt_embeds_list = []
388
+ prompts = [prompt, prompt_2]
389
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
390
+ if isinstance(self, TextualInversionLoaderMixin):
391
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
392
+
393
+ text_inputs = tokenizer(
394
+ prompt,
395
+ padding="max_length",
396
+ max_length=tokenizer.model_max_length,
397
+ truncation=True,
398
+ return_tensors="pt",
399
+ )
400
+
401
+ text_input_ids = text_inputs.input_ids
402
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
403
+
404
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
405
+ text_input_ids, untruncated_ids
406
+ ):
407
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
408
+ logger.warning(
409
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
410
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
411
+ )
412
+
413
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
414
+
415
+ # We are only ALWAYS interested in the pooled output of the final text encoder
416
+ pooled_prompt_embeds = prompt_embeds[0]
417
+ if clip_skip is None:
418
+ prompt_embeds = prompt_embeds.hidden_states[-2]
419
+ else:
420
+ # "2" because SDXL always indexes from the penultimate layer.
421
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
422
+
423
+ prompt_embeds_list.append(prompt_embeds)
424
+
425
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
426
+
427
+ # get unconditional embeddings for classifier free guidance
428
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
429
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
430
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
431
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
432
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
433
+ negative_prompt = negative_prompt or ""
434
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
435
+
436
+ # normalize str to list
437
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
438
+ negative_prompt_2 = (
439
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
440
+ )
441
+
442
+ uncond_tokens: List[str]
443
+ if prompt is not None and type(prompt) is not type(negative_prompt):
444
+ raise TypeError(
445
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
446
+ f" {type(prompt)}."
447
+ )
448
+ elif batch_size != len(negative_prompt):
449
+ raise ValueError(
450
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
451
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
452
+ " the batch size of `prompt`."
453
+ )
454
+ else:
455
+ uncond_tokens = [negative_prompt, negative_prompt_2]
456
+
457
+ negative_prompt_embeds_list = []
458
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
459
+ if isinstance(self, TextualInversionLoaderMixin):
460
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
461
+
462
+ max_length = prompt_embeds.shape[1]
463
+ uncond_input = tokenizer(
464
+ negative_prompt,
465
+ padding="max_length",
466
+ max_length=max_length,
467
+ truncation=True,
468
+ return_tensors="pt",
469
+ )
470
+
471
+ negative_prompt_embeds = text_encoder(
472
+ uncond_input.input_ids.to(device),
473
+ output_hidden_states=True,
474
+ )
475
+ # We are only ALWAYS interested in the pooled output of the final text encoder
476
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
477
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
478
+
479
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
480
+
481
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
482
+
483
+ if self.text_encoder_2 is not None:
484
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
485
+ else:
486
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
487
+
488
+ bs_embed, seq_len, _ = prompt_embeds.shape
489
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
490
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
491
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
492
+
493
+ if do_classifier_free_guidance:
494
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
495
+ seq_len = negative_prompt_embeds.shape[1]
496
+
497
+ if self.text_encoder_2 is not None:
498
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
499
+ else:
500
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
501
+
502
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
503
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
504
+
505
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
506
+ bs_embed * num_images_per_prompt, -1
507
+ )
508
+ if do_classifier_free_guidance:
509
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
510
+ bs_embed * num_images_per_prompt, -1
511
+ )
512
+
513
+ if self.text_encoder is not None:
514
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
515
+ # Retrieve the original scale by scaling back the LoRA layers
516
+ unscale_lora_layers(self.text_encoder, lora_scale)
517
+
518
+ if self.text_encoder_2 is not None:
519
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
520
+ # Retrieve the original scale by scaling back the LoRA layers
521
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
522
+
523
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
524
+
525
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
526
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
527
+ dtype = next(self.image_encoder.parameters()).dtype
528
+
529
+ if not isinstance(image, torch.Tensor):
530
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
531
+
532
+ image = image.to(device=device, dtype=dtype)
533
+ if output_hidden_states:
534
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
535
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
536
+ uncond_image_enc_hidden_states = self.image_encoder(
537
+ torch.zeros_like(image), output_hidden_states=True
538
+ ).hidden_states[-2]
539
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
540
+ num_images_per_prompt, dim=0
541
+ )
542
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
543
+ else:
544
+ image_embeds = self.image_encoder(image).image_embeds
545
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
546
+ uncond_image_embeds = torch.zeros_like(image_embeds)
547
+
548
+ return image_embeds, uncond_image_embeds
549
+
550
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
551
+ def prepare_ip_adapter_image_embeds(
552
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
553
+ ):
554
+ image_embeds = []
555
+ if do_classifier_free_guidance:
556
+ negative_image_embeds = []
557
+ if ip_adapter_image_embeds is None:
558
+ if not isinstance(ip_adapter_image, list):
559
+ ip_adapter_image = [ip_adapter_image]
560
+
561
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
562
+ raise ValueError(
563
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
564
+ )
565
+
566
+ for single_ip_adapter_image, image_proj_layer in zip(
567
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
568
+ ):
569
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
570
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
571
+ single_ip_adapter_image, device, 1, output_hidden_state
572
+ )
573
+
574
+ image_embeds.append(single_image_embeds[None, :])
575
+ if do_classifier_free_guidance:
576
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
577
+ else:
578
+ for single_image_embeds in ip_adapter_image_embeds:
579
+ if do_classifier_free_guidance:
580
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
581
+ negative_image_embeds.append(single_negative_image_embeds)
582
+ image_embeds.append(single_image_embeds)
583
+
584
+ ip_adapter_image_embeds = []
585
+ for i, single_image_embeds in enumerate(image_embeds):
586
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
587
+ if do_classifier_free_guidance:
588
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
589
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
590
+
591
+ single_image_embeds = single_image_embeds.to(device=device)
592
+ ip_adapter_image_embeds.append(single_image_embeds)
593
+
594
+ return ip_adapter_image_embeds
595
+
596
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
597
+ def prepare_extra_step_kwargs(self, generator, eta):
598
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
599
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
600
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
601
+ # and should be between [0, 1]
602
+
603
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
604
+ extra_step_kwargs = {}
605
+ if accepts_eta:
606
+ extra_step_kwargs["eta"] = eta
607
+
608
+ # check if the scheduler accepts generator
609
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
610
+ if accepts_generator:
611
+ extra_step_kwargs["generator"] = generator
612
+ return extra_step_kwargs
613
+
614
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl_img2img.StableDiffusionXLControlNetImg2ImgPipeline.check_inputs
615
+ def check_inputs(
616
+ self,
617
+ prompt,
618
+ prompt_2,
619
+ image,
620
+ strength,
621
+ num_inference_steps,
622
+ callback_steps,
623
+ negative_prompt=None,
624
+ negative_prompt_2=None,
625
+ prompt_embeds=None,
626
+ negative_prompt_embeds=None,
627
+ pooled_prompt_embeds=None,
628
+ negative_pooled_prompt_embeds=None,
629
+ ip_adapter_image=None,
630
+ ip_adapter_image_embeds=None,
631
+ controlnet_conditioning_scale=1.0,
632
+ control_guidance_start=0.0,
633
+ control_guidance_end=1.0,
634
+ callback_on_step_end_tensor_inputs=None,
635
+ ):
636
+ if strength < 0 or strength > 1:
637
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
638
+ if num_inference_steps is None:
639
+ raise ValueError("`num_inference_steps` cannot be None.")
640
+ elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
641
+ raise ValueError(
642
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
643
+ f" {type(num_inference_steps)}."
644
+ )
645
+
646
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
647
+ raise ValueError(
648
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
649
+ f" {type(callback_steps)}."
650
+ )
651
+
652
+ if callback_on_step_end_tensor_inputs is not None and not all(
653
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
654
+ ):
655
+ raise ValueError(
656
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
657
+ )
658
+
659
+ if prompt is not None and prompt_embeds is not None:
660
+ raise ValueError(
661
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
662
+ " only forward one of the two."
663
+ )
664
+ elif prompt_2 is not None and prompt_embeds is not None:
665
+ raise ValueError(
666
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
667
+ " only forward one of the two."
668
+ )
669
+ elif prompt is None and prompt_embeds is None:
670
+ raise ValueError(
671
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
672
+ )
673
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
674
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
675
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
676
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
677
+
678
+ if negative_prompt is not None and negative_prompt_embeds is not None:
679
+ raise ValueError(
680
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
681
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
682
+ )
683
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
684
+ raise ValueError(
685
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
686
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
687
+ )
688
+
689
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
690
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
691
+ raise ValueError(
692
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
693
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
694
+ f" {negative_prompt_embeds.shape}."
695
+ )
696
+
697
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
698
+ raise ValueError(
699
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
700
+ )
701
+
702
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
703
+ raise ValueError(
704
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
705
+ )
706
+
707
+ # `prompt` needs more sophisticated handling when there are multiple
708
+ # conditionings.
709
+ if isinstance(self.controlnet, MultiControlNetModel):
710
+ if isinstance(prompt, list):
711
+ logger.warning(
712
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
713
+ " prompts. The conditionings will be fixed across the prompts."
714
+ )
715
+
716
+ # Check `image`
717
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
718
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
719
+ )
720
+ if (
721
+ isinstance(self.controlnet, ControlNetModel)
722
+ or is_compiled
723
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
724
+ ):
725
+ self.check_image(image, prompt, prompt_embeds)
726
+ elif (
727
+ isinstance(self.controlnet, MultiControlNetModel)
728
+ or is_compiled
729
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
730
+ ):
731
+ if not isinstance(image, list):
732
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
733
+
734
+ # When `image` is a nested list:
735
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
736
+ elif any(isinstance(i, list) for i in image):
737
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
738
+ elif len(image) != len(self.controlnet.nets):
739
+ raise ValueError(
740
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
741
+ )
742
+
743
+ for image_ in image:
744
+ self.check_image(image_, prompt, prompt_embeds)
745
+ else:
746
+ assert False
747
+
748
+ # Check `controlnet_conditioning_scale`
749
+ if (
750
+ isinstance(self.controlnet, ControlNetModel)
751
+ or is_compiled
752
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
753
+ ):
754
+ if not isinstance(controlnet_conditioning_scale, float):
755
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
756
+ elif (
757
+ isinstance(self.controlnet, MultiControlNetModel)
758
+ or is_compiled
759
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
760
+ ):
761
+ if isinstance(controlnet_conditioning_scale, list):
762
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
763
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
764
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
765
+ self.controlnet.nets
766
+ ):
767
+ raise ValueError(
768
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
769
+ " the same length as the number of controlnets"
770
+ )
771
+ else:
772
+ assert False
773
+
774
+ if not isinstance(control_guidance_start, (tuple, list)):
775
+ control_guidance_start = [control_guidance_start]
776
+
777
+ if not isinstance(control_guidance_end, (tuple, list)):
778
+ control_guidance_end = [control_guidance_end]
779
+
780
+ if len(control_guidance_start) != len(control_guidance_end):
781
+ raise ValueError(
782
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
783
+ )
784
+
785
+ if isinstance(self.controlnet, MultiControlNetModel):
786
+ if len(control_guidance_start) != len(self.controlnet.nets):
787
+ raise ValueError(
788
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
789
+ )
790
+
791
+ for start, end in zip(control_guidance_start, control_guidance_end):
792
+ if start >= end:
793
+ raise ValueError(
794
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
795
+ )
796
+ if start < 0.0:
797
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
798
+ if end > 1.0:
799
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
800
+
801
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
802
+ raise ValueError(
803
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
804
+ )
805
+
806
+ if ip_adapter_image_embeds is not None:
807
+ if not isinstance(ip_adapter_image_embeds, list):
808
+ raise ValueError(
809
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
810
+ )
811
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
812
+ raise ValueError(
813
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
814
+ )
815
+
816
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
817
+ def check_image(self, image, prompt, prompt_embeds):
818
+ image_is_pil = isinstance(image, PIL.Image.Image)
819
+ image_is_tensor = isinstance(image, torch.Tensor)
820
+ image_is_np = isinstance(image, np.ndarray)
821
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
822
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
823
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
824
+
825
+ if (
826
+ not image_is_pil
827
+ and not image_is_tensor
828
+ and not image_is_np
829
+ and not image_is_pil_list
830
+ and not image_is_tensor_list
831
+ and not image_is_np_list
832
+ ):
833
+ raise TypeError(
834
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
835
+ )
836
+
837
+ if image_is_pil:
838
+ image_batch_size = 1
839
+ else:
840
+ image_batch_size = len(image)
841
+
842
+ if prompt is not None and isinstance(prompt, str):
843
+ prompt_batch_size = 1
844
+ elif prompt is not None and isinstance(prompt, list):
845
+ prompt_batch_size = len(prompt)
846
+ elif prompt_embeds is not None:
847
+ prompt_batch_size = prompt_embeds.shape[0]
848
+
849
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
850
+ raise ValueError(
851
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
852
+ )
853
+
854
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
855
+ def prepare_control_image(
856
+ self,
857
+ image,
858
+ width,
859
+ height,
860
+ batch_size,
861
+ num_images_per_prompt,
862
+ device,
863
+ dtype,
864
+ do_classifier_free_guidance=False,
865
+ guess_mode=False,
866
+ ):
867
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
868
+ image_batch_size = image.shape[0]
869
+
870
+ if image_batch_size == 1:
871
+ repeat_by = batch_size
872
+ else:
873
+ # image batch size is the same as prompt batch size
874
+ repeat_by = num_images_per_prompt
875
+
876
+ image = image.repeat_interleave(repeat_by, dim=0)
877
+
878
+ image = image.to(device=device, dtype=dtype)
879
+
880
+ if do_classifier_free_guidance and not guess_mode:
881
+ image = torch.cat([image] * 2)
882
+
883
+ return image
884
+
885
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
886
+ def get_timesteps(self, num_inference_steps, strength, device):
887
+ # get the original timestep using init_timestep
888
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
889
+
890
+ t_start = max(num_inference_steps - init_timestep, 0)
891
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
892
+ if hasattr(self.scheduler, "set_begin_index"):
893
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
894
+
895
+ return timesteps, num_inference_steps - t_start
896
+
897
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
898
+ def prepare_latents(
899
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
900
+ ):
901
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
902
+ raise ValueError(
903
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
904
+ )
905
+
906
+ latents_mean = latents_std = None
907
+ if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
908
+ latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
909
+ if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
910
+ latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
911
+
912
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
913
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
914
+ self.text_encoder_2.to("cpu")
915
+ torch.cuda.empty_cache()
916
+
917
+ image = image.to(device=device, dtype=dtype)
918
+
919
+ batch_size = batch_size * num_images_per_prompt
920
+
921
+ if image.shape[1] == 4:
922
+ init_latents = image
923
+
924
+ else:
925
+ # make sure the VAE is in float32 mode, as it overflows in float16
926
+ if self.vae.config.force_upcast:
927
+ image = image.float()
928
+ self.vae.to(dtype=torch.float32)
929
+
930
+ if isinstance(generator, list) and len(generator) != batch_size:
931
+ raise ValueError(
932
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
933
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
934
+ )
935
+
936
+ elif isinstance(generator, list):
937
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
938
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
939
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
940
+ raise ValueError(
941
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
942
+ )
943
+
944
+ init_latents = [
945
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
946
+ for i in range(batch_size)
947
+ ]
948
+ init_latents = torch.cat(init_latents, dim=0)
949
+ else:
950
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
951
+
952
+ if self.vae.config.force_upcast:
953
+ self.vae.to(dtype)
954
+
955
+ init_latents = init_latents.to(dtype)
956
+ if latents_mean is not None and latents_std is not None:
957
+ latents_mean = latents_mean.to(device=device, dtype=dtype)
958
+ latents_std = latents_std.to(device=device, dtype=dtype)
959
+ init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
960
+ else:
961
+ init_latents = self.vae.config.scaling_factor * init_latents
962
+
963
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
964
+ # expand init_latents for batch_size
965
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
966
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
967
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
968
+ raise ValueError(
969
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
970
+ )
971
+ else:
972
+ init_latents = torch.cat([init_latents], dim=0)
973
+
974
+ if add_noise:
975
+ shape = init_latents.shape
976
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
977
+ # get latents
978
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
979
+
980
+ latents = init_latents
981
+
982
+ return latents
983
+
984
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
985
+ def _get_add_time_ids(
986
+ self,
987
+ original_size,
988
+ crops_coords_top_left,
989
+ target_size,
990
+ aesthetic_score,
991
+ negative_aesthetic_score,
992
+ negative_original_size,
993
+ negative_crops_coords_top_left,
994
+ negative_target_size,
995
+ dtype,
996
+ text_encoder_projection_dim=None,
997
+ ):
998
+ if self.config.requires_aesthetics_score:
999
+ add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
1000
+ add_neg_time_ids = list(
1001
+ negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
1002
+ )
1003
+ else:
1004
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
1005
+ add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
1006
+
1007
+ passed_add_embed_dim = (
1008
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
1009
+ )
1010
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
1011
+
1012
+ if (
1013
+ expected_add_embed_dim > passed_add_embed_dim
1014
+ and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
1015
+ ):
1016
+ raise ValueError(
1017
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
1018
+ )
1019
+ elif (
1020
+ expected_add_embed_dim < passed_add_embed_dim
1021
+ and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
1022
+ ):
1023
+ raise ValueError(
1024
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
1025
+ )
1026
+ elif expected_add_embed_dim != passed_add_embed_dim:
1027
+ raise ValueError(
1028
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
1029
+ )
1030
+
1031
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
1032
+ add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
1033
+
1034
+ return add_time_ids, add_neg_time_ids
1035
+
1036
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
1037
+ def upcast_vae(self):
1038
+ dtype = self.vae.dtype
1039
+ self.vae.to(dtype=torch.float32)
1040
+ use_torch_2_0_or_xformers = isinstance(
1041
+ self.vae.decoder.mid_block.attentions[0].processor,
1042
+ (
1043
+ AttnProcessor2_0,
1044
+ XFormersAttnProcessor,
1045
+ ),
1046
+ )
1047
+ # if xformers or torch_2_0 is used attention block does not need
1048
+ # to be in float32 which can save lots of memory
1049
+ if use_torch_2_0_or_xformers:
1050
+ self.vae.post_quant_conv.to(dtype)
1051
+ self.vae.decoder.conv_in.to(dtype)
1052
+ self.vae.decoder.mid_block.to(dtype)
1053
+
1054
+ @property
1055
+ def guidance_scale(self):
1056
+ return self._guidance_scale
1057
+
1058
+ @property
1059
+ def clip_skip(self):
1060
+ return self._clip_skip
1061
+
1062
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1063
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1064
+ # corresponds to doing no classifier free guidance.
1065
+ @property
1066
+ def do_classifier_free_guidance(self):
1067
+ return self._guidance_scale > 1
1068
+
1069
+ @property
1070
+ def cross_attention_kwargs(self):
1071
+ return self._cross_attention_kwargs
1072
+
1073
+ @property
1074
+ def num_timesteps(self):
1075
+ return self._num_timesteps
1076
+
1077
+ @torch.no_grad()
1078
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
1079
+ def __call__(
1080
+ self,
1081
+ prompt: Union[str, List[str]] = None,
1082
+ prompt_2: Optional[Union[str, List[str]]] = None,
1083
+ image: PipelineImageInput = None,
1084
+ control_image: PipelineImageInput = None,
1085
+ height: Optional[int] = None,
1086
+ width: Optional[int] = None,
1087
+ strength: float = 0.8,
1088
+ num_inference_steps: int = 50,
1089
+ guidance_scale: float = 5.0,
1090
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1091
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
1092
+ num_images_per_prompt: Optional[int] = 1,
1093
+ eta: float = 0.0,
1094
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1095
+ latents: Optional[torch.Tensor] = None,
1096
+ prompt_embeds: Optional[torch.Tensor] = None,
1097
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1098
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1099
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1100
+ ip_adapter_image: Optional[PipelineImageInput] = None,
1101
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1102
+ output_type: Optional[str] = "pil",
1103
+ return_dict: bool = True,
1104
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1105
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
1106
+ guess_mode: bool = False,
1107
+ control_guidance_start: Union[float, List[float]] = 0.0,
1108
+ control_guidance_end: Union[float, List[float]] = 1.0,
1109
+ original_size: Tuple[int, int] = None,
1110
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1111
+ target_size: Tuple[int, int] = None,
1112
+ negative_original_size: Optional[Tuple[int, int]] = None,
1113
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
1114
+ negative_target_size: Optional[Tuple[int, int]] = None,
1115
+ aesthetic_score: float = 6.0,
1116
+ negative_aesthetic_score: float = 2.5,
1117
+ clip_skip: Optional[int] = None,
1118
+ callback_on_step_end: Optional[
1119
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1120
+ ] = None,
1121
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1122
+ pag_scale: float = 3.0,
1123
+ pag_adaptive_scale: float = 0.0,
1124
+ ):
1125
+ r"""
1126
+ Function invoked when calling the pipeline for generation.
1127
+
1128
+ Args:
1129
+ prompt (`str` or `List[str]`, *optional*):
1130
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1131
+ instead.
1132
+ prompt_2 (`str` or `List[str]`, *optional*):
1133
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
1134
+ used in both text-encoders
1135
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1136
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1137
+ The initial image will be used as the starting point for the image generation process. Can also accept
1138
+ image latents as `image`, if passing latents directly, it will not be encoded again.
1139
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1140
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1141
+ The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
1142
+ the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
1143
+ be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
1144
+ and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
1145
+ init, images must be passed as a list such that each element of the list can be correctly batched for
1146
+ input to a single controlnet.
1147
+ height (`int`, *optional*, defaults to the size of control_image):
1148
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1149
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1150
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1151
+ width (`int`, *optional*, defaults to the size of control_image):
1152
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1153
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1154
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1155
+ strength (`float`, *optional*, defaults to 0.8):
1156
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
1157
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
1158
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
1159
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
1160
+ essentially ignores `image`.
1161
+ num_inference_steps (`int`, *optional*, defaults to 50):
1162
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1163
+ expense of slower inference.
1164
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1165
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1166
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1167
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1168
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1169
+ usually at the expense of lower image quality.
1170
+ negative_prompt (`str` or `List[str]`, *optional*):
1171
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1172
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1173
+ less than `1`).
1174
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1175
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1176
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1177
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1178
+ The number of images to generate per prompt.
1179
+ eta (`float`, *optional*, defaults to 0.0):
1180
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1181
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1182
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1183
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1184
+ to make generation deterministic.
1185
+ latents (`torch.Tensor`, *optional*):
1186
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1187
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1188
+ tensor will ge generated by sampling using the supplied random `generator`.
1189
+ prompt_embeds (`torch.Tensor`, *optional*):
1190
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1191
+ provided, text embeddings will be generated from `prompt` input argument.
1192
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1193
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1194
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1195
+ argument.
1196
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1197
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1198
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1199
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1200
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1201
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1202
+ input argument.
1203
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1204
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1205
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1206
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1207
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1208
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1209
+ output_type (`str`, *optional*, defaults to `"pil"`):
1210
+ The output format of the generate image. Choose between
1211
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1212
+ return_dict (`bool`, *optional*, defaults to `True`):
1213
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1214
+ plain tuple.
1215
+ cross_attention_kwargs (`dict`, *optional*):
1216
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1217
+ `self.processor` in
1218
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1219
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1220
+ The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
1221
+ to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
1222
+ corresponding scale as a list.
1223
+ guess_mode (`bool`, *optional*, defaults to `False`):
1224
+ In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
1225
+ you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
1226
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1227
+ The percentage of total steps at which the controlnet starts applying.
1228
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1229
+ The percentage of total steps at which the controlnet stops applying.
1230
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1231
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1232
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1233
+ explained in section 2.2 of
1234
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1235
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1236
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1237
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1238
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1239
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1240
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1241
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1242
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1243
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1244
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1245
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1246
+ micro-conditioning as explained in section 2.2 of
1247
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1248
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1249
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1250
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1251
+ micro-conditioning as explained in section 2.2 of
1252
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1253
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1254
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1255
+ To negatively condition the generation process based on a target image resolution. It should be as same
1256
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1257
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1258
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1259
+ aesthetic_score (`float`, *optional*, defaults to 6.0):
1260
+ Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
1261
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1262
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1263
+ negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
1264
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1265
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
1266
+ simulate an aesthetic score of the generated image by influencing the negative text condition.
1267
+ clip_skip (`int`, *optional*):
1268
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1269
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1270
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1271
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1272
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1273
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1274
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1275
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1276
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1277
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1278
+ `._callback_tensor_inputs` attribute of your pipeline class.
1279
+ pag_scale (`float`, *optional*, defaults to 3.0):
1280
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
1281
+ guidance will not be used.
1282
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
1283
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
1284
+ used.
1285
+
1286
+
1287
+ Examples:
1288
+
1289
+ Returns:
1290
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
1291
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
1292
+ `tuple` containing the output images.
1293
+ """
1294
+
1295
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1296
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1297
+
1298
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1299
+
1300
+ # align format for control guidance
1301
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1302
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1303
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1304
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1305
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1306
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1307
+ control_guidance_start, control_guidance_end = (
1308
+ mult * [control_guidance_start],
1309
+ mult * [control_guidance_end],
1310
+ )
1311
+
1312
+ # 1. Check inputs. Raise error if not correct
1313
+ self.check_inputs(
1314
+ prompt,
1315
+ prompt_2,
1316
+ control_image,
1317
+ strength,
1318
+ num_inference_steps,
1319
+ None,
1320
+ negative_prompt,
1321
+ negative_prompt_2,
1322
+ prompt_embeds,
1323
+ negative_prompt_embeds,
1324
+ pooled_prompt_embeds,
1325
+ negative_pooled_prompt_embeds,
1326
+ ip_adapter_image,
1327
+ ip_adapter_image_embeds,
1328
+ controlnet_conditioning_scale,
1329
+ control_guidance_start,
1330
+ control_guidance_end,
1331
+ callback_on_step_end_tensor_inputs,
1332
+ )
1333
+
1334
+ self._guidance_scale = guidance_scale
1335
+ self._clip_skip = clip_skip
1336
+ self._cross_attention_kwargs = cross_attention_kwargs
1337
+ self._pag_scale = pag_scale
1338
+ self._pag_adaptive_scale = pag_adaptive_scale
1339
+
1340
+ # 2. Define call parameters
1341
+ if prompt is not None and isinstance(prompt, str):
1342
+ batch_size = 1
1343
+ elif prompt is not None and isinstance(prompt, list):
1344
+ batch_size = len(prompt)
1345
+ else:
1346
+ batch_size = prompt_embeds.shape[0]
1347
+
1348
+ device = self._execution_device
1349
+
1350
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1351
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1352
+
1353
+ # 3.1 Encode input prompt
1354
+ text_encoder_lora_scale = (
1355
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1356
+ )
1357
+ (
1358
+ prompt_embeds,
1359
+ negative_prompt_embeds,
1360
+ pooled_prompt_embeds,
1361
+ negative_pooled_prompt_embeds,
1362
+ ) = self.encode_prompt(
1363
+ prompt,
1364
+ prompt_2,
1365
+ device,
1366
+ num_images_per_prompt,
1367
+ self.do_classifier_free_guidance,
1368
+ negative_prompt,
1369
+ negative_prompt_2,
1370
+ prompt_embeds=prompt_embeds,
1371
+ negative_prompt_embeds=negative_prompt_embeds,
1372
+ pooled_prompt_embeds=pooled_prompt_embeds,
1373
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1374
+ lora_scale=text_encoder_lora_scale,
1375
+ clip_skip=self.clip_skip,
1376
+ )
1377
+
1378
+ # 3.2 Encode ip_adapter_image
1379
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1380
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1381
+ ip_adapter_image,
1382
+ ip_adapter_image_embeds,
1383
+ device,
1384
+ batch_size * num_images_per_prompt,
1385
+ self.do_classifier_free_guidance,
1386
+ )
1387
+
1388
+ # 4. Prepare image and controlnet_conditioning_image
1389
+ image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
1390
+
1391
+ if isinstance(controlnet, ControlNetModel):
1392
+ control_image = self.prepare_control_image(
1393
+ image=control_image,
1394
+ width=width,
1395
+ height=height,
1396
+ batch_size=batch_size * num_images_per_prompt,
1397
+ num_images_per_prompt=num_images_per_prompt,
1398
+ device=device,
1399
+ dtype=controlnet.dtype,
1400
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1401
+ guess_mode=False,
1402
+ )
1403
+ height, width = control_image.shape[-2:]
1404
+ elif isinstance(controlnet, MultiControlNetModel):
1405
+ control_images = []
1406
+
1407
+ for control_image_ in control_image:
1408
+ control_image_ = self.prepare_control_image(
1409
+ image=control_image_,
1410
+ width=width,
1411
+ height=height,
1412
+ batch_size=batch_size * num_images_per_prompt,
1413
+ num_images_per_prompt=num_images_per_prompt,
1414
+ device=device,
1415
+ dtype=controlnet.dtype,
1416
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1417
+ guess_mode=False,
1418
+ )
1419
+
1420
+ control_images.append(control_image_)
1421
+
1422
+ control_image = control_images
1423
+ height, width = control_image[0].shape[-2:]
1424
+ else:
1425
+ assert False
1426
+
1427
+ # 5. Prepare timesteps
1428
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1429
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1430
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1431
+ self._num_timesteps = len(timesteps)
1432
+
1433
+ # 6. Prepare latent variables
1434
+ if latents is None:
1435
+ latents = self.prepare_latents(
1436
+ image,
1437
+ latent_timestep,
1438
+ batch_size,
1439
+ num_images_per_prompt,
1440
+ prompt_embeds.dtype,
1441
+ device,
1442
+ generator,
1443
+ True,
1444
+ )
1445
+
1446
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1447
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1448
+
1449
+ # 7.1 Create tensor stating which controlnets to keep
1450
+ controlnet_keep = []
1451
+ for i in range(len(timesteps)):
1452
+ keeps = [
1453
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1454
+ for s, e in zip(control_guidance_start, control_guidance_end)
1455
+ ]
1456
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1457
+
1458
+ # 7.2 Prepare added time ids & embeddings
1459
+ if isinstance(control_image, list):
1460
+ original_size = original_size or control_image[0].shape[-2:]
1461
+ else:
1462
+ original_size = original_size or control_image.shape[-2:]
1463
+ target_size = target_size or (height, width)
1464
+
1465
+ if negative_original_size is None:
1466
+ negative_original_size = original_size
1467
+ if negative_target_size is None:
1468
+ negative_target_size = target_size
1469
+ add_text_embeds = pooled_prompt_embeds
1470
+
1471
+ if self.text_encoder_2 is None:
1472
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1473
+ else:
1474
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1475
+
1476
+ add_time_ids, add_neg_time_ids = self._get_add_time_ids(
1477
+ original_size,
1478
+ crops_coords_top_left,
1479
+ target_size,
1480
+ aesthetic_score,
1481
+ negative_aesthetic_score,
1482
+ negative_original_size,
1483
+ negative_crops_coords_top_left,
1484
+ negative_target_size,
1485
+ dtype=prompt_embeds.dtype,
1486
+ text_encoder_projection_dim=text_encoder_projection_dim,
1487
+ )
1488
+ add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1489
+ add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1490
+
1491
+ control_images = control_image if isinstance(control_image, list) else [control_image]
1492
+ for i, single_image in enumerate(control_images):
1493
+ if self.do_classifier_free_guidance:
1494
+ single_image = single_image.chunk(2)[0]
1495
+
1496
+ if self.do_perturbed_attention_guidance:
1497
+ single_image = self._prepare_perturbed_attention_guidance(
1498
+ single_image, single_image, self.do_classifier_free_guidance
1499
+ )
1500
+ elif self.do_classifier_free_guidance:
1501
+ single_image = torch.cat([single_image] * 2)
1502
+ single_image = single_image.to(device)
1503
+ control_images[i] = single_image
1504
+
1505
+ control_image = control_images if isinstance(control_image, list) else control_images[0]
1506
+
1507
+ if ip_adapter_image_embeds is not None:
1508
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
1509
+ negative_image_embeds = None
1510
+ if self.do_classifier_free_guidance:
1511
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
1512
+
1513
+ if self.do_perturbed_attention_guidance:
1514
+ image_embeds = self._prepare_perturbed_attention_guidance(
1515
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
1516
+ )
1517
+ elif self.do_classifier_free_guidance:
1518
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
1519
+ image_embeds = image_embeds.to(device)
1520
+ ip_adapter_image_embeds[i] = image_embeds
1521
+
1522
+ if self.do_perturbed_attention_guidance:
1523
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
1524
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
1525
+ )
1526
+ add_text_embeds = self._prepare_perturbed_attention_guidance(
1527
+ add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
1528
+ )
1529
+ add_time_ids = self._prepare_perturbed_attention_guidance(
1530
+ add_time_ids, add_neg_time_ids, self.do_classifier_free_guidance
1531
+ )
1532
+ elif self.do_classifier_free_guidance:
1533
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1534
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1535
+ add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
1536
+
1537
+ prompt_embeds = prompt_embeds.to(device)
1538
+ add_text_embeds = add_text_embeds.to(device)
1539
+ add_time_ids = add_time_ids.to(device)
1540
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1541
+
1542
+ controlnet_prompt_embeds = prompt_embeds
1543
+ controlnet_added_cond_kwargs = added_cond_kwargs
1544
+
1545
+ # 8. Denoising loop
1546
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1547
+
1548
+ if self.do_perturbed_attention_guidance:
1549
+ original_attn_proc = self.unet.attn_processors
1550
+ self._set_pag_attn_processor(
1551
+ pag_applied_layers=self.pag_applied_layers,
1552
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1553
+ )
1554
+
1555
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1556
+ for i, t in enumerate(timesteps):
1557
+ # expand the latents if we are doing classifier free guidance
1558
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1559
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1560
+
1561
+ # controlnet(s) inference
1562
+ control_model_input = latent_model_input
1563
+
1564
+ if isinstance(controlnet_keep[i], list):
1565
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1566
+ else:
1567
+ controlnet_cond_scale = controlnet_conditioning_scale
1568
+ if isinstance(controlnet_cond_scale, list):
1569
+ controlnet_cond_scale = controlnet_cond_scale[0]
1570
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1571
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1572
+ control_model_input,
1573
+ t,
1574
+ encoder_hidden_states=controlnet_prompt_embeds,
1575
+ controlnet_cond=control_image,
1576
+ conditioning_scale=cond_scale,
1577
+ guess_mode=False,
1578
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1579
+ return_dict=False,
1580
+ )
1581
+
1582
+ if ip_adapter_image_embeds is not None:
1583
+ added_cond_kwargs["image_embeds"] = ip_adapter_image_embeds
1584
+
1585
+ # predict the noise residual
1586
+ noise_pred = self.unet(
1587
+ latent_model_input,
1588
+ t,
1589
+ encoder_hidden_states=prompt_embeds,
1590
+ cross_attention_kwargs=self.cross_attention_kwargs,
1591
+ down_block_additional_residuals=down_block_res_samples,
1592
+ mid_block_additional_residual=mid_block_res_sample,
1593
+ added_cond_kwargs=added_cond_kwargs,
1594
+ return_dict=False,
1595
+ )[0]
1596
+
1597
+ # perform guidance
1598
+ if self.do_perturbed_attention_guidance:
1599
+ noise_pred = self._apply_perturbed_attention_guidance(
1600
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1601
+ )
1602
+ elif self.do_classifier_free_guidance:
1603
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1604
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1605
+
1606
+ # compute the previous noisy sample x_t -> x_t-1
1607
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1608
+
1609
+ if callback_on_step_end is not None:
1610
+ callback_kwargs = {}
1611
+ for k in callback_on_step_end_tensor_inputs:
1612
+ callback_kwargs[k] = locals()[k]
1613
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1614
+
1615
+ latents = callback_outputs.pop("latents", latents)
1616
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1617
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1618
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1619
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1620
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1621
+ )
1622
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1623
+ add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
1624
+
1625
+ # call the callback, if provided
1626
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1627
+ progress_bar.update()
1628
+
1629
+ # If we do sequential model offloading, let's offload unet and controlnet
1630
+ # manually for max memory savings
1631
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1632
+ self.unet.to("cpu")
1633
+ self.controlnet.to("cpu")
1634
+ torch.cuda.empty_cache()
1635
+
1636
+ if not output_type == "latent":
1637
+ # make sure the VAE is in float32 mode, as it overflows in float16
1638
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1639
+
1640
+ if needs_upcasting:
1641
+ self.upcast_vae()
1642
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1643
+
1644
+ # unscale/denormalize the latents
1645
+ # denormalize with the mean and std if available and not None
1646
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1647
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1648
+ if has_latents_mean and has_latents_std:
1649
+ latents_mean = (
1650
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1651
+ )
1652
+ latents_std = (
1653
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1654
+ )
1655
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1656
+ else:
1657
+ latents = latents / self.vae.config.scaling_factor
1658
+
1659
+ image = self.vae.decode(latents, return_dict=False)[0]
1660
+
1661
+ # cast back to fp16 if needed
1662
+ if needs_upcasting:
1663
+ self.vae.to(dtype=torch.float16)
1664
+ else:
1665
+ image = latents
1666
+ return StableDiffusionXLPipelineOutput(images=image)
1667
+
1668
+ # apply watermark if available
1669
+ if self.watermark is not None:
1670
+ image = self.watermark.apply_watermark(image)
1671
+
1672
+ image = self.image_processor.postprocess(image, output_type=output_type)
1673
+
1674
+ # Offload all models
1675
+ self.maybe_free_model_hooks()
1676
+
1677
+ if self.do_perturbed_attention_guidance:
1678
+ self.unet.set_attn_processor(original_attn_proc)
1679
+
1680
+ if not return_dict:
1681
+ return (image,)
1682
+
1683
+ return StableDiffusionXLPipelineOutput(images=image)