diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
diffusers/image_processor.py
CHANGED
@@ -29,15 +29,62 @@ from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
|
29
29
|
PipelineImageInput = Union[
|
30
30
|
PIL.Image.Image,
|
31
31
|
np.ndarray,
|
32
|
-
torch.
|
32
|
+
torch.Tensor,
|
33
33
|
List[PIL.Image.Image],
|
34
34
|
List[np.ndarray],
|
35
|
-
List[torch.
|
35
|
+
List[torch.Tensor],
|
36
36
|
]
|
37
37
|
|
38
38
|
PipelineDepthInput = PipelineImageInput
|
39
39
|
|
40
40
|
|
41
|
+
def is_valid_image(image) -> bool:
|
42
|
+
r"""
|
43
|
+
Checks if the input is a valid image.
|
44
|
+
|
45
|
+
A valid image can be:
|
46
|
+
- A `PIL.Image.Image`.
|
47
|
+
- A 2D or 3D `np.ndarray` or `torch.Tensor` (grayscale or color image).
|
48
|
+
|
49
|
+
Args:
|
50
|
+
image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`):
|
51
|
+
The image to validate. It can be a PIL image, a NumPy array, or a torch tensor.
|
52
|
+
|
53
|
+
Returns:
|
54
|
+
`bool`:
|
55
|
+
`True` if the input is a valid image, `False` otherwise.
|
56
|
+
"""
|
57
|
+
return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)
|
58
|
+
|
59
|
+
|
60
|
+
def is_valid_image_imagelist(images):
|
61
|
+
r"""
|
62
|
+
Checks if the input is a valid image or list of images.
|
63
|
+
|
64
|
+
The input can be one of the following formats:
|
65
|
+
- A 4D tensor or numpy array (batch of images).
|
66
|
+
- A valid single image: `PIL.Image.Image`, 2D `np.ndarray` or `torch.Tensor` (grayscale image), 3D `np.ndarray` or
|
67
|
+
`torch.Tensor`.
|
68
|
+
- A list of valid images.
|
69
|
+
|
70
|
+
Args:
|
71
|
+
images (`Union[np.ndarray, torch.Tensor, PIL.Image.Image, List]`):
|
72
|
+
The image(s) to check. Can be a batch of images (4D tensor/array), a single image, or a list of valid
|
73
|
+
images.
|
74
|
+
|
75
|
+
Returns:
|
76
|
+
`bool`:
|
77
|
+
`True` if the input is valid, `False` otherwise.
|
78
|
+
"""
|
79
|
+
if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
|
80
|
+
return True
|
81
|
+
elif is_valid_image(images):
|
82
|
+
return True
|
83
|
+
elif isinstance(images, list):
|
84
|
+
return all(is_valid_image(image) for image in images)
|
85
|
+
return False
|
86
|
+
|
87
|
+
|
41
88
|
class VaeImageProcessor(ConfigMixin):
|
42
89
|
"""
|
43
90
|
Image processor for VAE.
|
@@ -67,6 +114,7 @@ class VaeImageProcessor(ConfigMixin):
|
|
67
114
|
self,
|
68
115
|
do_resize: bool = True,
|
69
116
|
vae_scale_factor: int = 8,
|
117
|
+
vae_latent_channels: int = 4,
|
70
118
|
resample: str = "lanczos",
|
71
119
|
do_normalize: bool = True,
|
72
120
|
do_binarize: bool = False,
|
@@ -80,12 +128,19 @@ class VaeImageProcessor(ConfigMixin):
|
|
80
128
|
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
|
81
129
|
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
|
82
130
|
)
|
83
|
-
self.config.do_convert_rgb = False
|
84
131
|
|
85
132
|
@staticmethod
|
86
133
|
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
87
|
-
"""
|
134
|
+
r"""
|
88
135
|
Convert a numpy image or a batch of images to a PIL image.
|
136
|
+
|
137
|
+
Args:
|
138
|
+
images (`np.ndarray`):
|
139
|
+
The image array to convert to PIL format.
|
140
|
+
|
141
|
+
Returns:
|
142
|
+
`List[PIL.Image.Image]`:
|
143
|
+
A list of PIL images.
|
89
144
|
"""
|
90
145
|
if images.ndim == 3:
|
91
146
|
images = images[None, ...]
|
@@ -100,8 +155,16 @@ class VaeImageProcessor(ConfigMixin):
|
|
100
155
|
|
101
156
|
@staticmethod
|
102
157
|
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
103
|
-
"""
|
158
|
+
r"""
|
104
159
|
Convert a PIL image or a list of PIL images to NumPy arrays.
|
160
|
+
|
161
|
+
Args:
|
162
|
+
images (`PIL.Image.Image` or `List[PIL.Image.Image]`):
|
163
|
+
The PIL image or list of images to convert to NumPy format.
|
164
|
+
|
165
|
+
Returns:
|
166
|
+
`np.ndarray`:
|
167
|
+
A NumPy array representation of the images.
|
105
168
|
"""
|
106
169
|
if not isinstance(images, list):
|
107
170
|
images = [images]
|
@@ -111,9 +174,17 @@ class VaeImageProcessor(ConfigMixin):
|
|
111
174
|
return images
|
112
175
|
|
113
176
|
@staticmethod
|
114
|
-
def numpy_to_pt(images: np.ndarray) -> torch.
|
115
|
-
"""
|
177
|
+
def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
|
178
|
+
r"""
|
116
179
|
Convert a NumPy image to a PyTorch tensor.
|
180
|
+
|
181
|
+
Args:
|
182
|
+
images (`np.ndarray`):
|
183
|
+
The NumPy image array to convert to PyTorch format.
|
184
|
+
|
185
|
+
Returns:
|
186
|
+
`torch.Tensor`:
|
187
|
+
A PyTorch tensor representation of the images.
|
117
188
|
"""
|
118
189
|
if images.ndim == 3:
|
119
190
|
images = images[..., None]
|
@@ -122,31 +193,63 @@ class VaeImageProcessor(ConfigMixin):
|
|
122
193
|
return images
|
123
194
|
|
124
195
|
@staticmethod
|
125
|
-
def pt_to_numpy(images: torch.
|
126
|
-
"""
|
196
|
+
def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
|
197
|
+
r"""
|
127
198
|
Convert a PyTorch tensor to a NumPy image.
|
199
|
+
|
200
|
+
Args:
|
201
|
+
images (`torch.Tensor`):
|
202
|
+
The PyTorch tensor to convert to NumPy format.
|
203
|
+
|
204
|
+
Returns:
|
205
|
+
`np.ndarray`:
|
206
|
+
A NumPy array representation of the images.
|
128
207
|
"""
|
129
208
|
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
130
209
|
return images
|
131
210
|
|
132
211
|
@staticmethod
|
133
212
|
def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
134
|
-
"""
|
213
|
+
r"""
|
135
214
|
Normalize an image array to [-1,1].
|
215
|
+
|
216
|
+
Args:
|
217
|
+
images (`np.ndarray` or `torch.Tensor`):
|
218
|
+
The image array to normalize.
|
219
|
+
|
220
|
+
Returns:
|
221
|
+
`np.ndarray` or `torch.Tensor`:
|
222
|
+
The normalized image array.
|
136
223
|
"""
|
137
224
|
return 2.0 * images - 1.0
|
138
225
|
|
139
226
|
@staticmethod
|
140
227
|
def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
141
|
-
"""
|
228
|
+
r"""
|
142
229
|
Denormalize an image array to [0,1].
|
230
|
+
|
231
|
+
Args:
|
232
|
+
images (`np.ndarray` or `torch.Tensor`):
|
233
|
+
The image array to denormalize.
|
234
|
+
|
235
|
+
Returns:
|
236
|
+
`np.ndarray` or `torch.Tensor`:
|
237
|
+
The denormalized image array.
|
143
238
|
"""
|
144
|
-
return (images
|
239
|
+
return (images * 0.5 + 0.5).clamp(0, 1)
|
145
240
|
|
146
241
|
@staticmethod
|
147
242
|
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
|
148
|
-
"""
|
243
|
+
r"""
|
149
244
|
Converts a PIL image to RGB format.
|
245
|
+
|
246
|
+
Args:
|
247
|
+
image (`PIL.Image.Image`):
|
248
|
+
The PIL image to convert to RGB.
|
249
|
+
|
250
|
+
Returns:
|
251
|
+
`PIL.Image.Image`:
|
252
|
+
The RGB-converted PIL image.
|
150
253
|
"""
|
151
254
|
image = image.convert("RGB")
|
152
255
|
|
@@ -154,8 +257,16 @@ class VaeImageProcessor(ConfigMixin):
|
|
154
257
|
|
155
258
|
@staticmethod
|
156
259
|
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
|
157
|
-
"""
|
158
|
-
Converts a PIL image to grayscale
|
260
|
+
r"""
|
261
|
+
Converts a given PIL image to grayscale.
|
262
|
+
|
263
|
+
Args:
|
264
|
+
image (`PIL.Image.Image`):
|
265
|
+
The input image to convert.
|
266
|
+
|
267
|
+
Returns:
|
268
|
+
`PIL.Image.Image`:
|
269
|
+
The image converted to grayscale.
|
159
270
|
"""
|
160
271
|
image = image.convert("L")
|
161
272
|
|
@@ -163,8 +274,16 @@ class VaeImageProcessor(ConfigMixin):
|
|
163
274
|
|
164
275
|
@staticmethod
|
165
276
|
def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
|
166
|
-
"""
|
277
|
+
r"""
|
167
278
|
Applies Gaussian blur to an image.
|
279
|
+
|
280
|
+
Args:
|
281
|
+
image (`PIL.Image.Image`):
|
282
|
+
The PIL image to convert to grayscale.
|
283
|
+
|
284
|
+
Returns:
|
285
|
+
`PIL.Image.Image`:
|
286
|
+
The grayscale-converted PIL image.
|
168
287
|
"""
|
169
288
|
image = image.filter(ImageFilter.GaussianBlur(blur_factor))
|
170
289
|
|
@@ -172,9 +291,10 @@ class VaeImageProcessor(ConfigMixin):
|
|
172
291
|
|
173
292
|
@staticmethod
|
174
293
|
def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
|
175
|
-
"""
|
176
|
-
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
|
177
|
-
for example, if user drew mask in a 128x32 region, and the dimensions for
|
294
|
+
r"""
|
295
|
+
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
|
296
|
+
ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
|
297
|
+
processing are 512x512, the region will be expanded to 128x128.
|
178
298
|
|
179
299
|
Args:
|
180
300
|
mask_image (PIL.Image.Image): Mask image.
|
@@ -183,7 +303,8 @@ class VaeImageProcessor(ConfigMixin):
|
|
183
303
|
pad (int, optional): Padding to be added to the crop region. Defaults to 0.
|
184
304
|
|
185
305
|
Returns:
|
186
|
-
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
|
306
|
+
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
|
307
|
+
matches the original aspect ratio.
|
187
308
|
"""
|
188
309
|
|
189
310
|
mask_image = mask_image.convert("L")
|
@@ -264,13 +385,21 @@ class VaeImageProcessor(ConfigMixin):
|
|
264
385
|
width: int,
|
265
386
|
height: int,
|
266
387
|
) -> PIL.Image.Image:
|
267
|
-
"""
|
268
|
-
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
388
|
+
r"""
|
389
|
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
390
|
+
the image within the dimensions, filling empty with data from image.
|
269
391
|
|
270
392
|
Args:
|
271
|
-
image
|
272
|
-
|
273
|
-
|
393
|
+
image (`PIL.Image.Image`):
|
394
|
+
The image to resize and fill.
|
395
|
+
width (`int`):
|
396
|
+
The width to resize the image to.
|
397
|
+
height (`int`):
|
398
|
+
The height to resize the image to.
|
399
|
+
|
400
|
+
Returns:
|
401
|
+
`PIL.Image.Image`:
|
402
|
+
The resized and filled image.
|
274
403
|
"""
|
275
404
|
|
276
405
|
ratio = width / height
|
@@ -308,13 +437,21 @@ class VaeImageProcessor(ConfigMixin):
|
|
308
437
|
width: int,
|
309
438
|
height: int,
|
310
439
|
) -> PIL.Image.Image:
|
311
|
-
"""
|
312
|
-
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
440
|
+
r"""
|
441
|
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
442
|
+
the image within the dimensions, cropping the excess.
|
313
443
|
|
314
444
|
Args:
|
315
|
-
image
|
316
|
-
|
317
|
-
|
445
|
+
image (`PIL.Image.Image`):
|
446
|
+
The image to resize and crop.
|
447
|
+
width (`int`):
|
448
|
+
The width to resize the image to.
|
449
|
+
height (`int`):
|
450
|
+
The height to resize the image to.
|
451
|
+
|
452
|
+
Returns:
|
453
|
+
`PIL.Image.Image`:
|
454
|
+
The resized and cropped image.
|
318
455
|
"""
|
319
456
|
ratio = width / height
|
320
457
|
src_ratio = image.width / image.height
|
@@ -346,12 +483,12 @@ class VaeImageProcessor(ConfigMixin):
|
|
346
483
|
The width to resize to.
|
347
484
|
resize_mode (`str`, *optional*, defaults to `default`):
|
348
485
|
The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
349
|
-
within the specified width and height, and it may not maintaining the original aspect ratio.
|
350
|
-
|
351
|
-
within the dimensions, filling empty with data from image.
|
352
|
-
|
353
|
-
within the dimensions, cropping the excess.
|
354
|
-
|
486
|
+
within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
|
487
|
+
will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
|
488
|
+
then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
|
489
|
+
the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
490
|
+
the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
|
491
|
+
supported for PIL image input.
|
355
492
|
|
356
493
|
Returns:
|
357
494
|
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
@@ -400,25 +537,49 @@ class VaeImageProcessor(ConfigMixin):
|
|
400
537
|
|
401
538
|
return image
|
402
539
|
|
540
|
+
def _denormalize_conditionally(
|
541
|
+
self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None
|
542
|
+
) -> torch.Tensor:
|
543
|
+
r"""
|
544
|
+
Denormalize a batch of images based on a condition list.
|
545
|
+
|
546
|
+
Args:
|
547
|
+
images (`torch.Tensor`):
|
548
|
+
The input image tensor.
|
549
|
+
do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`):
|
550
|
+
A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the
|
551
|
+
value of `do_normalize` in the `VaeImageProcessor` config.
|
552
|
+
"""
|
553
|
+
if do_denormalize is None:
|
554
|
+
return self.denormalize(images) if self.config.do_normalize else images
|
555
|
+
|
556
|
+
return torch.stack(
|
557
|
+
[self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])]
|
558
|
+
)
|
559
|
+
|
403
560
|
def get_default_height_width(
|
404
561
|
self,
|
405
562
|
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
406
563
|
height: Optional[int] = None,
|
407
564
|
width: Optional[int] = None,
|
408
565
|
) -> Tuple[int, int]:
|
409
|
-
"""
|
410
|
-
|
411
|
-
`vae_scale_factor`.
|
566
|
+
r"""
|
567
|
+
Returns the height and width of the image, downscaled to the next integer multiple of `vae_scale_factor`.
|
412
568
|
|
413
569
|
Args:
|
414
|
-
image(`PIL.Image.Image
|
415
|
-
The image input, can be a PIL image,
|
416
|
-
shape `[batch, height, width]` or `[batch, height, width,
|
417
|
-
have shape `[batch,
|
418
|
-
height (`int`, *optional*, defaults to `None`):
|
419
|
-
The height
|
420
|
-
width (`int`, *optional
|
421
|
-
The width
|
570
|
+
image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`):
|
571
|
+
The image input, which can be a PIL image, NumPy array, or PyTorch tensor. If it is a NumPy array, it
|
572
|
+
should have shape `[batch, height, width]` or `[batch, height, width, channels]`. If it is a PyTorch
|
573
|
+
tensor, it should have shape `[batch, channels, height, width]`.
|
574
|
+
height (`Optional[int]`, *optional*, defaults to `None`):
|
575
|
+
The height of the preprocessed image. If `None`, the height of the `image` input will be used.
|
576
|
+
width (`Optional[int]`, *optional*, defaults to `None`):
|
577
|
+
The width of the preprocessed image. If `None`, the width of the `image` input will be used.
|
578
|
+
|
579
|
+
Returns:
|
580
|
+
`Tuple[int, int]`:
|
581
|
+
A tuple containing the height and width, both resized to the nearest integer multiple of
|
582
|
+
`vae_scale_factor`.
|
422
583
|
"""
|
423
584
|
|
424
585
|
if height is None:
|
@@ -455,22 +616,28 @@ class VaeImageProcessor(ConfigMixin):
|
|
455
616
|
Preprocess the image input.
|
456
617
|
|
457
618
|
Args:
|
458
|
-
image (`
|
459
|
-
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
619
|
+
image (`PipelineImageInput`):
|
620
|
+
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
|
621
|
+
supported formats.
|
622
|
+
height (`int`, *optional*):
|
623
|
+
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
|
624
|
+
height.
|
625
|
+
width (`int`, *optional*):
|
626
|
+
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
|
464
627
|
resize_mode (`str`, *optional*, defaults to `default`):
|
465
|
-
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
466
|
-
|
467
|
-
|
468
|
-
within the dimensions, filling empty with data from image.
|
469
|
-
|
470
|
-
within the dimensions, cropping the excess.
|
471
|
-
|
628
|
+
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
|
629
|
+
the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
|
630
|
+
resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
|
631
|
+
center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
|
632
|
+
image to fit within the specified width and height, maintaining the aspect ratio, and then center the
|
633
|
+
image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
|
634
|
+
supported for PIL image input.
|
472
635
|
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
|
473
636
|
The crop coordinates for each image in the batch. If `None`, will not crop the image.
|
637
|
+
|
638
|
+
Returns:
|
639
|
+
`torch.Tensor`:
|
640
|
+
The preprocessed image.
|
474
641
|
"""
|
475
642
|
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
476
643
|
|
@@ -492,12 +659,27 @@ class VaeImageProcessor(ConfigMixin):
|
|
492
659
|
else:
|
493
660
|
image = np.expand_dims(image, axis=-1)
|
494
661
|
|
495
|
-
if isinstance(image,
|
496
|
-
|
497
|
-
|
662
|
+
if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
|
663
|
+
warnings.warn(
|
664
|
+
"Passing `image` as a list of 4d np.ndarray is deprecated."
|
665
|
+
"Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
|
666
|
+
FutureWarning,
|
667
|
+
)
|
668
|
+
image = np.concatenate(image, axis=0)
|
669
|
+
if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
|
670
|
+
warnings.warn(
|
671
|
+
"Passing `image` as a list of 4d torch.Tensor is deprecated."
|
672
|
+
"Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
|
673
|
+
FutureWarning,
|
674
|
+
)
|
675
|
+
image = torch.cat(image, axis=0)
|
676
|
+
|
677
|
+
if not is_valid_image_imagelist(image):
|
498
678
|
raise ValueError(
|
499
|
-
f"Input is in incorrect format
|
679
|
+
f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
|
500
680
|
)
|
681
|
+
if not isinstance(image, list):
|
682
|
+
image = [image]
|
501
683
|
|
502
684
|
if isinstance(image[0], PIL.Image.Image):
|
503
685
|
if crops_coords is not None:
|
@@ -529,7 +711,7 @@ class VaeImageProcessor(ConfigMixin):
|
|
529
711
|
|
530
712
|
channel = image.shape[1]
|
531
713
|
# don't need any preprocess if the image is latents
|
532
|
-
if channel ==
|
714
|
+
if channel == self.config.vae_latent_channels:
|
533
715
|
return image
|
534
716
|
|
535
717
|
height, width = self.get_default_height_width(image, height, width)
|
@@ -545,7 +727,6 @@ class VaeImageProcessor(ConfigMixin):
|
|
545
727
|
FutureWarning,
|
546
728
|
)
|
547
729
|
do_normalize = False
|
548
|
-
|
549
730
|
if do_normalize:
|
550
731
|
image = self.normalize(image)
|
551
732
|
|
@@ -556,15 +737,15 @@ class VaeImageProcessor(ConfigMixin):
|
|
556
737
|
|
557
738
|
def postprocess(
|
558
739
|
self,
|
559
|
-
image: torch.
|
740
|
+
image: torch.Tensor,
|
560
741
|
output_type: str = "pil",
|
561
742
|
do_denormalize: Optional[List[bool]] = None,
|
562
|
-
) -> Union[PIL.Image.Image, np.ndarray, torch.
|
743
|
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
563
744
|
"""
|
564
745
|
Postprocess the image output from tensor to `output_type`.
|
565
746
|
|
566
747
|
Args:
|
567
|
-
image (`torch.
|
748
|
+
image (`torch.Tensor`):
|
568
749
|
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
569
750
|
output_type (`str`, *optional*, defaults to `pil`):
|
570
751
|
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
@@ -573,7 +754,7 @@ class VaeImageProcessor(ConfigMixin):
|
|
573
754
|
`VaeImageProcessor` config.
|
574
755
|
|
575
756
|
Returns:
|
576
|
-
`PIL.Image.Image`, `np.ndarray` or `torch.
|
757
|
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
577
758
|
The postprocessed image.
|
578
759
|
"""
|
579
760
|
if not isinstance(image, torch.Tensor):
|
@@ -591,12 +772,7 @@ class VaeImageProcessor(ConfigMixin):
|
|
591
772
|
if output_type == "latent":
|
592
773
|
return image
|
593
774
|
|
594
|
-
|
595
|
-
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
596
|
-
|
597
|
-
image = torch.stack(
|
598
|
-
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
599
|
-
)
|
775
|
+
image = self._denormalize_conditionally(image, do_denormalize)
|
600
776
|
|
601
777
|
if output_type == "pt":
|
602
778
|
return image
|
@@ -616,17 +792,29 @@ class VaeImageProcessor(ConfigMixin):
|
|
616
792
|
image: PIL.Image.Image,
|
617
793
|
crop_coords: Optional[Tuple[int, int, int, int]] = None,
|
618
794
|
) -> PIL.Image.Image:
|
619
|
-
"""
|
620
|
-
overlay the
|
621
|
-
"""
|
795
|
+
r"""
|
796
|
+
Applies an overlay of the mask and the inpainted image on the original image.
|
622
797
|
|
623
|
-
|
798
|
+
Args:
|
799
|
+
mask (`PIL.Image.Image`):
|
800
|
+
The mask image that highlights regions to overlay.
|
801
|
+
init_image (`PIL.Image.Image`):
|
802
|
+
The original image to which the overlay is applied.
|
803
|
+
image (`PIL.Image.Image`):
|
804
|
+
The image to overlay onto the original.
|
805
|
+
crop_coords (`Tuple[int, int, int, int]`, *optional*):
|
806
|
+
Coordinates to crop the image. If provided, the image will be cropped accordingly.
|
807
|
+
|
808
|
+
Returns:
|
809
|
+
`PIL.Image.Image`:
|
810
|
+
The final image with the overlay applied.
|
811
|
+
"""
|
624
812
|
|
625
|
-
|
626
|
-
mask = self.resize(mask, width=width, height=height)
|
813
|
+
width, height = init_image.width, init_image.height
|
627
814
|
|
628
815
|
init_image_masked = PIL.Image.new("RGBa", (width, height))
|
629
816
|
init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
|
817
|
+
|
630
818
|
init_image_masked = init_image_masked.convert("RGBA")
|
631
819
|
|
632
820
|
if crop_coords is not None:
|
@@ -674,8 +862,16 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
674
862
|
|
675
863
|
@staticmethod
|
676
864
|
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
677
|
-
"""
|
678
|
-
Convert a NumPy image or a batch of images to a PIL
|
865
|
+
r"""
|
866
|
+
Convert a NumPy image or a batch of images to a list of PIL images.
|
867
|
+
|
868
|
+
Args:
|
869
|
+
images (`np.ndarray`):
|
870
|
+
The input NumPy array of images, which can be a single image or a batch.
|
871
|
+
|
872
|
+
Returns:
|
873
|
+
`List[PIL.Image.Image]`:
|
874
|
+
A list of PIL images converted from the input NumPy array.
|
679
875
|
"""
|
680
876
|
if images.ndim == 3:
|
681
877
|
images = images[None, ...]
|
@@ -690,8 +886,16 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
690
886
|
|
691
887
|
@staticmethod
|
692
888
|
def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
693
|
-
"""
|
889
|
+
r"""
|
694
890
|
Convert a PIL image or a list of PIL images to NumPy arrays.
|
891
|
+
|
892
|
+
Args:
|
893
|
+
images (`Union[List[PIL.Image.Image], PIL.Image.Image]`):
|
894
|
+
The input image or list of images to be converted.
|
895
|
+
|
896
|
+
Returns:
|
897
|
+
`np.ndarray`:
|
898
|
+
A NumPy array of the converted images.
|
695
899
|
"""
|
696
900
|
if not isinstance(images, list):
|
697
901
|
images = [images]
|
@@ -702,18 +906,30 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
702
906
|
|
703
907
|
@staticmethod
|
704
908
|
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
705
|
-
"""
|
706
|
-
|
707
|
-
image: RGB-like depth image
|
909
|
+
r"""
|
910
|
+
Convert an RGB-like depth image to a depth map.
|
708
911
|
|
709
|
-
|
912
|
+
Args:
|
913
|
+
image (`Union[np.ndarray, torch.Tensor]`):
|
914
|
+
The RGB-like depth image to convert.
|
710
915
|
|
916
|
+
Returns:
|
917
|
+
`Union[np.ndarray, torch.Tensor]`:
|
918
|
+
The corresponding depth map.
|
711
919
|
"""
|
712
920
|
return image[:, :, 1] * 2**8 + image[:, :, 2]
|
713
921
|
|
714
922
|
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
|
715
|
-
"""
|
716
|
-
Convert a NumPy depth image or a batch of images to a PIL
|
923
|
+
r"""
|
924
|
+
Convert a NumPy depth image or a batch of images to a list of PIL images.
|
925
|
+
|
926
|
+
Args:
|
927
|
+
images (`np.ndarray`):
|
928
|
+
The input NumPy array of depth images, which can be a single image or a batch.
|
929
|
+
|
930
|
+
Returns:
|
931
|
+
`List[PIL.Image.Image]`:
|
932
|
+
A list of PIL images converted from the input NumPy depth images.
|
717
933
|
"""
|
718
934
|
if images.ndim == 3:
|
719
935
|
images = images[None, ...]
|
@@ -733,15 +949,15 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
733
949
|
|
734
950
|
def postprocess(
|
735
951
|
self,
|
736
|
-
image: torch.
|
952
|
+
image: torch.Tensor,
|
737
953
|
output_type: str = "pil",
|
738
954
|
do_denormalize: Optional[List[bool]] = None,
|
739
|
-
) -> Union[PIL.Image.Image, np.ndarray, torch.
|
955
|
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
740
956
|
"""
|
741
957
|
Postprocess the image output from tensor to `output_type`.
|
742
958
|
|
743
959
|
Args:
|
744
|
-
image (`torch.
|
960
|
+
image (`torch.Tensor`):
|
745
961
|
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
746
962
|
output_type (`str`, *optional*, defaults to `pil`):
|
747
963
|
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
@@ -750,7 +966,7 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
750
966
|
`VaeImageProcessor` config.
|
751
967
|
|
752
968
|
Returns:
|
753
|
-
`PIL.Image.Image`, `np.ndarray` or `torch.
|
969
|
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
754
970
|
The postprocessed image.
|
755
971
|
"""
|
756
972
|
if not isinstance(image, torch.Tensor):
|
@@ -765,12 +981,7 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
765
981
|
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
766
982
|
output_type = "np"
|
767
983
|
|
768
|
-
|
769
|
-
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
770
|
-
|
771
|
-
image = torch.stack(
|
772
|
-
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
773
|
-
)
|
984
|
+
image = self._denormalize_conditionally(image, do_denormalize)
|
774
985
|
|
775
986
|
image = self.pt_to_numpy(image)
|
776
987
|
|
@@ -788,14 +999,30 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
|
788
999
|
|
789
1000
|
def preprocess(
|
790
1001
|
self,
|
791
|
-
rgb: Union[torch.
|
792
|
-
depth: Union[torch.
|
1002
|
+
rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
|
1003
|
+
depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
|
793
1004
|
height: Optional[int] = None,
|
794
1005
|
width: Optional[int] = None,
|
795
1006
|
target_res: Optional[int] = None,
|
796
1007
|
) -> torch.Tensor:
|
797
|
-
"""
|
798
|
-
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
|
1008
|
+
r"""
|
1009
|
+
Preprocess the image input. Accepted formats are PIL images, NumPy arrays, or PyTorch tensors.
|
1010
|
+
|
1011
|
+
Args:
|
1012
|
+
rgb (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`):
|
1013
|
+
The RGB input image, which can be a single image or a batch.
|
1014
|
+
depth (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`):
|
1015
|
+
The depth input image, which can be a single image or a batch.
|
1016
|
+
height (`Optional[int]`, *optional*, defaults to `None`):
|
1017
|
+
The desired height of the processed image. If `None`, defaults to the height of the input image.
|
1018
|
+
width (`Optional[int]`, *optional*, defaults to `None`):
|
1019
|
+
The desired width of the processed image. If `None`, defaults to the width of the input image.
|
1020
|
+
target_res (`Optional[int]`, *optional*, defaults to `None`):
|
1021
|
+
Target resolution for resizing the images. If specified, overrides height and width.
|
1022
|
+
|
1023
|
+
Returns:
|
1024
|
+
`Tuple[torch.Tensor, torch.Tensor]`:
|
1025
|
+
A tuple containing the processed RGB and depth images as PyTorch tensors.
|
799
1026
|
"""
|
800
1027
|
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
801
1028
|
|
@@ -928,13 +1155,13 @@ class IPAdapterMaskProcessor(VaeImageProcessor):
|
|
928
1155
|
)
|
929
1156
|
|
930
1157
|
@staticmethod
|
931
|
-
def downsample(mask: torch.
|
1158
|
+
def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int):
|
932
1159
|
"""
|
933
|
-
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention.
|
934
|
-
|
1160
|
+
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the
|
1161
|
+
aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
|
935
1162
|
|
936
1163
|
Args:
|
937
|
-
mask (`torch.
|
1164
|
+
mask (`torch.Tensor`):
|
938
1165
|
The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
|
939
1166
|
batch_size (`int`):
|
940
1167
|
The batch size.
|
@@ -944,7 +1171,7 @@ class IPAdapterMaskProcessor(VaeImageProcessor):
|
|
944
1171
|
The dimensionality of the value embeddings.
|
945
1172
|
|
946
1173
|
Returns:
|
947
|
-
`torch.
|
1174
|
+
`torch.Tensor`:
|
948
1175
|
The downsampled mask tensor.
|
949
1176
|
|
950
1177
|
"""
|
@@ -988,3 +1215,100 @@ class IPAdapterMaskProcessor(VaeImageProcessor):
|
|
988
1215
|
)
|
989
1216
|
|
990
1217
|
return mask_downsample
|
1218
|
+
|
1219
|
+
|
1220
|
+
class PixArtImageProcessor(VaeImageProcessor):
|
1221
|
+
"""
|
1222
|
+
Image processor for PixArt image resize and crop.
|
1223
|
+
|
1224
|
+
Args:
|
1225
|
+
do_resize (`bool`, *optional*, defaults to `True`):
|
1226
|
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
1227
|
+
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
1228
|
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
1229
|
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
1230
|
+
resample (`str`, *optional*, defaults to `lanczos`):
|
1231
|
+
Resampling filter to use when resizing the image.
|
1232
|
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
1233
|
+
Whether to normalize the image to [-1,1].
|
1234
|
+
do_binarize (`bool`, *optional*, defaults to `False`):
|
1235
|
+
Whether to binarize the image to 0/1.
|
1236
|
+
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
1237
|
+
Whether to convert the images to RGB format.
|
1238
|
+
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
1239
|
+
Whether to convert the images to grayscale format.
|
1240
|
+
"""
|
1241
|
+
|
1242
|
+
@register_to_config
|
1243
|
+
def __init__(
|
1244
|
+
self,
|
1245
|
+
do_resize: bool = True,
|
1246
|
+
vae_scale_factor: int = 8,
|
1247
|
+
resample: str = "lanczos",
|
1248
|
+
do_normalize: bool = True,
|
1249
|
+
do_binarize: bool = False,
|
1250
|
+
do_convert_grayscale: bool = False,
|
1251
|
+
):
|
1252
|
+
super().__init__(
|
1253
|
+
do_resize=do_resize,
|
1254
|
+
vae_scale_factor=vae_scale_factor,
|
1255
|
+
resample=resample,
|
1256
|
+
do_normalize=do_normalize,
|
1257
|
+
do_binarize=do_binarize,
|
1258
|
+
do_convert_grayscale=do_convert_grayscale,
|
1259
|
+
)
|
1260
|
+
|
1261
|
+
@staticmethod
|
1262
|
+
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
|
1263
|
+
r"""
|
1264
|
+
Returns the binned height and width based on the aspect ratio.
|
1265
|
+
|
1266
|
+
Args:
|
1267
|
+
height (`int`): The height of the image.
|
1268
|
+
width (`int`): The width of the image.
|
1269
|
+
ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width).
|
1270
|
+
|
1271
|
+
Returns:
|
1272
|
+
`Tuple[int, int]`: The closest binned height and width.
|
1273
|
+
"""
|
1274
|
+
ar = float(height / width)
|
1275
|
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
1276
|
+
default_hw = ratios[closest_ratio]
|
1277
|
+
return int(default_hw[0]), int(default_hw[1])
|
1278
|
+
|
1279
|
+
@staticmethod
|
1280
|
+
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
|
1281
|
+
r"""
|
1282
|
+
Resizes and crops a tensor of images to the specified dimensions.
|
1283
|
+
|
1284
|
+
Args:
|
1285
|
+
samples (`torch.Tensor`):
|
1286
|
+
A tensor of shape (N, C, H, W) where N is the batch size, C is the number of channels, H is the height,
|
1287
|
+
and W is the width.
|
1288
|
+
new_width (`int`): The desired width of the output images.
|
1289
|
+
new_height (`int`): The desired height of the output images.
|
1290
|
+
|
1291
|
+
Returns:
|
1292
|
+
`torch.Tensor`: A tensor containing the resized and cropped images.
|
1293
|
+
"""
|
1294
|
+
orig_height, orig_width = samples.shape[2], samples.shape[3]
|
1295
|
+
|
1296
|
+
# Check if resizing is needed
|
1297
|
+
if orig_height != new_height or orig_width != new_width:
|
1298
|
+
ratio = max(new_height / orig_height, new_width / orig_width)
|
1299
|
+
resized_width = int(orig_width * ratio)
|
1300
|
+
resized_height = int(orig_height * ratio)
|
1301
|
+
|
1302
|
+
# Resize
|
1303
|
+
samples = F.interpolate(
|
1304
|
+
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
|
1305
|
+
)
|
1306
|
+
|
1307
|
+
# Center Crop
|
1308
|
+
start_x = (resized_width - new_width) // 2
|
1309
|
+
end_x = start_x + new_width
|
1310
|
+
start_y = (resized_height - new_height) // 2
|
1311
|
+
end_y = start_y + new_height
|
1312
|
+
samples = samples[:, :, start_y:end_y, start_x:end_x]
|
1313
|
+
|
1314
|
+
return samples
|