diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -16,10 +16,11 @@ from typing import List, Optional, Tuple, Union
16
16
 
17
17
  import numpy as np
18
18
  import torch
19
+ import torch.nn.functional as F
19
20
  from torch import nn
20
21
 
21
22
  from ..utils import deprecate
22
- from .activations import get_activation
23
+ from .activations import FP32SiLU, get_activation
23
24
  from .attention_processor import Attention
24
25
 
25
26
 
@@ -34,10 +35,21 @@ def get_timestep_embedding(
34
35
  """
35
36
  This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
36
37
 
37
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
38
- These may be fractional.
39
- :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
40
- embeddings. :return: an [N x dim] Tensor of positional embeddings.
38
+ Args
39
+ timesteps (torch.Tensor):
40
+ a 1-D Tensor of N indices, one per batch element. These may be fractional.
41
+ embedding_dim (int):
42
+ the dimension of the output.
43
+ flip_sin_to_cos (bool):
44
+ Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
45
+ downscale_freq_shift (float):
46
+ Controls the delta between frequencies between dimensions
47
+ scale (float):
48
+ Scaling factor applied to the embeddings.
49
+ max_period (int):
50
+ Controls the maximum frequency of the embeddings
51
+ Returns
52
+ torch.Tensor: an [N x dim] Tensor of positional embeddings.
41
53
  """
42
54
  assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
43
55
 
@@ -66,12 +78,303 @@ def get_timestep_embedding(
66
78
  return emb
67
79
 
68
80
 
81
+ def get_3d_sincos_pos_embed(
82
+ embed_dim: int,
83
+ spatial_size: Union[int, Tuple[int, int]],
84
+ temporal_size: int,
85
+ spatial_interpolation_scale: float = 1.0,
86
+ temporal_interpolation_scale: float = 1.0,
87
+ device: Optional[torch.device] = None,
88
+ output_type: str = "np",
89
+ ) -> torch.Tensor:
90
+ r"""
91
+ Creates 3D sinusoidal positional embeddings.
92
+
93
+ Args:
94
+ embed_dim (`int`):
95
+ The embedding dimension of inputs. It must be divisible by 16.
96
+ spatial_size (`int` or `Tuple[int, int]`):
97
+ The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
98
+ spatial dimensions (height and width).
99
+ temporal_size (`int`):
100
+ The temporal dimension of postional embeddings (number of frames).
101
+ spatial_interpolation_scale (`float`, defaults to 1.0):
102
+ Scale factor for spatial grid interpolation.
103
+ temporal_interpolation_scale (`float`, defaults to 1.0):
104
+ Scale factor for temporal grid interpolation.
105
+
106
+ Returns:
107
+ `torch.Tensor`:
108
+ The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
109
+ embed_dim]`.
110
+ """
111
+ if output_type == "np":
112
+ return _get_3d_sincos_pos_embed_np(
113
+ embed_dim=embed_dim,
114
+ spatial_size=spatial_size,
115
+ temporal_size=temporal_size,
116
+ spatial_interpolation_scale=spatial_interpolation_scale,
117
+ temporal_interpolation_scale=temporal_interpolation_scale,
118
+ )
119
+ if embed_dim % 4 != 0:
120
+ raise ValueError("`embed_dim` must be divisible by 4")
121
+ if isinstance(spatial_size, int):
122
+ spatial_size = (spatial_size, spatial_size)
123
+
124
+ embed_dim_spatial = 3 * embed_dim // 4
125
+ embed_dim_temporal = embed_dim // 4
126
+
127
+ # 1. Spatial
128
+ grid_h = torch.arange(spatial_size[1], device=device, dtype=torch.float32) / spatial_interpolation_scale
129
+ grid_w = torch.arange(spatial_size[0], device=device, dtype=torch.float32) / spatial_interpolation_scale
130
+ grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
131
+ grid = torch.stack(grid, dim=0)
132
+
133
+ grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
134
+ pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid, output_type="pt")
135
+
136
+ # 2. Temporal
137
+ grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) / temporal_interpolation_scale
138
+ pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t, output_type="pt")
139
+
140
+ # 3. Concat
141
+ pos_embed_spatial = pos_embed_spatial[None, :, :]
142
+ pos_embed_spatial = pos_embed_spatial.repeat_interleave(temporal_size, dim=0) # [T, H*W, D // 4 * 3]
143
+
144
+ pos_embed_temporal = pos_embed_temporal[:, None, :]
145
+ pos_embed_temporal = pos_embed_temporal.repeat_interleave(
146
+ spatial_size[0] * spatial_size[1], dim=1
147
+ ) # [T, H*W, D // 4]
148
+
149
+ pos_embed = torch.concat([pos_embed_temporal, pos_embed_spatial], dim=-1) # [T, H*W, D]
150
+ return pos_embed
151
+
152
+
153
+ def _get_3d_sincos_pos_embed_np(
154
+ embed_dim: int,
155
+ spatial_size: Union[int, Tuple[int, int]],
156
+ temporal_size: int,
157
+ spatial_interpolation_scale: float = 1.0,
158
+ temporal_interpolation_scale: float = 1.0,
159
+ ) -> np.ndarray:
160
+ r"""
161
+ Creates 3D sinusoidal positional embeddings.
162
+
163
+ Args:
164
+ embed_dim (`int`):
165
+ The embedding dimension of inputs. It must be divisible by 16.
166
+ spatial_size (`int` or `Tuple[int, int]`):
167
+ The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
168
+ spatial dimensions (height and width).
169
+ temporal_size (`int`):
170
+ The temporal dimension of postional embeddings (number of frames).
171
+ spatial_interpolation_scale (`float`, defaults to 1.0):
172
+ Scale factor for spatial grid interpolation.
173
+ temporal_interpolation_scale (`float`, defaults to 1.0):
174
+ Scale factor for temporal grid interpolation.
175
+
176
+ Returns:
177
+ `np.ndarray`:
178
+ The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
179
+ embed_dim]`.
180
+ """
181
+ deprecation_message = (
182
+ "`get_3d_sincos_pos_embed` uses `torch` and supports `device`."
183
+ " `from_numpy` is no longer required."
184
+ " Pass `output_type='pt' to use the new version now."
185
+ )
186
+ deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
187
+ if embed_dim % 4 != 0:
188
+ raise ValueError("`embed_dim` must be divisible by 4")
189
+ if isinstance(spatial_size, int):
190
+ spatial_size = (spatial_size, spatial_size)
191
+
192
+ embed_dim_spatial = 3 * embed_dim // 4
193
+ embed_dim_temporal = embed_dim // 4
194
+
195
+ # 1. Spatial
196
+ grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale
197
+ grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale
198
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
199
+ grid = np.stack(grid, axis=0)
200
+
201
+ grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
202
+ pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
203
+
204
+ # 2. Temporal
205
+ grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale
206
+ pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)
207
+
208
+ # 3. Concat
209
+ pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
210
+ pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0) # [T, H*W, D // 4 * 3]
211
+
212
+ pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
213
+ pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1) # [T, H*W, D // 4]
214
+
215
+ pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) # [T, H*W, D]
216
+ return pos_embed
217
+
218
+
69
219
  def get_2d_sincos_pos_embed(
220
+ embed_dim,
221
+ grid_size,
222
+ cls_token=False,
223
+ extra_tokens=0,
224
+ interpolation_scale=1.0,
225
+ base_size=16,
226
+ device: Optional[torch.device] = None,
227
+ output_type: str = "np",
228
+ ):
229
+ """
230
+ Creates 2D sinusoidal positional embeddings.
231
+
232
+ Args:
233
+ embed_dim (`int`):
234
+ The embedding dimension.
235
+ grid_size (`int`):
236
+ The size of the grid height and width.
237
+ cls_token (`bool`, defaults to `False`):
238
+ Whether or not to add a classification token.
239
+ extra_tokens (`int`, defaults to `0`):
240
+ The number of extra tokens to add.
241
+ interpolation_scale (`float`, defaults to `1.0`):
242
+ The scale of the interpolation.
243
+
244
+ Returns:
245
+ pos_embed (`torch.Tensor`):
246
+ Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
247
+ embed_dim]` if using cls_token
248
+ """
249
+ if output_type == "np":
250
+ deprecation_message = (
251
+ "`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
252
+ " `from_numpy` is no longer required."
253
+ " Pass `output_type='pt' to use the new version now."
254
+ )
255
+ deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
256
+ return get_2d_sincos_pos_embed_np(
257
+ embed_dim=embed_dim,
258
+ grid_size=grid_size,
259
+ cls_token=cls_token,
260
+ extra_tokens=extra_tokens,
261
+ interpolation_scale=interpolation_scale,
262
+ base_size=base_size,
263
+ )
264
+ if isinstance(grid_size, int):
265
+ grid_size = (grid_size, grid_size)
266
+
267
+ grid_h = (
268
+ torch.arange(grid_size[0], device=device, dtype=torch.float32)
269
+ / (grid_size[0] / base_size)
270
+ / interpolation_scale
271
+ )
272
+ grid_w = (
273
+ torch.arange(grid_size[1], device=device, dtype=torch.float32)
274
+ / (grid_size[1] / base_size)
275
+ / interpolation_scale
276
+ )
277
+ grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
278
+ grid = torch.stack(grid, dim=0)
279
+
280
+ grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
281
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type=output_type)
282
+ if cls_token and extra_tokens > 0:
283
+ pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
284
+ return pos_embed
285
+
286
+
287
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type="np"):
288
+ r"""
289
+ This function generates 2D sinusoidal positional embeddings from a grid.
290
+
291
+ Args:
292
+ embed_dim (`int`): The embedding dimension.
293
+ grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
294
+
295
+ Returns:
296
+ `torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
297
+ """
298
+ if output_type == "np":
299
+ deprecation_message = (
300
+ "`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
301
+ " `from_numpy` is no longer required."
302
+ " Pass `output_type='pt' to use the new version now."
303
+ )
304
+ deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
305
+ return get_2d_sincos_pos_embed_from_grid_np(
306
+ embed_dim=embed_dim,
307
+ grid=grid,
308
+ )
309
+ if embed_dim % 2 != 0:
310
+ raise ValueError("embed_dim must be divisible by 2")
311
+
312
+ # use half of dimensions to encode grid_h
313
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], output_type=output_type) # (H*W, D/2)
314
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], output_type=output_type) # (H*W, D/2)
315
+
316
+ emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
317
+ return emb
318
+
319
+
320
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np"):
321
+ """
322
+ This function generates 1D positional embeddings from a grid.
323
+
324
+ Args:
325
+ embed_dim (`int`): The embedding dimension `D`
326
+ pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
327
+
328
+ Returns:
329
+ `torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
330
+ """
331
+ if output_type == "np":
332
+ deprecation_message = (
333
+ "`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
334
+ " `from_numpy` is no longer required."
335
+ " Pass `output_type='pt' to use the new version now."
336
+ )
337
+ deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
338
+ return get_1d_sincos_pos_embed_from_grid_np(embed_dim=embed_dim, pos=pos)
339
+ if embed_dim % 2 != 0:
340
+ raise ValueError("embed_dim must be divisible by 2")
341
+
342
+ omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
343
+ omega /= embed_dim / 2.0
344
+ omega = 1.0 / 10000**omega # (D/2,)
345
+
346
+ pos = pos.reshape(-1) # (M,)
347
+ out = torch.outer(pos, omega) # (M, D/2), outer product
348
+
349
+ emb_sin = torch.sin(out) # (M, D/2)
350
+ emb_cos = torch.cos(out) # (M, D/2)
351
+
352
+ emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
353
+ return emb
354
+
355
+
356
+ def get_2d_sincos_pos_embed_np(
70
357
  embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
71
358
  ):
72
359
  """
73
- grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
74
- [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
360
+ Creates 2D sinusoidal positional embeddings.
361
+
362
+ Args:
363
+ embed_dim (`int`):
364
+ The embedding dimension.
365
+ grid_size (`int`):
366
+ The size of the grid height and width.
367
+ cls_token (`bool`, defaults to `False`):
368
+ Whether or not to add a classification token.
369
+ extra_tokens (`int`, defaults to `0`):
370
+ The number of extra tokens to add.
371
+ interpolation_scale (`float`, defaults to `1.0`):
372
+ The scale of the interpolation.
373
+
374
+ Returns:
375
+ pos_embed (`np.ndarray`):
376
+ Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
377
+ embed_dim]` if using cls_token
75
378
  """
76
379
  if isinstance(grid_size, int):
77
380
  grid_size = (grid_size, grid_size)
@@ -82,27 +385,44 @@ def get_2d_sincos_pos_embed(
82
385
  grid = np.stack(grid, axis=0)
83
386
 
84
387
  grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
85
- pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
388
+ pos_embed = get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid)
86
389
  if cls_token and extra_tokens > 0:
87
390
  pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
88
391
  return pos_embed
89
392
 
90
393
 
91
- def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
394
+ def get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid):
395
+ r"""
396
+ This function generates 2D sinusoidal positional embeddings from a grid.
397
+
398
+ Args:
399
+ embed_dim (`int`): The embedding dimension.
400
+ grid (`np.ndarray`): Grid of positions with shape `(H * W,)`.
401
+
402
+ Returns:
403
+ `np.ndarray`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
404
+ """
92
405
  if embed_dim % 2 != 0:
93
406
  raise ValueError("embed_dim must be divisible by 2")
94
407
 
95
408
  # use half of dimensions to encode grid_h
96
- emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
97
- emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
409
+ emb_h = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[0]) # (H*W, D/2)
410
+ emb_w = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[1]) # (H*W, D/2)
98
411
 
99
412
  emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
100
413
  return emb
101
414
 
102
415
 
103
- def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
416
+ def get_1d_sincos_pos_embed_from_grid_np(embed_dim, pos):
104
417
  """
105
- embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
418
+ This function generates 1D positional embeddings from a grid.
419
+
420
+ Args:
421
+ embed_dim (`int`): The embedding dimension `D`
422
+ pos (`numpy.ndarray`): 1D tensor of positions with shape `(M,)`
423
+
424
+ Returns:
425
+ `numpy.ndarray`: Sinusoidal positional embeddings of shape `(M, D)`.
106
426
  """
107
427
  if embed_dim % 2 != 0:
108
428
  raise ValueError("embed_dim must be divisible by 2")
@@ -122,7 +442,22 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
122
442
 
123
443
 
124
444
  class PatchEmbed(nn.Module):
125
- """2D Image to Patch Embedding"""
445
+ """
446
+ 2D Image to Patch Embedding with support for SD3 cropping.
447
+
448
+ Args:
449
+ height (`int`, defaults to `224`): The height of the image.
450
+ width (`int`, defaults to `224`): The width of the image.
451
+ patch_size (`int`, defaults to `16`): The size of the patches.
452
+ in_channels (`int`, defaults to `3`): The number of input channels.
453
+ embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
454
+ layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
455
+ flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
456
+ bias (`bool`, defaults to `True`): Whether or not to use bias.
457
+ interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
458
+ pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
459
+ pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
460
+ """
126
461
 
127
462
  def __init__(
128
463
  self,
@@ -135,12 +470,15 @@ class PatchEmbed(nn.Module):
135
470
  flatten=True,
136
471
  bias=True,
137
472
  interpolation_scale=1,
473
+ pos_embed_type="sincos",
474
+ pos_embed_max_size=None, # For SD3 cropping
138
475
  ):
139
476
  super().__init__()
140
477
 
141
478
  num_patches = (height // patch_size) * (width // patch_size)
142
479
  self.flatten = flatten
143
480
  self.layer_norm = layer_norm
481
+ self.pos_embed_max_size = pos_embed_max_size
144
482
 
145
483
  self.proj = nn.Conv2d(
146
484
  in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
@@ -151,40 +489,780 @@ class PatchEmbed(nn.Module):
151
489
  self.norm = None
152
490
 
153
491
  self.patch_size = patch_size
154
- # See:
155
- # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161
156
492
  self.height, self.width = height // patch_size, width // patch_size
157
493
  self.base_size = height // patch_size
158
494
  self.interpolation_scale = interpolation_scale
159
- pos_embed = get_2d_sincos_pos_embed(
160
- embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale
161
- )
162
- self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
163
495
 
164
- def forward(self, latent):
165
- height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
496
+ # Calculate positional embeddings based on max size or default
497
+ if pos_embed_max_size:
498
+ grid_size = pos_embed_max_size
499
+ else:
500
+ grid_size = int(num_patches**0.5)
501
+
502
+ if pos_embed_type is None:
503
+ self.pos_embed = None
504
+ elif pos_embed_type == "sincos":
505
+ pos_embed = get_2d_sincos_pos_embed(
506
+ embed_dim,
507
+ grid_size,
508
+ base_size=self.base_size,
509
+ interpolation_scale=self.interpolation_scale,
510
+ output_type="pt",
511
+ )
512
+ persistent = True if pos_embed_max_size else False
513
+ self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent)
514
+ else:
515
+ raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
166
516
 
517
+ def cropped_pos_embed(self, height, width):
518
+ """Crops positional embeddings for SD3 compatibility."""
519
+ if self.pos_embed_max_size is None:
520
+ raise ValueError("`pos_embed_max_size` must be set for cropping.")
521
+
522
+ height = height // self.patch_size
523
+ width = width // self.patch_size
524
+ if height > self.pos_embed_max_size:
525
+ raise ValueError(
526
+ f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
527
+ )
528
+ if width > self.pos_embed_max_size:
529
+ raise ValueError(
530
+ f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
531
+ )
532
+
533
+ top = (self.pos_embed_max_size - height) // 2
534
+ left = (self.pos_embed_max_size - width) // 2
535
+ spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
536
+ spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
537
+ spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
538
+ return spatial_pos_embed
539
+
540
+ def forward(self, latent):
541
+ if self.pos_embed_max_size is not None:
542
+ height, width = latent.shape[-2:]
543
+ else:
544
+ height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
167
545
  latent = self.proj(latent)
168
546
  if self.flatten:
169
547
  latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
170
548
  if self.layer_norm:
171
549
  latent = self.norm(latent)
550
+ if self.pos_embed is None:
551
+ return latent.to(latent.dtype)
552
+ # Interpolate or crop positional embeddings as needed
553
+ if self.pos_embed_max_size:
554
+ pos_embed = self.cropped_pos_embed(height, width)
555
+ else:
556
+ if self.height != height or self.width != width:
557
+ pos_embed = get_2d_sincos_pos_embed(
558
+ embed_dim=self.pos_embed.shape[-1],
559
+ grid_size=(height, width),
560
+ base_size=self.base_size,
561
+ interpolation_scale=self.interpolation_scale,
562
+ device=latent.device,
563
+ output_type="pt",
564
+ )
565
+ pos_embed = pos_embed.float().unsqueeze(0)
566
+ else:
567
+ pos_embed = self.pos_embed
172
568
 
173
- # Interpolate positional embeddings if needed.
174
- # (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
175
- if self.height != height or self.width != width:
176
- pos_embed = get_2d_sincos_pos_embed(
177
- embed_dim=self.pos_embed.shape[-1],
178
- grid_size=(height, width),
179
- base_size=self.base_size,
180
- interpolation_scale=self.interpolation_scale,
569
+ return (latent + pos_embed).to(latent.dtype)
570
+
571
+
572
+ class LuminaPatchEmbed(nn.Module):
573
+ """
574
+ 2D Image to Patch Embedding with support for Lumina-T2X
575
+
576
+ Args:
577
+ patch_size (`int`, defaults to `2`): The size of the patches.
578
+ in_channels (`int`, defaults to `4`): The number of input channels.
579
+ embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
580
+ bias (`bool`, defaults to `True`): Whether or not to use bias.
581
+ """
582
+
583
+ def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
584
+ super().__init__()
585
+ self.patch_size = patch_size
586
+ self.proj = nn.Linear(
587
+ in_features=patch_size * patch_size * in_channels,
588
+ out_features=embed_dim,
589
+ bias=bias,
590
+ )
591
+
592
+ def forward(self, x, freqs_cis):
593
+ """
594
+ Patchifies and embeds the input tensor(s).
595
+
596
+ Args:
597
+ x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded.
598
+
599
+ Returns:
600
+ Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified
601
+ and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the
602
+ frequency tensor(s).
603
+ """
604
+ freqs_cis = freqs_cis.to(x[0].device)
605
+ patch_height = patch_width = self.patch_size
606
+ batch_size, channel, height, width = x.size()
607
+ height_tokens, width_tokens = height // patch_height, width // patch_width
608
+
609
+ x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(
610
+ 0, 2, 4, 1, 3, 5
611
+ )
612
+ x = x.flatten(3)
613
+ x = self.proj(x)
614
+ x = x.flatten(1, 2)
615
+
616
+ mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)
617
+
618
+ return (
619
+ x,
620
+ mask,
621
+ [(height, width)] * batch_size,
622
+ freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0),
623
+ )
624
+
625
+
626
+ class CogVideoXPatchEmbed(nn.Module):
627
+ def __init__(
628
+ self,
629
+ patch_size: int = 2,
630
+ patch_size_t: Optional[int] = None,
631
+ in_channels: int = 16,
632
+ embed_dim: int = 1920,
633
+ text_embed_dim: int = 4096,
634
+ bias: bool = True,
635
+ sample_width: int = 90,
636
+ sample_height: int = 60,
637
+ sample_frames: int = 49,
638
+ temporal_compression_ratio: int = 4,
639
+ max_text_seq_length: int = 226,
640
+ spatial_interpolation_scale: float = 1.875,
641
+ temporal_interpolation_scale: float = 1.0,
642
+ use_positional_embeddings: bool = True,
643
+ use_learned_positional_embeddings: bool = True,
644
+ ) -> None:
645
+ super().__init__()
646
+
647
+ self.patch_size = patch_size
648
+ self.patch_size_t = patch_size_t
649
+ self.embed_dim = embed_dim
650
+ self.sample_height = sample_height
651
+ self.sample_width = sample_width
652
+ self.sample_frames = sample_frames
653
+ self.temporal_compression_ratio = temporal_compression_ratio
654
+ self.max_text_seq_length = max_text_seq_length
655
+ self.spatial_interpolation_scale = spatial_interpolation_scale
656
+ self.temporal_interpolation_scale = temporal_interpolation_scale
657
+ self.use_positional_embeddings = use_positional_embeddings
658
+ self.use_learned_positional_embeddings = use_learned_positional_embeddings
659
+
660
+ if patch_size_t is None:
661
+ # CogVideoX 1.0 checkpoints
662
+ self.proj = nn.Conv2d(
663
+ in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
181
664
  )
182
- pos_embed = torch.from_numpy(pos_embed)
183
- pos_embed = pos_embed.float().unsqueeze(0).to(latent.device)
184
665
  else:
185
- pos_embed = self.pos_embed
666
+ # CogVideoX 1.5 checkpoints
667
+ self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)
668
+
669
+ self.text_proj = nn.Linear(text_embed_dim, embed_dim)
670
+
671
+ if use_positional_embeddings or use_learned_positional_embeddings:
672
+ persistent = use_learned_positional_embeddings
673
+ pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
674
+ self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
675
+
676
+ def _get_positional_embeddings(
677
+ self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None
678
+ ) -> torch.Tensor:
679
+ post_patch_height = sample_height // self.patch_size
680
+ post_patch_width = sample_width // self.patch_size
681
+ post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
682
+ num_patches = post_patch_height * post_patch_width * post_time_compression_frames
683
+
684
+ pos_embedding = get_3d_sincos_pos_embed(
685
+ self.embed_dim,
686
+ (post_patch_width, post_patch_height),
687
+ post_time_compression_frames,
688
+ self.spatial_interpolation_scale,
689
+ self.temporal_interpolation_scale,
690
+ device=device,
691
+ output_type="pt",
692
+ )
693
+ pos_embedding = pos_embedding.flatten(0, 1)
694
+ joint_pos_embedding = pos_embedding.new_zeros(
695
+ 1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
696
+ )
697
+ joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)
186
698
 
187
- return (latent + pos_embed).to(latent.dtype)
699
+ return joint_pos_embedding
700
+
701
+ def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
702
+ r"""
703
+ Args:
704
+ text_embeds (`torch.Tensor`):
705
+ Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
706
+ image_embeds (`torch.Tensor`):
707
+ Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
708
+ """
709
+ text_embeds = self.text_proj(text_embeds)
710
+
711
+ batch_size, num_frames, channels, height, width = image_embeds.shape
712
+
713
+ if self.patch_size_t is None:
714
+ image_embeds = image_embeds.reshape(-1, channels, height, width)
715
+ image_embeds = self.proj(image_embeds)
716
+ image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
717
+ image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
718
+ image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
719
+ else:
720
+ p = self.patch_size
721
+ p_t = self.patch_size_t
722
+
723
+ image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
724
+ image_embeds = image_embeds.reshape(
725
+ batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
726
+ )
727
+ image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
728
+ image_embeds = self.proj(image_embeds)
729
+
730
+ embeds = torch.cat(
731
+ [text_embeds, image_embeds], dim=1
732
+ ).contiguous() # [batch, seq_length + num_frames x height x width, channels]
733
+
734
+ if self.use_positional_embeddings or self.use_learned_positional_embeddings:
735
+ if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
736
+ raise ValueError(
737
+ "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
738
+ "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
739
+ )
740
+
741
+ pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
742
+
743
+ if (
744
+ self.sample_height != height
745
+ or self.sample_width != width
746
+ or self.sample_frames != pre_time_compression_frames
747
+ ):
748
+ pos_embedding = self._get_positional_embeddings(
749
+ height, width, pre_time_compression_frames, device=embeds.device
750
+ )
751
+ else:
752
+ pos_embedding = self.pos_embedding
753
+
754
+ pos_embedding = pos_embedding.to(dtype=embeds.dtype)
755
+ embeds = embeds + pos_embedding
756
+
757
+ return embeds
758
+
759
+
760
+ class CogView3PlusPatchEmbed(nn.Module):
761
+ def __init__(
762
+ self,
763
+ in_channels: int = 16,
764
+ hidden_size: int = 2560,
765
+ patch_size: int = 2,
766
+ text_hidden_size: int = 4096,
767
+ pos_embed_max_size: int = 128,
768
+ ):
769
+ super().__init__()
770
+ self.in_channels = in_channels
771
+ self.hidden_size = hidden_size
772
+ self.patch_size = patch_size
773
+ self.text_hidden_size = text_hidden_size
774
+ self.pos_embed_max_size = pos_embed_max_size
775
+ # Linear projection for image patches
776
+ self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
777
+
778
+ # Linear projection for text embeddings
779
+ self.text_proj = nn.Linear(text_hidden_size, hidden_size)
780
+
781
+ pos_embed = get_2d_sincos_pos_embed(
782
+ hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt"
783
+ )
784
+ pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
785
+ self.register_buffer("pos_embed", pos_embed.float(), persistent=False)
786
+
787
+ def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
788
+ batch_size, channel, height, width = hidden_states.shape
789
+
790
+ if height % self.patch_size != 0 or width % self.patch_size != 0:
791
+ raise ValueError("Height and width must be divisible by patch size")
792
+
793
+ height = height // self.patch_size
794
+ width = width // self.patch_size
795
+ hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
796
+ hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
797
+ hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)
798
+
799
+ # Project the patches
800
+ hidden_states = self.proj(hidden_states)
801
+ encoder_hidden_states = self.text_proj(encoder_hidden_states)
802
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
803
+
804
+ # Calculate text_length
805
+ text_length = encoder_hidden_states.shape[1]
806
+
807
+ image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
808
+ text_pos_embed = torch.zeros(
809
+ (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
810
+ )
811
+ pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]
812
+
813
+ return (hidden_states + pos_embed).to(hidden_states.dtype)
814
+
815
+
816
+ def get_3d_rotary_pos_embed(
817
+ embed_dim,
818
+ crops_coords,
819
+ grid_size,
820
+ temporal_size,
821
+ theta: int = 10000,
822
+ use_real: bool = True,
823
+ grid_type: str = "linspace",
824
+ max_size: Optional[Tuple[int, int]] = None,
825
+ device: Optional[torch.device] = None,
826
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
827
+ """
828
+ RoPE for video tokens with 3D structure.
829
+
830
+ Args:
831
+ embed_dim: (`int`):
832
+ The embedding dimension size, corresponding to hidden_size_head.
833
+ crops_coords (`Tuple[int]`):
834
+ The top-left and bottom-right coordinates of the crop.
835
+ grid_size (`Tuple[int]`):
836
+ The grid size of the spatial positional embedding (height, width).
837
+ temporal_size (`int`):
838
+ The size of the temporal dimension.
839
+ theta (`float`):
840
+ Scaling factor for frequency computation.
841
+ grid_type (`str`):
842
+ Whether to use "linspace" or "slice" to compute grids.
843
+
844
+ Returns:
845
+ `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
846
+ """
847
+ if use_real is not True:
848
+ raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
849
+
850
+ if grid_type == "linspace":
851
+ start, stop = crops_coords
852
+ grid_size_h, grid_size_w = grid_size
853
+ grid_h = torch.linspace(
854
+ start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32
855
+ )
856
+ grid_w = torch.linspace(
857
+ start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32
858
+ )
859
+ grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32)
860
+ grid_t = torch.linspace(
861
+ 0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32
862
+ )
863
+ elif grid_type == "slice":
864
+ max_h, max_w = max_size
865
+ grid_size_h, grid_size_w = grid_size
866
+ grid_h = torch.arange(max_h, device=device, dtype=torch.float32)
867
+ grid_w = torch.arange(max_w, device=device, dtype=torch.float32)
868
+ grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32)
869
+ else:
870
+ raise ValueError("Invalid value passed for `grid_type`.")
871
+
872
+ # Compute dimensions for each axis
873
+ dim_t = embed_dim // 4
874
+ dim_h = embed_dim // 8 * 3
875
+ dim_w = embed_dim // 8 * 3
876
+
877
+ # Temporal frequencies
878
+ freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, theta=theta, use_real=True)
879
+ # Spatial frequencies for height and width
880
+ freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, theta=theta, use_real=True)
881
+ freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, theta=theta, use_real=True)
882
+
883
+ # BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
884
+ def combine_time_height_width(freqs_t, freqs_h, freqs_w):
885
+ freqs_t = freqs_t[:, None, None, :].expand(
886
+ -1, grid_size_h, grid_size_w, -1
887
+ ) # temporal_size, grid_size_h, grid_size_w, dim_t
888
+ freqs_h = freqs_h[None, :, None, :].expand(
889
+ temporal_size, -1, grid_size_w, -1
890
+ ) # temporal_size, grid_size_h, grid_size_2, dim_h
891
+ freqs_w = freqs_w[None, None, :, :].expand(
892
+ temporal_size, grid_size_h, -1, -1
893
+ ) # temporal_size, grid_size_h, grid_size_2, dim_w
894
+
895
+ freqs = torch.cat(
896
+ [freqs_t, freqs_h, freqs_w], dim=-1
897
+ ) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
898
+ freqs = freqs.view(
899
+ temporal_size * grid_size_h * grid_size_w, -1
900
+ ) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
901
+ return freqs
902
+
903
+ t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
904
+ h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
905
+ w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
906
+
907
+ if grid_type == "slice":
908
+ t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
909
+ h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
910
+ w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]
911
+
912
+ cos = combine_time_height_width(t_cos, h_cos, w_cos)
913
+ sin = combine_time_height_width(t_sin, h_sin, w_sin)
914
+ return cos, sin
915
+
916
+
917
+ def get_3d_rotary_pos_embed_allegro(
918
+ embed_dim,
919
+ crops_coords,
920
+ grid_size,
921
+ temporal_size,
922
+ interpolation_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0),
923
+ theta: int = 10000,
924
+ device: Optional[torch.device] = None,
925
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
926
+ # TODO(aryan): docs
927
+ start, stop = crops_coords
928
+ grid_size_h, grid_size_w = grid_size
929
+ interpolation_scale_t, interpolation_scale_h, interpolation_scale_w = interpolation_scale
930
+ grid_t = torch.linspace(
931
+ 0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32
932
+ )
933
+ grid_h = torch.linspace(
934
+ start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32
935
+ )
936
+ grid_w = torch.linspace(
937
+ start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32
938
+ )
939
+
940
+ # Compute dimensions for each axis
941
+ dim_t = embed_dim // 3
942
+ dim_h = embed_dim // 3
943
+ dim_w = embed_dim // 3
944
+
945
+ # Temporal frequencies
946
+ freqs_t = get_1d_rotary_pos_embed(
947
+ dim_t, grid_t / interpolation_scale_t, theta=theta, use_real=True, repeat_interleave_real=False
948
+ )
949
+ # Spatial frequencies for height and width
950
+ freqs_h = get_1d_rotary_pos_embed(
951
+ dim_h, grid_h / interpolation_scale_h, theta=theta, use_real=True, repeat_interleave_real=False
952
+ )
953
+ freqs_w = get_1d_rotary_pos_embed(
954
+ dim_w, grid_w / interpolation_scale_w, theta=theta, use_real=True, repeat_interleave_real=False
955
+ )
956
+
957
+ return freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w
958
+
959
+
960
+ def get_2d_rotary_pos_embed(
961
+ embed_dim, crops_coords, grid_size, use_real=True, device: Optional[torch.device] = None, output_type: str = "np"
962
+ ):
963
+ """
964
+ RoPE for image tokens with 2d structure.
965
+
966
+ Args:
967
+ embed_dim: (`int`):
968
+ The embedding dimension size
969
+ crops_coords (`Tuple[int]`)
970
+ The top-left and bottom-right coordinates of the crop.
971
+ grid_size (`Tuple[int]`):
972
+ The grid size of the positional embedding.
973
+ use_real (`bool`):
974
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
975
+ device: (`torch.device`, **optional**):
976
+ The device used to create tensors.
977
+
978
+ Returns:
979
+ `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
980
+ """
981
+ if output_type == "np":
982
+ deprecation_message = (
983
+ "`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
984
+ " `from_numpy` is no longer required."
985
+ " Pass `output_type='pt' to use the new version now."
986
+ )
987
+ deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
988
+ return _get_2d_rotary_pos_embed_np(
989
+ embed_dim=embed_dim,
990
+ crops_coords=crops_coords,
991
+ grid_size=grid_size,
992
+ use_real=use_real,
993
+ )
994
+ start, stop = crops_coords
995
+ # scale end by (steps−1)/steps matches np.linspace(..., endpoint=False)
996
+ grid_h = torch.linspace(
997
+ start[0], stop[0] * (grid_size[0] - 1) / grid_size[0], grid_size[0], device=device, dtype=torch.float32
998
+ )
999
+ grid_w = torch.linspace(
1000
+ start[1], stop[1] * (grid_size[1] - 1) / grid_size[1], grid_size[1], device=device, dtype=torch.float32
1001
+ )
1002
+ grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
1003
+ grid = torch.stack(grid, dim=0) # [2, W, H]
1004
+
1005
+ grid = grid.reshape([2, 1, *grid.shape[1:]])
1006
+ pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
1007
+ return pos_embed
1008
+
1009
+
1010
+ def _get_2d_rotary_pos_embed_np(embed_dim, crops_coords, grid_size, use_real=True):
1011
+ """
1012
+ RoPE for image tokens with 2d structure.
1013
+
1014
+ Args:
1015
+ embed_dim: (`int`):
1016
+ The embedding dimension size
1017
+ crops_coords (`Tuple[int]`)
1018
+ The top-left and bottom-right coordinates of the crop.
1019
+ grid_size (`Tuple[int]`):
1020
+ The grid size of the positional embedding.
1021
+ use_real (`bool`):
1022
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
1023
+
1024
+ Returns:
1025
+ `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
1026
+ """
1027
+ start, stop = crops_coords
1028
+ grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
1029
+ grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
1030
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
1031
+ grid = np.stack(grid, axis=0) # [2, W, H]
1032
+
1033
+ grid = grid.reshape([2, 1, *grid.shape[1:]])
1034
+ pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
1035
+ return pos_embed
1036
+
1037
+
1038
+ def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
1039
+ """
1040
+ Get 2D RoPE from grid.
1041
+
1042
+ Args:
1043
+ embed_dim: (`int`):
1044
+ The embedding dimension size, corresponding to hidden_size_head.
1045
+ grid (`np.ndarray`):
1046
+ The grid of the positional embedding.
1047
+ use_real (`bool`):
1048
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
1049
+
1050
+ Returns:
1051
+ `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
1052
+ """
1053
+ assert embed_dim % 4 == 0
1054
+
1055
+ # use half of dimensions to encode grid_h
1056
+ emb_h = get_1d_rotary_pos_embed(
1057
+ embed_dim // 2, grid[0].reshape(-1), use_real=use_real
1058
+ ) # (H*W, D/2) if use_real else (H*W, D/4)
1059
+ emb_w = get_1d_rotary_pos_embed(
1060
+ embed_dim // 2, grid[1].reshape(-1), use_real=use_real
1061
+ ) # (H*W, D/2) if use_real else (H*W, D/4)
1062
+
1063
+ if use_real:
1064
+ cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D)
1065
+ sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D)
1066
+ return cos, sin
1067
+ else:
1068
+ emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
1069
+ return emb
1070
+
1071
+
1072
+ def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
1073
+ """
1074
+ Get 2D RoPE from grid.
1075
+
1076
+ Args:
1077
+ embed_dim: (`int`):
1078
+ The embedding dimension size, corresponding to hidden_size_head.
1079
+ grid (`np.ndarray`):
1080
+ The grid of the positional embedding.
1081
+ linear_factor (`float`):
1082
+ The linear factor of the positional embedding, which is used to scale the positional embedding in the linear
1083
+ layer.
1084
+ ntk_factor (`float`):
1085
+ The ntk factor of the positional embedding, which is used to scale the positional embedding in the ntk layer.
1086
+
1087
+ Returns:
1088
+ `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
1089
+ """
1090
+ assert embed_dim % 4 == 0
1091
+
1092
+ emb_h = get_1d_rotary_pos_embed(
1093
+ embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
1094
+ ) # (H, D/4)
1095
+ emb_w = get_1d_rotary_pos_embed(
1096
+ embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
1097
+ ) # (W, D/4)
1098
+ emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) # (H, W, D/4, 1)
1099
+ emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) # (H, W, D/4, 1)
1100
+
1101
+ emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) # (H, W, D/2)
1102
+ return emb
1103
+
1104
+
1105
+ def get_1d_rotary_pos_embed(
1106
+ dim: int,
1107
+ pos: Union[np.ndarray, int],
1108
+ theta: float = 10000.0,
1109
+ use_real=False,
1110
+ linear_factor=1.0,
1111
+ ntk_factor=1.0,
1112
+ repeat_interleave_real=True,
1113
+ freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
1114
+ ):
1115
+ """
1116
+ Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
1117
+
1118
+ This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
1119
+ index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
1120
+ data type.
1121
+
1122
+ Args:
1123
+ dim (`int`): Dimension of the frequency tensor.
1124
+ pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
1125
+ theta (`float`, *optional*, defaults to 10000.0):
1126
+ Scaling factor for frequency computation. Defaults to 10000.0.
1127
+ use_real (`bool`, *optional*):
1128
+ If True, return real part and imaginary part separately. Otherwise, return complex numbers.
1129
+ linear_factor (`float`, *optional*, defaults to 1.0):
1130
+ Scaling factor for the context extrapolation. Defaults to 1.0.
1131
+ ntk_factor (`float`, *optional*, defaults to 1.0):
1132
+ Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
1133
+ repeat_interleave_real (`bool`, *optional*, defaults to `True`):
1134
+ If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
1135
+ Otherwise, they are concateanted with themselves.
1136
+ freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
1137
+ the dtype of the frequency tensor.
1138
+ Returns:
1139
+ `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
1140
+ """
1141
+ assert dim % 2 == 0
1142
+
1143
+ if isinstance(pos, int):
1144
+ pos = torch.arange(pos)
1145
+ if isinstance(pos, np.ndarray):
1146
+ pos = torch.from_numpy(pos) # type: ignore # [S]
1147
+
1148
+ theta = theta * ntk_factor
1149
+ freqs = (
1150
+ 1.0
1151
+ / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
1152
+ / linear_factor
1153
+ ) # [D/2]
1154
+ freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
1155
+ if use_real and repeat_interleave_real:
1156
+ # flux, hunyuan-dit, cogvideox
1157
+ freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
1158
+ freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
1159
+ return freqs_cos, freqs_sin
1160
+ elif use_real:
1161
+ # stable audio, allegro
1162
+ freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
1163
+ freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
1164
+ return freqs_cos, freqs_sin
1165
+ else:
1166
+ # lumina
1167
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
1168
+ return freqs_cis
1169
+
1170
+
1171
+ def apply_rotary_emb(
1172
+ x: torch.Tensor,
1173
+ freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
1174
+ use_real: bool = True,
1175
+ use_real_unbind_dim: int = -1,
1176
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
1177
+ """
1178
+ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
1179
+ to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
1180
+ reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
1181
+ tensors contain rotary embeddings and are returned as real tensors.
1182
+
1183
+ Args:
1184
+ x (`torch.Tensor`):
1185
+ Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
1186
+ freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
1187
+
1188
+ Returns:
1189
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
1190
+ """
1191
+ if use_real:
1192
+ cos, sin = freqs_cis # [S, D]
1193
+ cos = cos[None, None]
1194
+ sin = sin[None, None]
1195
+ cos, sin = cos.to(x.device), sin.to(x.device)
1196
+
1197
+ if use_real_unbind_dim == -1:
1198
+ # Used for flux, cogvideox, hunyuan-dit
1199
+ x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
1200
+ x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
1201
+ elif use_real_unbind_dim == -2:
1202
+ # Used for Stable Audio
1203
+ x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
1204
+ x_rotated = torch.cat([-x_imag, x_real], dim=-1)
1205
+ else:
1206
+ raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
1207
+
1208
+ out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
1209
+
1210
+ return out
1211
+ else:
1212
+ # used for lumina
1213
+ x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
1214
+ freqs_cis = freqs_cis.unsqueeze(2)
1215
+ x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
1216
+
1217
+ return x_out.type_as(x)
1218
+
1219
+
1220
+ def apply_rotary_emb_allegro(x: torch.Tensor, freqs_cis, positions):
1221
+ # TODO(aryan): rewrite
1222
+ def apply_1d_rope(tokens, pos, cos, sin):
1223
+ cos = F.embedding(pos, cos)[:, None, :, :]
1224
+ sin = F.embedding(pos, sin)[:, None, :, :]
1225
+ x1, x2 = tokens[..., : tokens.shape[-1] // 2], tokens[..., tokens.shape[-1] // 2 :]
1226
+ tokens_rotated = torch.cat((-x2, x1), dim=-1)
1227
+ return (tokens.float() * cos + tokens_rotated.float() * sin).to(tokens.dtype)
1228
+
1229
+ (t_cos, t_sin), (h_cos, h_sin), (w_cos, w_sin) = freqs_cis
1230
+ t, h, w = x.chunk(3, dim=-1)
1231
+ t = apply_1d_rope(t, positions[0], t_cos, t_sin)
1232
+ h = apply_1d_rope(h, positions[1], h_cos, h_sin)
1233
+ w = apply_1d_rope(w, positions[2], w_cos, w_sin)
1234
+ x = torch.cat([t, h, w], dim=-1)
1235
+ return x
1236
+
1237
+
1238
+ class FluxPosEmbed(nn.Module):
1239
+ # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
1240
+ def __init__(self, theta: int, axes_dim: List[int]):
1241
+ super().__init__()
1242
+ self.theta = theta
1243
+ self.axes_dim = axes_dim
1244
+
1245
+ def forward(self, ids: torch.Tensor) -> torch.Tensor:
1246
+ n_axes = ids.shape[-1]
1247
+ cos_out = []
1248
+ sin_out = []
1249
+ pos = ids.float()
1250
+ is_mps = ids.device.type == "mps"
1251
+ freqs_dtype = torch.float32 if is_mps else torch.float64
1252
+ for i in range(n_axes):
1253
+ cos, sin = get_1d_rotary_pos_embed(
1254
+ self.axes_dim[i],
1255
+ pos[:, i],
1256
+ theta=self.theta,
1257
+ repeat_interleave_real=True,
1258
+ use_real=True,
1259
+ freqs_dtype=freqs_dtype,
1260
+ )
1261
+ cos_out.append(cos)
1262
+ sin_out.append(sin)
1263
+ freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
1264
+ freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
1265
+ return freqs_cos, freqs_sin
188
1266
 
189
1267
 
190
1268
  class TimestepEmbedding(nn.Module):
@@ -199,9 +1277,8 @@ class TimestepEmbedding(nn.Module):
199
1277
  sample_proj_bias=True,
200
1278
  ):
201
1279
  super().__init__()
202
- linear_cls = nn.Linear
203
1280
 
204
- self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias)
1281
+ self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
205
1282
 
206
1283
  if cond_proj_dim is not None:
207
1284
  self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
@@ -214,7 +1291,7 @@ class TimestepEmbedding(nn.Module):
214
1291
  time_embed_dim_out = out_dim
215
1292
  else:
216
1293
  time_embed_dim_out = time_embed_dim
217
- self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias)
1294
+ self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
218
1295
 
219
1296
  if post_act_fn is None:
220
1297
  self.post_act = None
@@ -237,11 +1314,12 @@ class TimestepEmbedding(nn.Module):
237
1314
 
238
1315
 
239
1316
  class Timesteps(nn.Module):
240
- def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
1317
+ def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
241
1318
  super().__init__()
242
1319
  self.num_channels = num_channels
243
1320
  self.flip_sin_to_cos = flip_sin_to_cos
244
1321
  self.downscale_freq_shift = downscale_freq_shift
1322
+ self.scale = scale
245
1323
 
246
1324
  def forward(self, timesteps):
247
1325
  t_emb = get_timestep_embedding(
@@ -249,6 +1327,7 @@ class Timesteps(nn.Module):
249
1327
  self.num_channels,
250
1328
  flip_sin_to_cos=self.flip_sin_to_cos,
251
1329
  downscale_freq_shift=self.downscale_freq_shift,
1330
+ scale=self.scale,
252
1331
  )
253
1332
  return t_emb
254
1333
 
@@ -266,9 +1345,10 @@ class GaussianFourierProjection(nn.Module):
266
1345
 
267
1346
  if set_W_to_weight:
268
1347
  # to delete later
1348
+ del self.weight
269
1349
  self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
270
-
271
1350
  self.weight = self.W
1351
+ del self.W
272
1352
 
273
1353
  def forward(self, x):
274
1354
  if self.log:
@@ -392,106 +1472,368 @@ class LabelEmbedding(nn.Module):
392
1472
  self.num_classes = num_classes
393
1473
  self.dropout_prob = dropout_prob
394
1474
 
395
- def token_drop(self, labels, force_drop_ids=None):
396
- """
397
- Drops labels to enable classifier-free guidance.
398
- """
399
- if force_drop_ids is None:
400
- drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
401
- else:
402
- drop_ids = torch.tensor(force_drop_ids == 1)
403
- labels = torch.where(drop_ids, self.num_classes, labels)
404
- return labels
1475
+ def token_drop(self, labels, force_drop_ids=None):
1476
+ """
1477
+ Drops labels to enable classifier-free guidance.
1478
+ """
1479
+ if force_drop_ids is None:
1480
+ drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
1481
+ else:
1482
+ drop_ids = torch.tensor(force_drop_ids == 1)
1483
+ labels = torch.where(drop_ids, self.num_classes, labels)
1484
+ return labels
1485
+
1486
+ def forward(self, labels: torch.LongTensor, force_drop_ids=None):
1487
+ use_dropout = self.dropout_prob > 0
1488
+ if (self.training and use_dropout) or (force_drop_ids is not None):
1489
+ labels = self.token_drop(labels, force_drop_ids)
1490
+ embeddings = self.embedding_table(labels)
1491
+ return embeddings
1492
+
1493
+
1494
+ class TextImageProjection(nn.Module):
1495
+ def __init__(
1496
+ self,
1497
+ text_embed_dim: int = 1024,
1498
+ image_embed_dim: int = 768,
1499
+ cross_attention_dim: int = 768,
1500
+ num_image_text_embeds: int = 10,
1501
+ ):
1502
+ super().__init__()
1503
+
1504
+ self.num_image_text_embeds = num_image_text_embeds
1505
+ self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
1506
+ self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
1507
+
1508
+ def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
1509
+ batch_size = text_embeds.shape[0]
1510
+
1511
+ # image
1512
+ image_text_embeds = self.image_embeds(image_embeds)
1513
+ image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
1514
+
1515
+ # text
1516
+ text_embeds = self.text_proj(text_embeds)
1517
+
1518
+ return torch.cat([image_text_embeds, text_embeds], dim=1)
1519
+
1520
+
1521
+ class ImageProjection(nn.Module):
1522
+ def __init__(
1523
+ self,
1524
+ image_embed_dim: int = 768,
1525
+ cross_attention_dim: int = 768,
1526
+ num_image_text_embeds: int = 32,
1527
+ ):
1528
+ super().__init__()
1529
+
1530
+ self.num_image_text_embeds = num_image_text_embeds
1531
+ self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
1532
+ self.norm = nn.LayerNorm(cross_attention_dim)
1533
+
1534
+ def forward(self, image_embeds: torch.Tensor):
1535
+ batch_size = image_embeds.shape[0]
1536
+
1537
+ # image
1538
+ image_embeds = self.image_embeds(image_embeds.to(self.image_embeds.weight.dtype))
1539
+ image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
1540
+ image_embeds = self.norm(image_embeds)
1541
+ return image_embeds
1542
+
1543
+
1544
+ class IPAdapterFullImageProjection(nn.Module):
1545
+ def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
1546
+ super().__init__()
1547
+ from .attention import FeedForward
1548
+
1549
+ self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
1550
+ self.norm = nn.LayerNorm(cross_attention_dim)
1551
+
1552
+ def forward(self, image_embeds: torch.Tensor):
1553
+ return self.norm(self.ff(image_embeds))
1554
+
1555
+
1556
+ class IPAdapterFaceIDImageProjection(nn.Module):
1557
+ def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
1558
+ super().__init__()
1559
+ from .attention import FeedForward
1560
+
1561
+ self.num_tokens = num_tokens
1562
+ self.cross_attention_dim = cross_attention_dim
1563
+ self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
1564
+ self.norm = nn.LayerNorm(cross_attention_dim)
1565
+
1566
+ def forward(self, image_embeds: torch.Tensor):
1567
+ x = self.ff(image_embeds)
1568
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
1569
+ return self.norm(x)
1570
+
1571
+
1572
+ class CombinedTimestepLabelEmbeddings(nn.Module):
1573
+ def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
1574
+ super().__init__()
1575
+
1576
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
1577
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
1578
+ self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
1579
+
1580
+ def forward(self, timestep, class_labels, hidden_dtype=None):
1581
+ timesteps_proj = self.time_proj(timestep)
1582
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
1583
+
1584
+ class_labels = self.class_embedder(class_labels) # (N, D)
1585
+
1586
+ conditioning = timesteps_emb + class_labels # (N, D)
1587
+
1588
+ return conditioning
1589
+
1590
+
1591
+ class CombinedTimestepTextProjEmbeddings(nn.Module):
1592
+ def __init__(self, embedding_dim, pooled_projection_dim):
1593
+ super().__init__()
1594
+
1595
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
1596
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
1597
+ self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
1598
+
1599
+ def forward(self, timestep, pooled_projection):
1600
+ timesteps_proj = self.time_proj(timestep)
1601
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
1602
+
1603
+ pooled_projections = self.text_embedder(pooled_projection)
1604
+
1605
+ conditioning = timesteps_emb + pooled_projections
1606
+
1607
+ return conditioning
1608
+
1609
+
1610
+ class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
1611
+ def __init__(self, embedding_dim, pooled_projection_dim):
1612
+ super().__init__()
1613
+
1614
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
1615
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
1616
+ self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
1617
+ self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
1618
+
1619
+ def forward(self, timestep, guidance, pooled_projection):
1620
+ timesteps_proj = self.time_proj(timestep)
1621
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
1622
+
1623
+ guidance_proj = self.time_proj(guidance)
1624
+ guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D)
1625
+
1626
+ time_guidance_emb = timesteps_emb + guidance_emb
1627
+
1628
+ pooled_projections = self.text_embedder(pooled_projection)
1629
+ conditioning = time_guidance_emb + pooled_projections
1630
+
1631
+ return conditioning
1632
+
405
1633
 
406
- def forward(self, labels: torch.LongTensor, force_drop_ids=None):
407
- use_dropout = self.dropout_prob > 0
408
- if (self.training and use_dropout) or (force_drop_ids is not None):
409
- labels = self.token_drop(labels, force_drop_ids)
410
- embeddings = self.embedding_table(labels)
411
- return embeddings
1634
+ class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
1635
+ def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
1636
+ super().__init__()
412
1637
 
1638
+ self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
1639
+ self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
1640
+ self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
1641
+ self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
413
1642
 
414
- class TextImageProjection(nn.Module):
415
- def __init__(
1643
+ def forward(
416
1644
  self,
417
- text_embed_dim: int = 1024,
418
- image_embed_dim: int = 768,
419
- cross_attention_dim: int = 768,
420
- num_image_text_embeds: int = 10,
421
- ):
422
- super().__init__()
1645
+ timestep: torch.Tensor,
1646
+ original_size: torch.Tensor,
1647
+ target_size: torch.Tensor,
1648
+ crop_coords: torch.Tensor,
1649
+ hidden_dtype: torch.dtype,
1650
+ ) -> torch.Tensor:
1651
+ timesteps_proj = self.time_proj(timestep)
423
1652
 
424
- self.num_image_text_embeds = num_image_text_embeds
425
- self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
426
- self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
1653
+ original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1)
1654
+ crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1)
1655
+ target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1)
427
1656
 
428
- def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
429
- batch_size = text_embeds.shape[0]
1657
+ # (B, 3 * condition_dim)
1658
+ condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1)
430
1659
 
431
- # image
432
- image_text_embeds = self.image_embeds(image_embeds)
433
- image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
1660
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
1661
+ condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
434
1662
 
435
- # text
436
- text_embeds = self.text_proj(text_embeds)
1663
+ conditioning = timesteps_emb + condition_emb
1664
+ return conditioning
437
1665
 
438
- return torch.cat([image_text_embeds, text_embeds], dim=1)
439
1666
 
1667
+ class HunyuanDiTAttentionPool(nn.Module):
1668
+ # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6
440
1669
 
441
- class ImageProjection(nn.Module):
1670
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
1671
+ super().__init__()
1672
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
1673
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
1674
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
1675
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
1676
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
1677
+ self.num_heads = num_heads
1678
+
1679
+ def forward(self, x):
1680
+ x = x.permute(1, 0, 2) # NLC -> LNC
1681
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
1682
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
1683
+ x, _ = F.multi_head_attention_forward(
1684
+ query=x[:1],
1685
+ key=x,
1686
+ value=x,
1687
+ embed_dim_to_check=x.shape[-1],
1688
+ num_heads=self.num_heads,
1689
+ q_proj_weight=self.q_proj.weight,
1690
+ k_proj_weight=self.k_proj.weight,
1691
+ v_proj_weight=self.v_proj.weight,
1692
+ in_proj_weight=None,
1693
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
1694
+ bias_k=None,
1695
+ bias_v=None,
1696
+ add_zero_attn=False,
1697
+ dropout_p=0,
1698
+ out_proj_weight=self.c_proj.weight,
1699
+ out_proj_bias=self.c_proj.bias,
1700
+ use_separate_proj_weight=True,
1701
+ training=self.training,
1702
+ need_weights=False,
1703
+ )
1704
+ return x.squeeze(0)
1705
+
1706
+
1707
+ class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
442
1708
  def __init__(
443
1709
  self,
444
- image_embed_dim: int = 768,
445
- cross_attention_dim: int = 768,
446
- num_image_text_embeds: int = 32,
1710
+ embedding_dim,
1711
+ pooled_projection_dim=1024,
1712
+ seq_len=256,
1713
+ cross_attention_dim=2048,
1714
+ use_style_cond_and_image_meta_size=True,
447
1715
  ):
448
1716
  super().__init__()
449
1717
 
450
- self.num_image_text_embeds = num_image_text_embeds
451
- self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
452
- self.norm = nn.LayerNorm(cross_attention_dim)
1718
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
1719
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
453
1720
 
454
- def forward(self, image_embeds: torch.FloatTensor):
455
- batch_size = image_embeds.shape[0]
1721
+ self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
456
1722
 
457
- # image
458
- image_embeds = self.image_embeds(image_embeds)
459
- image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
460
- image_embeds = self.norm(image_embeds)
461
- return image_embeds
1723
+ self.pooler = HunyuanDiTAttentionPool(
1724
+ seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
1725
+ )
462
1726
 
1727
+ # Here we use a default learned embedder layer for future extension.
1728
+ self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size
1729
+ if use_style_cond_and_image_meta_size:
1730
+ self.style_embedder = nn.Embedding(1, embedding_dim)
1731
+ extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
1732
+ else:
1733
+ extra_in_dim = pooled_projection_dim
463
1734
 
464
- class IPAdapterFullImageProjection(nn.Module):
465
- def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
466
- super().__init__()
467
- from .attention import FeedForward
1735
+ self.extra_embedder = PixArtAlphaTextProjection(
1736
+ in_features=extra_in_dim,
1737
+ hidden_size=embedding_dim * 4,
1738
+ out_features=embedding_dim,
1739
+ act_fn="silu_fp32",
1740
+ )
468
1741
 
469
- self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
470
- self.norm = nn.LayerNorm(cross_attention_dim)
1742
+ def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
1743
+ timesteps_proj = self.time_proj(timestep)
1744
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256)
471
1745
 
472
- def forward(self, image_embeds: torch.FloatTensor):
473
- return self.norm(self.ff(image_embeds))
1746
+ # extra condition1: text
1747
+ pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024)
474
1748
 
1749
+ if self.use_style_cond_and_image_meta_size:
1750
+ # extra condition2: image meta size embedding
1751
+ image_meta_size = self.size_proj(image_meta_size.view(-1))
1752
+ image_meta_size = image_meta_size.to(dtype=hidden_dtype)
1753
+ image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536)
475
1754
 
476
- class CombinedTimestepLabelEmbeddings(nn.Module):
477
- def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
1755
+ # extra condition3: style embedding
1756
+ style_embedding = self.style_embedder(style) # (N, embedding_dim)
1757
+
1758
+ # Concatenate all extra vectors
1759
+ extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
1760
+ else:
1761
+ extra_cond = torch.cat([pooled_projections], dim=1)
1762
+
1763
+ conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D]
1764
+
1765
+ return conditioning
1766
+
1767
+
1768
+ class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
1769
+ def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256):
478
1770
  super().__init__()
1771
+ self.time_proj = Timesteps(
1772
+ num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
1773
+ )
479
1774
 
480
- self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
481
- self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
482
- self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
1775
+ self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
483
1776
 
484
- def forward(self, timestep, class_labels, hidden_dtype=None):
485
- timesteps_proj = self.time_proj(timestep)
486
- timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
1777
+ self.caption_embedder = nn.Sequential(
1778
+ nn.LayerNorm(cross_attention_dim),
1779
+ nn.Linear(
1780
+ cross_attention_dim,
1781
+ hidden_size,
1782
+ bias=True,
1783
+ ),
1784
+ )
487
1785
 
488
- class_labels = self.class_embedder(class_labels) # (N, D)
1786
+ def forward(self, timestep, caption_feat, caption_mask):
1787
+ # timestep embedding:
1788
+ time_freq = self.time_proj(timestep)
1789
+ time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype))
489
1790
 
490
- conditioning = timesteps_emb + class_labels # (N, D)
1791
+ # caption condition embedding:
1792
+ caption_mask_float = caption_mask.float().unsqueeze(-1)
1793
+ caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1)
1794
+ caption_feats_pool = caption_feats_pool.to(caption_feat)
1795
+ caption_embed = self.caption_embedder(caption_feats_pool)
1796
+
1797
+ conditioning = time_embed + caption_embed
491
1798
 
492
1799
  return conditioning
493
1800
 
494
1801
 
1802
+ class MochiCombinedTimestepCaptionEmbedding(nn.Module):
1803
+ def __init__(
1804
+ self,
1805
+ embedding_dim: int,
1806
+ pooled_projection_dim: int,
1807
+ text_embed_dim: int,
1808
+ time_embed_dim: int = 256,
1809
+ num_attention_heads: int = 8,
1810
+ ) -> None:
1811
+ super().__init__()
1812
+
1813
+ self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
1814
+ self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim)
1815
+ self.pooler = MochiAttentionPool(
1816
+ num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim
1817
+ )
1818
+ self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim)
1819
+
1820
+ def forward(
1821
+ self,
1822
+ timestep: torch.LongTensor,
1823
+ encoder_hidden_states: torch.Tensor,
1824
+ encoder_attention_mask: torch.Tensor,
1825
+ hidden_dtype: Optional[torch.dtype] = None,
1826
+ ):
1827
+ time_proj = self.time_proj(timestep)
1828
+ time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype))
1829
+
1830
+ pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask)
1831
+ caption_proj = self.caption_proj(encoder_hidden_states)
1832
+
1833
+ conditioning = time_emb + pooled_projections
1834
+ return conditioning, caption_proj
1835
+
1836
+
495
1837
  class TextTimeEmbedding(nn.Module):
496
1838
  def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
497
1839
  super().__init__()
@@ -515,7 +1857,7 @@ class TextImageTimeEmbedding(nn.Module):
515
1857
  self.text_norm = nn.LayerNorm(time_embed_dim)
516
1858
  self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
517
1859
 
518
- def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
1860
+ def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
519
1861
  # text
520
1862
  time_text_embeds = self.text_proj(text_embeds)
521
1863
  time_text_embeds = self.text_norm(time_text_embeds)
@@ -532,7 +1874,7 @@ class ImageTimeEmbedding(nn.Module):
532
1874
  self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
533
1875
  self.image_norm = nn.LayerNorm(time_embed_dim)
534
1876
 
535
- def forward(self, image_embeds: torch.FloatTensor):
1877
+ def forward(self, image_embeds: torch.Tensor):
536
1878
  # image
537
1879
  time_image_embeds = self.image_proj(image_embeds)
538
1880
  time_image_embeds = self.image_norm(time_image_embeds)
@@ -562,7 +1904,7 @@ class ImageHintTimeEmbedding(nn.Module):
562
1904
  nn.Conv2d(256, 4, 3, padding=1),
563
1905
  )
564
1906
 
565
- def forward(self, image_embeds: torch.FloatTensor, hint: torch.FloatTensor):
1907
+ def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
566
1908
  # image
567
1909
  time_image_embeds = self.image_proj(image_embeds)
568
1910
  time_image_embeds = self.image_norm(time_image_embeds)
@@ -620,6 +1962,88 @@ class AttentionPooling(nn.Module):
620
1962
  return a[:, 0, :] # cls_token
621
1963
 
622
1964
 
1965
+ class MochiAttentionPool(nn.Module):
1966
+ def __init__(
1967
+ self,
1968
+ num_attention_heads: int,
1969
+ embed_dim: int,
1970
+ output_dim: Optional[int] = None,
1971
+ ) -> None:
1972
+ super().__init__()
1973
+
1974
+ self.output_dim = output_dim or embed_dim
1975
+ self.num_attention_heads = num_attention_heads
1976
+
1977
+ self.to_kv = nn.Linear(embed_dim, 2 * embed_dim)
1978
+ self.to_q = nn.Linear(embed_dim, embed_dim)
1979
+ self.to_out = nn.Linear(embed_dim, self.output_dim)
1980
+
1981
+ @staticmethod
1982
+ def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
1983
+ """
1984
+ Pool tokens in x using mask.
1985
+
1986
+ NOTE: We assume x does not require gradients.
1987
+
1988
+ Args:
1989
+ x: (B, L, D) tensor of tokens.
1990
+ mask: (B, L) boolean tensor indicating which tokens are not padding.
1991
+
1992
+ Returns:
1993
+ pooled: (B, D) tensor of pooled tokens.
1994
+ """
1995
+ assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
1996
+ assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
1997
+ mask = mask[:, :, None].to(dtype=x.dtype)
1998
+ mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
1999
+ pooled = (x * mask).sum(dim=1, keepdim=keepdim)
2000
+ return pooled
2001
+
2002
+ def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
2003
+ r"""
2004
+ Args:
2005
+ x (`torch.Tensor`):
2006
+ Tensor of shape `(B, S, D)` of input tokens.
2007
+ mask (`torch.Tensor`):
2008
+ Boolean ensor of shape `(B, S)` indicating which tokens are not padding.
2009
+
2010
+ Returns:
2011
+ `torch.Tensor`:
2012
+ `(B, D)` tensor of pooled tokens.
2013
+ """
2014
+ D = x.size(2)
2015
+
2016
+ # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
2017
+ attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
2018
+ attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
2019
+
2020
+ # Average non-padding token features. These will be used as the query.
2021
+ x_pool = self.pool_tokens(x, mask, keepdim=True) # (B, 1, D)
2022
+
2023
+ # Concat pooled features to input sequence.
2024
+ x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
2025
+
2026
+ # Compute queries, keys, values. Only the mean token is used to create a query.
2027
+ kv = self.to_kv(x) # (B, L+1, 2 * D)
2028
+ q = self.to_q(x[:, 0]) # (B, D)
2029
+
2030
+ # Extract heads.
2031
+ head_dim = D // self.num_attention_heads
2032
+ kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
2033
+ kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
2034
+ k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
2035
+ q = q.unflatten(1, (self.num_attention_heads, head_dim)) # (B, H, head_dim)
2036
+ q = q.unsqueeze(2) # (B, H, 1, head_dim)
2037
+
2038
+ # Compute attention.
2039
+ x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim)
2040
+
2041
+ # Concatenate heads and run output.
2042
+ x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
2043
+ x = self.to_out(x)
2044
+ return x
2045
+
2046
+
623
2047
  def get_fourier_embeds_from_boundingbox(embed_dim, box):
624
2048
  """
625
2049
  Args:
@@ -714,7 +2138,7 @@ class GLIGENTextBoundingboxProjection(nn.Module):
714
2138
 
715
2139
  objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
716
2140
 
717
- # positionet with text and image infomation
2141
+ # positionet with text and image information
718
2142
  else:
719
2143
  phrases_masks = phrases_masks.unsqueeze(-1)
720
2144
  image_masks = image_masks.unsqueeze(-1)
@@ -778,11 +2202,20 @@ class PixArtAlphaTextProjection(nn.Module):
778
2202
  Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
779
2203
  """
780
2204
 
781
- def __init__(self, in_features, hidden_size, num_tokens=120):
2205
+ def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
782
2206
  super().__init__()
2207
+ if out_features is None:
2208
+ out_features = hidden_size
783
2209
  self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
784
- self.act_1 = nn.GELU(approximate="tanh")
785
- self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
2210
+ if act_fn == "gelu_tanh":
2211
+ self.act_1 = nn.GELU(approximate="tanh")
2212
+ elif act_fn == "silu":
2213
+ self.act_1 = nn.SiLU()
2214
+ elif act_fn == "silu_fp32":
2215
+ self.act_1 = FP32SiLU()
2216
+ else:
2217
+ raise ValueError(f"Unknown activation function: {act_fn}")
2218
+ self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
786
2219
 
787
2220
  def forward(self, caption):
788
2221
  hidden_states = self.linear_1(caption)
@@ -791,21 +2224,52 @@ class PixArtAlphaTextProjection(nn.Module):
791
2224
  return hidden_states
792
2225
 
793
2226
 
2227
+ class IPAdapterPlusImageProjectionBlock(nn.Module):
2228
+ def __init__(
2229
+ self,
2230
+ embed_dims: int = 768,
2231
+ dim_head: int = 64,
2232
+ heads: int = 16,
2233
+ ffn_ratio: float = 4,
2234
+ ) -> None:
2235
+ super().__init__()
2236
+ from .attention import FeedForward
2237
+
2238
+ self.ln0 = nn.LayerNorm(embed_dims)
2239
+ self.ln1 = nn.LayerNorm(embed_dims)
2240
+ self.attn = Attention(
2241
+ query_dim=embed_dims,
2242
+ dim_head=dim_head,
2243
+ heads=heads,
2244
+ out_bias=False,
2245
+ )
2246
+ self.ff = nn.Sequential(
2247
+ nn.LayerNorm(embed_dims),
2248
+ FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
2249
+ )
2250
+
2251
+ def forward(self, x, latents, residual):
2252
+ encoder_hidden_states = self.ln0(x)
2253
+ latents = self.ln1(latents)
2254
+ encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
2255
+ latents = self.attn(latents, encoder_hidden_states) + residual
2256
+ latents = self.ff(latents) + latents
2257
+ return latents
2258
+
2259
+
794
2260
  class IPAdapterPlusImageProjection(nn.Module):
795
2261
  """Resampler of IP-Adapter Plus.
796
2262
 
797
2263
  Args:
798
- ----
799
- embed_dims (int): The feature dimension. Defaults to 768.
800
- output_dims (int): The number of output channels, that is the same
801
- number of the channels in the
802
- `unet.config.cross_attention_dim`. Defaults to 1024.
803
- hidden_dims (int): The number of hidden channels. Defaults to 1280.
804
- depth (int): The number of blocks. Defaults to 8.
805
- dim_head (int): The number of head channels. Defaults to 64.
806
- heads (int): Parallel attention heads. Defaults to 16.
807
- num_queries (int): The number of queries. Defaults to 8.
808
- ffn_ratio (float): The expansion ratio of feedforward network hidden
2264
+ embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
2265
+ that is the same
2266
+ number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
2267
+ hidden_dims (int):
2268
+ The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
2269
+ to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
2270
+ Defaults to 16. num_queries (int):
2271
+ The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
2272
+ of feedforward network hidden
809
2273
  layer channels. Defaults to 4.
810
2274
  """
811
2275
 
@@ -821,8 +2285,6 @@ class IPAdapterPlusImageProjection(nn.Module):
821
2285
  ffn_ratio: float = 4,
822
2286
  ) -> None:
823
2287
  super().__init__()
824
- from .attention import FeedForward # Lazy import to avoid circular import
825
-
826
2288
  self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
827
2289
 
828
2290
  self.proj_in = nn.Linear(embed_dims, hidden_dims)
@@ -830,61 +2292,297 @@ class IPAdapterPlusImageProjection(nn.Module):
830
2292
  self.proj_out = nn.Linear(hidden_dims, output_dims)
831
2293
  self.norm_out = nn.LayerNorm(output_dims)
832
2294
 
833
- self.layers = nn.ModuleList([])
834
- for _ in range(depth):
835
- self.layers.append(
836
- nn.ModuleList(
837
- [
838
- nn.LayerNorm(hidden_dims),
839
- nn.LayerNorm(hidden_dims),
840
- Attention(
841
- query_dim=hidden_dims,
842
- dim_head=dim_head,
843
- heads=heads,
844
- out_bias=False,
845
- ),
846
- nn.Sequential(
847
- nn.LayerNorm(hidden_dims),
848
- FeedForward(hidden_dims, hidden_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
849
- ),
850
- ]
851
- )
852
- )
2295
+ self.layers = nn.ModuleList(
2296
+ [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
2297
+ )
853
2298
 
854
2299
  def forward(self, x: torch.Tensor) -> torch.Tensor:
855
2300
  """Forward pass.
856
2301
 
857
2302
  Args:
858
- ----
859
2303
  x (torch.Tensor): Input Tensor.
860
-
861
2304
  Returns:
862
- -------
863
2305
  torch.Tensor: Output Tensor.
864
2306
  """
865
2307
  latents = self.latents.repeat(x.size(0), 1, 1)
866
2308
 
867
2309
  x = self.proj_in(x)
868
2310
 
869
- for ln0, ln1, attn, ff in self.layers:
2311
+ for block in self.layers:
870
2312
  residual = latents
871
-
872
- encoder_hidden_states = ln0(x)
873
- latents = ln1(latents)
874
- encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
875
- latents = attn(latents, encoder_hidden_states) + residual
876
- latents = ff(latents) + latents
2313
+ latents = block(x, latents, residual)
877
2314
 
878
2315
  latents = self.proj_out(latents)
879
2316
  return self.norm_out(latents)
880
2317
 
881
2318
 
2319
+ class IPAdapterFaceIDPlusImageProjection(nn.Module):
2320
+ """FacePerceiverResampler of IP-Adapter Plus.
2321
+
2322
+ Args:
2323
+ embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
2324
+ that is the same
2325
+ number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
2326
+ hidden_dims (int):
2327
+ The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
2328
+ to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
2329
+ Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8.
2330
+ ffn_ratio (float): The expansion ratio of feedforward network hidden
2331
+ layer channels. Defaults to 4.
2332
+ ffproj_ratio (float): The expansion ratio of feedforward network hidden
2333
+ layer channels (for ID embeddings). Defaults to 4.
2334
+ """
2335
+
2336
+ def __init__(
2337
+ self,
2338
+ embed_dims: int = 768,
2339
+ output_dims: int = 768,
2340
+ hidden_dims: int = 1280,
2341
+ id_embeddings_dim: int = 512,
2342
+ depth: int = 4,
2343
+ dim_head: int = 64,
2344
+ heads: int = 16,
2345
+ num_tokens: int = 4,
2346
+ num_queries: int = 8,
2347
+ ffn_ratio: float = 4,
2348
+ ffproj_ratio: int = 2,
2349
+ ) -> None:
2350
+ super().__init__()
2351
+ from .attention import FeedForward
2352
+
2353
+ self.num_tokens = num_tokens
2354
+ self.embed_dim = embed_dims
2355
+ self.clip_embeds = None
2356
+ self.shortcut = False
2357
+ self.shortcut_scale = 1.0
2358
+
2359
+ self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio)
2360
+ self.norm = nn.LayerNorm(embed_dims)
2361
+
2362
+ self.proj_in = nn.Linear(hidden_dims, embed_dims)
2363
+
2364
+ self.proj_out = nn.Linear(embed_dims, output_dims)
2365
+ self.norm_out = nn.LayerNorm(output_dims)
2366
+
2367
+ self.layers = nn.ModuleList(
2368
+ [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
2369
+ )
2370
+
2371
+ def forward(self, id_embeds: torch.Tensor) -> torch.Tensor:
2372
+ """Forward pass.
2373
+
2374
+ Args:
2375
+ id_embeds (torch.Tensor): Input Tensor (ID embeds).
2376
+ Returns:
2377
+ torch.Tensor: Output Tensor.
2378
+ """
2379
+ id_embeds = id_embeds.to(self.clip_embeds.dtype)
2380
+ id_embeds = self.proj(id_embeds)
2381
+ id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim)
2382
+ id_embeds = self.norm(id_embeds)
2383
+ latents = id_embeds
2384
+
2385
+ clip_embeds = self.proj_in(self.clip_embeds)
2386
+ x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3])
2387
+
2388
+ for block in self.layers:
2389
+ residual = latents
2390
+ latents = block(x, latents, residual)
2391
+
2392
+ latents = self.proj_out(latents)
2393
+ out = self.norm_out(latents)
2394
+ if self.shortcut:
2395
+ out = id_embeds + self.shortcut_scale * out
2396
+ return out
2397
+
2398
+
2399
+ class IPAdapterTimeImageProjectionBlock(nn.Module):
2400
+ """Block for IPAdapterTimeImageProjection.
2401
+
2402
+ Args:
2403
+ hidden_dim (`int`, defaults to 1280):
2404
+ The number of hidden channels.
2405
+ dim_head (`int`, defaults to 64):
2406
+ The number of head channels.
2407
+ heads (`int`, defaults to 20):
2408
+ Parallel attention heads.
2409
+ ffn_ratio (`int`, defaults to 4):
2410
+ The expansion ratio of feedforward network hidden layer channels.
2411
+ """
2412
+
2413
+ def __init__(
2414
+ self,
2415
+ hidden_dim: int = 1280,
2416
+ dim_head: int = 64,
2417
+ heads: int = 20,
2418
+ ffn_ratio: int = 4,
2419
+ ) -> None:
2420
+ super().__init__()
2421
+ from .attention import FeedForward
2422
+
2423
+ self.ln0 = nn.LayerNorm(hidden_dim)
2424
+ self.ln1 = nn.LayerNorm(hidden_dim)
2425
+ self.attn = Attention(
2426
+ query_dim=hidden_dim,
2427
+ cross_attention_dim=hidden_dim,
2428
+ dim_head=dim_head,
2429
+ heads=heads,
2430
+ bias=False,
2431
+ out_bias=False,
2432
+ )
2433
+ self.ff = FeedForward(hidden_dim, hidden_dim, activation_fn="gelu", mult=ffn_ratio, bias=False)
2434
+
2435
+ # AdaLayerNorm
2436
+ self.adaln_silu = nn.SiLU()
2437
+ self.adaln_proj = nn.Linear(hidden_dim, 4 * hidden_dim)
2438
+ self.adaln_norm = nn.LayerNorm(hidden_dim)
2439
+
2440
+ # Set attention scale and fuse KV
2441
+ self.attn.scale = 1 / math.sqrt(math.sqrt(dim_head))
2442
+ self.attn.fuse_projections()
2443
+ self.attn.to_k = None
2444
+ self.attn.to_v = None
2445
+
2446
+ def forward(self, x: torch.Tensor, latents: torch.Tensor, timestep_emb: torch.Tensor) -> torch.Tensor:
2447
+ """Forward pass.
2448
+
2449
+ Args:
2450
+ x (`torch.Tensor`):
2451
+ Image features.
2452
+ latents (`torch.Tensor`):
2453
+ Latent features.
2454
+ timestep_emb (`torch.Tensor`):
2455
+ Timestep embedding.
2456
+
2457
+ Returns:
2458
+ `torch.Tensor`: Output latent features.
2459
+ """
2460
+
2461
+ # Shift and scale for AdaLayerNorm
2462
+ emb = self.adaln_proj(self.adaln_silu(timestep_emb))
2463
+ shift_msa, scale_msa, shift_mlp, scale_mlp = emb.chunk(4, dim=1)
2464
+
2465
+ # Fused Attention
2466
+ residual = latents
2467
+ x = self.ln0(x)
2468
+ latents = self.ln1(latents) * (1 + scale_msa[:, None]) + shift_msa[:, None]
2469
+
2470
+ batch_size = latents.shape[0]
2471
+
2472
+ query = self.attn.to_q(latents)
2473
+ kv_input = torch.cat((x, latents), dim=-2)
2474
+ key, value = self.attn.to_kv(kv_input).chunk(2, dim=-1)
2475
+
2476
+ inner_dim = key.shape[-1]
2477
+ head_dim = inner_dim // self.attn.heads
2478
+
2479
+ query = query.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2)
2480
+ key = key.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2)
2481
+ value = value.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2)
2482
+
2483
+ weight = (query * self.attn.scale) @ (key * self.attn.scale).transpose(-2, -1)
2484
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
2485
+ latents = weight @ value
2486
+
2487
+ latents = latents.transpose(1, 2).reshape(batch_size, -1, self.attn.heads * head_dim)
2488
+ latents = self.attn.to_out[0](latents)
2489
+ latents = self.attn.to_out[1](latents)
2490
+ latents = latents + residual
2491
+
2492
+ ## FeedForward
2493
+ residual = latents
2494
+ latents = self.adaln_norm(latents) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
2495
+ return self.ff(latents) + residual
2496
+
2497
+
2498
+ # Modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2499
+ class IPAdapterTimeImageProjection(nn.Module):
2500
+ """Resampler of SD3 IP-Adapter with timestep embedding.
2501
+
2502
+ Args:
2503
+ embed_dim (`int`, defaults to 1152):
2504
+ The feature dimension.
2505
+ output_dim (`int`, defaults to 2432):
2506
+ The number of output channels.
2507
+ hidden_dim (`int`, defaults to 1280):
2508
+ The number of hidden channels.
2509
+ depth (`int`, defaults to 4):
2510
+ The number of blocks.
2511
+ dim_head (`int`, defaults to 64):
2512
+ The number of head channels.
2513
+ heads (`int`, defaults to 20):
2514
+ Parallel attention heads.
2515
+ num_queries (`int`, defaults to 64):
2516
+ The number of queries.
2517
+ ffn_ratio (`int`, defaults to 4):
2518
+ The expansion ratio of feedforward network hidden layer channels.
2519
+ timestep_in_dim (`int`, defaults to 320):
2520
+ The number of input channels for timestep embedding.
2521
+ timestep_flip_sin_to_cos (`bool`, defaults to True):
2522
+ Flip the timestep embedding order to `cos, sin` (if True) or `sin, cos` (if False).
2523
+ timestep_freq_shift (`int`, defaults to 0):
2524
+ Controls the timestep delta between frequencies between dimensions.
2525
+ """
2526
+
2527
+ def __init__(
2528
+ self,
2529
+ embed_dim: int = 1152,
2530
+ output_dim: int = 2432,
2531
+ hidden_dim: int = 1280,
2532
+ depth: int = 4,
2533
+ dim_head: int = 64,
2534
+ heads: int = 20,
2535
+ num_queries: int = 64,
2536
+ ffn_ratio: int = 4,
2537
+ timestep_in_dim: int = 320,
2538
+ timestep_flip_sin_to_cos: bool = True,
2539
+ timestep_freq_shift: int = 0,
2540
+ ) -> None:
2541
+ super().__init__()
2542
+ self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dim) / hidden_dim**0.5)
2543
+ self.proj_in = nn.Linear(embed_dim, hidden_dim)
2544
+ self.proj_out = nn.Linear(hidden_dim, output_dim)
2545
+ self.norm_out = nn.LayerNorm(output_dim)
2546
+ self.layers = nn.ModuleList(
2547
+ [IPAdapterTimeImageProjectionBlock(hidden_dim, dim_head, heads, ffn_ratio) for _ in range(depth)]
2548
+ )
2549
+ self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift)
2550
+ self.time_embedding = TimestepEmbedding(timestep_in_dim, hidden_dim, act_fn="silu")
2551
+
2552
+ def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
2553
+ """Forward pass.
2554
+
2555
+ Args:
2556
+ x (`torch.Tensor`):
2557
+ Image features.
2558
+ timestep (`torch.Tensor`):
2559
+ Timestep in denoising process.
2560
+ Returns:
2561
+ `Tuple`[`torch.Tensor`, `torch.Tensor`]: The pair (latents, timestep_emb).
2562
+ """
2563
+ timestep_emb = self.time_proj(timestep).to(dtype=x.dtype)
2564
+ timestep_emb = self.time_embedding(timestep_emb)
2565
+
2566
+ latents = self.latents.repeat(x.size(0), 1, 1)
2567
+
2568
+ x = self.proj_in(x)
2569
+ x = x + timestep_emb[:, None]
2570
+
2571
+ for block in self.layers:
2572
+ latents = block(x, latents, timestep_emb)
2573
+
2574
+ latents = self.proj_out(latents)
2575
+ latents = self.norm_out(latents)
2576
+
2577
+ return latents, timestep_emb
2578
+
2579
+
882
2580
  class MultiIPAdapterImageProjection(nn.Module):
883
2581
  def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
884
2582
  super().__init__()
885
2583
  self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)
886
2584
 
887
- def forward(self, image_embeds: List[torch.FloatTensor]):
2585
+ def forward(self, image_embeds: List[torch.Tensor]):
888
2586
  projected_image_embeds = []
889
2587
 
890
2588
  # currently, we accept `image_embeds` as
@@ -893,7 +2591,7 @@ class MultiIPAdapterImageProjection(nn.Module):
893
2591
  if not isinstance(image_embeds, list):
894
2592
  deprecation_message = (
895
2593
  "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
896
- " Please make sure to update your script to pass `image_embeds` as a list of tensors to supress this warning."
2594
+ " Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning."
897
2595
  )
898
2596
  deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
899
2597
  image_embeds = [image_embeds.unsqueeze(1)]