diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,620 @@
1
+ # Copyright 2024 MIT, Tsinghua University, NVIDIA CORPORATION and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...loaders import FromOriginalModelMixin
24
+ from ...utils.accelerate_utils import apply_forward_hook
25
+ from ..activations import get_activation
26
+ from ..attention_processor import SanaMultiscaleLinearAttention
27
+ from ..modeling_utils import ModelMixin
28
+ from ..normalization import RMSNorm, get_normalization
29
+ from ..transformers.sana_transformer import GLUMBConv
30
+ from .vae import DecoderOutput, EncoderOutput
31
+
32
+
33
+ class ResBlock(nn.Module):
34
+ def __init__(
35
+ self,
36
+ in_channels: int,
37
+ out_channels: int,
38
+ norm_type: str = "batch_norm",
39
+ act_fn: str = "relu6",
40
+ ) -> None:
41
+ super().__init__()
42
+
43
+ self.norm_type = norm_type
44
+
45
+ self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
46
+ self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
47
+ self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
48
+ self.norm = get_normalization(norm_type, out_channels)
49
+
50
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
51
+ residual = hidden_states
52
+ hidden_states = self.conv1(hidden_states)
53
+ hidden_states = self.nonlinearity(hidden_states)
54
+ hidden_states = self.conv2(hidden_states)
55
+
56
+ if self.norm_type == "rms_norm":
57
+ # move channel to the last dimension so we apply RMSnorm across channel dimension
58
+ hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
59
+ else:
60
+ hidden_states = self.norm(hidden_states)
61
+
62
+ return hidden_states + residual
63
+
64
+
65
+ class EfficientViTBlock(nn.Module):
66
+ def __init__(
67
+ self,
68
+ in_channels: int,
69
+ mult: float = 1.0,
70
+ attention_head_dim: int = 32,
71
+ qkv_multiscales: Tuple[int, ...] = (5,),
72
+ norm_type: str = "batch_norm",
73
+ ) -> None:
74
+ super().__init__()
75
+
76
+ self.attn = SanaMultiscaleLinearAttention(
77
+ in_channels=in_channels,
78
+ out_channels=in_channels,
79
+ mult=mult,
80
+ attention_head_dim=attention_head_dim,
81
+ norm_type=norm_type,
82
+ kernel_sizes=qkv_multiscales,
83
+ residual_connection=True,
84
+ )
85
+
86
+ self.conv_out = GLUMBConv(
87
+ in_channels=in_channels,
88
+ out_channels=in_channels,
89
+ norm_type="rms_norm",
90
+ )
91
+
92
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
93
+ x = self.attn(x)
94
+ x = self.conv_out(x)
95
+ return x
96
+
97
+
98
+ def get_block(
99
+ block_type: str,
100
+ in_channels: int,
101
+ out_channels: int,
102
+ attention_head_dim: int,
103
+ norm_type: str,
104
+ act_fn: str,
105
+ qkv_mutliscales: Tuple[int] = (),
106
+ ):
107
+ if block_type == "ResBlock":
108
+ block = ResBlock(in_channels, out_channels, norm_type, act_fn)
109
+
110
+ elif block_type == "EfficientViTBlock":
111
+ block = EfficientViTBlock(
112
+ in_channels, attention_head_dim=attention_head_dim, norm_type=norm_type, qkv_multiscales=qkv_mutliscales
113
+ )
114
+
115
+ else:
116
+ raise ValueError(f"Block with {block_type=} is not supported.")
117
+
118
+ return block
119
+
120
+
121
+ class DCDownBlock2d(nn.Module):
122
+ def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
123
+ super().__init__()
124
+
125
+ self.downsample = downsample
126
+ self.factor = 2
127
+ self.stride = 1 if downsample else 2
128
+ self.group_size = in_channels * self.factor**2 // out_channels
129
+ self.shortcut = shortcut
130
+
131
+ out_ratio = self.factor**2
132
+ if downsample:
133
+ assert out_channels % out_ratio == 0
134
+ out_channels = out_channels // out_ratio
135
+
136
+ self.conv = nn.Conv2d(
137
+ in_channels,
138
+ out_channels,
139
+ kernel_size=3,
140
+ stride=self.stride,
141
+ padding=1,
142
+ )
143
+
144
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
145
+ x = self.conv(hidden_states)
146
+ if self.downsample:
147
+ x = F.pixel_unshuffle(x, self.factor)
148
+
149
+ if self.shortcut:
150
+ y = F.pixel_unshuffle(hidden_states, self.factor)
151
+ y = y.unflatten(1, (-1, self.group_size))
152
+ y = y.mean(dim=2)
153
+ hidden_states = x + y
154
+ else:
155
+ hidden_states = x
156
+
157
+ return hidden_states
158
+
159
+
160
+ class DCUpBlock2d(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels: int,
164
+ out_channels: int,
165
+ interpolate: bool = False,
166
+ shortcut: bool = True,
167
+ interpolation_mode: str = "nearest",
168
+ ) -> None:
169
+ super().__init__()
170
+
171
+ self.interpolate = interpolate
172
+ self.interpolation_mode = interpolation_mode
173
+ self.shortcut = shortcut
174
+ self.factor = 2
175
+ self.repeats = out_channels * self.factor**2 // in_channels
176
+
177
+ out_ratio = self.factor**2
178
+
179
+ if not interpolate:
180
+ out_channels = out_channels * out_ratio
181
+
182
+ self.conv = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
183
+
184
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
185
+ if self.interpolate:
186
+ x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
187
+ x = self.conv(x)
188
+ else:
189
+ x = self.conv(hidden_states)
190
+ x = F.pixel_shuffle(x, self.factor)
191
+
192
+ if self.shortcut:
193
+ y = hidden_states.repeat_interleave(self.repeats, dim=1)
194
+ y = F.pixel_shuffle(y, self.factor)
195
+ hidden_states = x + y
196
+ else:
197
+ hidden_states = x
198
+
199
+ return hidden_states
200
+
201
+
202
+ class Encoder(nn.Module):
203
+ def __init__(
204
+ self,
205
+ in_channels: int,
206
+ latent_channels: int,
207
+ attention_head_dim: int = 32,
208
+ block_type: Union[str, Tuple[str]] = "ResBlock",
209
+ block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
210
+ layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
211
+ qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
212
+ downsample_block_type: str = "pixel_unshuffle",
213
+ out_shortcut: bool = True,
214
+ ):
215
+ super().__init__()
216
+
217
+ num_blocks = len(block_out_channels)
218
+
219
+ if isinstance(block_type, str):
220
+ block_type = (block_type,) * num_blocks
221
+
222
+ if layers_per_block[0] > 0:
223
+ self.conv_in = nn.Conv2d(
224
+ in_channels,
225
+ block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
226
+ kernel_size=3,
227
+ stride=1,
228
+ padding=1,
229
+ )
230
+ else:
231
+ self.conv_in = DCDownBlock2d(
232
+ in_channels=in_channels,
233
+ out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
234
+ downsample=downsample_block_type == "pixel_unshuffle",
235
+ shortcut=False,
236
+ )
237
+
238
+ down_blocks = []
239
+ for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
240
+ down_block_list = []
241
+
242
+ for _ in range(num_layers):
243
+ block = get_block(
244
+ block_type[i],
245
+ out_channel,
246
+ out_channel,
247
+ attention_head_dim=attention_head_dim,
248
+ norm_type="rms_norm",
249
+ act_fn="silu",
250
+ qkv_mutliscales=qkv_multiscales[i],
251
+ )
252
+ down_block_list.append(block)
253
+
254
+ if i < num_blocks - 1 and num_layers > 0:
255
+ downsample_block = DCDownBlock2d(
256
+ in_channels=out_channel,
257
+ out_channels=block_out_channels[i + 1],
258
+ downsample=downsample_block_type == "pixel_unshuffle",
259
+ shortcut=True,
260
+ )
261
+ down_block_list.append(downsample_block)
262
+
263
+ down_blocks.append(nn.Sequential(*down_block_list))
264
+
265
+ self.down_blocks = nn.ModuleList(down_blocks)
266
+
267
+ self.conv_out = nn.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
268
+
269
+ self.out_shortcut = out_shortcut
270
+ if out_shortcut:
271
+ self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
272
+
273
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
274
+ hidden_states = self.conv_in(hidden_states)
275
+ for down_block in self.down_blocks:
276
+ hidden_states = down_block(hidden_states)
277
+
278
+ if self.out_shortcut:
279
+ x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
280
+ x = x.mean(dim=2)
281
+ hidden_states = self.conv_out(hidden_states) + x
282
+ else:
283
+ hidden_states = self.conv_out(hidden_states)
284
+
285
+ return hidden_states
286
+
287
+
288
+ class Decoder(nn.Module):
289
+ def __init__(
290
+ self,
291
+ in_channels: int,
292
+ latent_channels: int,
293
+ attention_head_dim: int = 32,
294
+ block_type: Union[str, Tuple[str]] = "ResBlock",
295
+ block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
296
+ layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
297
+ qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
298
+ norm_type: Union[str, Tuple[str]] = "rms_norm",
299
+ act_fn: Union[str, Tuple[str]] = "silu",
300
+ upsample_block_type: str = "pixel_shuffle",
301
+ in_shortcut: bool = True,
302
+ ):
303
+ super().__init__()
304
+
305
+ num_blocks = len(block_out_channels)
306
+
307
+ if isinstance(block_type, str):
308
+ block_type = (block_type,) * num_blocks
309
+ if isinstance(norm_type, str):
310
+ norm_type = (norm_type,) * num_blocks
311
+ if isinstance(act_fn, str):
312
+ act_fn = (act_fn,) * num_blocks
313
+
314
+ self.conv_in = nn.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
315
+
316
+ self.in_shortcut = in_shortcut
317
+ if in_shortcut:
318
+ self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
319
+
320
+ up_blocks = []
321
+ for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
322
+ up_block_list = []
323
+
324
+ if i < num_blocks - 1 and num_layers > 0:
325
+ upsample_block = DCUpBlock2d(
326
+ block_out_channels[i + 1],
327
+ out_channel,
328
+ interpolate=upsample_block_type == "interpolate",
329
+ shortcut=True,
330
+ )
331
+ up_block_list.append(upsample_block)
332
+
333
+ for _ in range(num_layers):
334
+ block = get_block(
335
+ block_type[i],
336
+ out_channel,
337
+ out_channel,
338
+ attention_head_dim=attention_head_dim,
339
+ norm_type=norm_type[i],
340
+ act_fn=act_fn[i],
341
+ qkv_mutliscales=qkv_multiscales[i],
342
+ )
343
+ up_block_list.append(block)
344
+
345
+ up_blocks.insert(0, nn.Sequential(*up_block_list))
346
+
347
+ self.up_blocks = nn.ModuleList(up_blocks)
348
+
349
+ channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
350
+
351
+ self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
352
+ self.conv_act = nn.ReLU()
353
+ self.conv_out = None
354
+
355
+ if layers_per_block[0] > 0:
356
+ self.conv_out = nn.Conv2d(channels, in_channels, 3, 1, 1)
357
+ else:
358
+ self.conv_out = DCUpBlock2d(
359
+ channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
360
+ )
361
+
362
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
363
+ if self.in_shortcut:
364
+ x = hidden_states.repeat_interleave(self.in_shortcut_repeats, dim=1)
365
+ hidden_states = self.conv_in(hidden_states) + x
366
+ else:
367
+ hidden_states = self.conv_in(hidden_states)
368
+
369
+ for up_block in reversed(self.up_blocks):
370
+ hidden_states = up_block(hidden_states)
371
+
372
+ hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
373
+ hidden_states = self.conv_act(hidden_states)
374
+ hidden_states = self.conv_out(hidden_states)
375
+ return hidden_states
376
+
377
+
378
+ class AutoencoderDC(ModelMixin, ConfigMixin, FromOriginalModelMixin):
379
+ r"""
380
+ An Autoencoder model introduced in [DCAE](https://arxiv.org/abs/2410.10733) and used in
381
+ [SANA](https://arxiv.org/abs/2410.10629).
382
+
383
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
384
+ for all models (such as downloading or saving).
385
+
386
+ Args:
387
+ in_channels (`int`, defaults to `3`):
388
+ The number of input channels in samples.
389
+ latent_channels (`int`, defaults to `32`):
390
+ The number of channels in the latent space representation.
391
+ encoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
392
+ The type(s) of block to use in the encoder.
393
+ decoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
394
+ The type(s) of block to use in the decoder.
395
+ encoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
396
+ The number of output channels for each block in the encoder.
397
+ decoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
398
+ The number of output channels for each block in the decoder.
399
+ encoder_layers_per_block (`Tuple[int]`, defaults to `(2, 2, 2, 3, 3, 3)`):
400
+ The number of layers per block in the encoder.
401
+ decoder_layers_per_block (`Tuple[int]`, defaults to `(3, 3, 3, 3, 3, 3)`):
402
+ The number of layers per block in the decoder.
403
+ encoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
404
+ Multi-scale configurations for the encoder's QKV (query-key-value) transformations.
405
+ decoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
406
+ Multi-scale configurations for the decoder's QKV (query-key-value) transformations.
407
+ upsample_block_type (`str`, defaults to `"pixel_shuffle"`):
408
+ The type of block to use for upsampling in the decoder.
409
+ downsample_block_type (`str`, defaults to `"pixel_unshuffle"`):
410
+ The type of block to use for downsampling in the encoder.
411
+ decoder_norm_types (`Union[str, Tuple[str]]`, defaults to `"rms_norm"`):
412
+ The normalization type(s) to use in the decoder.
413
+ decoder_act_fns (`Union[str, Tuple[str]]`, defaults to `"silu"`):
414
+ The activation function(s) to use in the decoder.
415
+ scaling_factor (`float`, defaults to `1.0`):
416
+ The multiplicative inverse of the root mean square of the latent features. This is used to scale the latent
417
+ space to have unit variance when training the diffusion model. The latents are scaled with the formula `z =
418
+ z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back
419
+ to the original scale with the formula: `z = 1 / scaling_factor * z`.
420
+ """
421
+
422
+ _supports_gradient_checkpointing = False
423
+
424
+ @register_to_config
425
+ def __init__(
426
+ self,
427
+ in_channels: int = 3,
428
+ latent_channels: int = 32,
429
+ attention_head_dim: int = 32,
430
+ encoder_block_types: Union[str, Tuple[str]] = "ResBlock",
431
+ decoder_block_types: Union[str, Tuple[str]] = "ResBlock",
432
+ encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
433
+ decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
434
+ encoder_layers_per_block: Tuple[int] = (2, 2, 2, 3, 3, 3),
435
+ decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3, 3, 3),
436
+ encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
437
+ decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
438
+ upsample_block_type: str = "pixel_shuffle",
439
+ downsample_block_type: str = "pixel_unshuffle",
440
+ decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
441
+ decoder_act_fns: Union[str, Tuple[str]] = "silu",
442
+ scaling_factor: float = 1.0,
443
+ ) -> None:
444
+ super().__init__()
445
+
446
+ self.encoder = Encoder(
447
+ in_channels=in_channels,
448
+ latent_channels=latent_channels,
449
+ attention_head_dim=attention_head_dim,
450
+ block_type=encoder_block_types,
451
+ block_out_channels=encoder_block_out_channels,
452
+ layers_per_block=encoder_layers_per_block,
453
+ qkv_multiscales=encoder_qkv_multiscales,
454
+ downsample_block_type=downsample_block_type,
455
+ )
456
+ self.decoder = Decoder(
457
+ in_channels=in_channels,
458
+ latent_channels=latent_channels,
459
+ attention_head_dim=attention_head_dim,
460
+ block_type=decoder_block_types,
461
+ block_out_channels=decoder_block_out_channels,
462
+ layers_per_block=decoder_layers_per_block,
463
+ qkv_multiscales=decoder_qkv_multiscales,
464
+ norm_type=decoder_norm_types,
465
+ act_fn=decoder_act_fns,
466
+ upsample_block_type=upsample_block_type,
467
+ )
468
+
469
+ self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
470
+ self.temporal_compression_ratio = 1
471
+
472
+ # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
473
+ # to perform decoding of a single video latent at a time.
474
+ self.use_slicing = False
475
+
476
+ # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
477
+ # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
478
+ # intermediate tiles together, the memory requirement can be lowered.
479
+ self.use_tiling = False
480
+
481
+ # The minimal tile height and width for spatial tiling to be used
482
+ self.tile_sample_min_height = 512
483
+ self.tile_sample_min_width = 512
484
+
485
+ # The minimal distance between two spatial tiles
486
+ self.tile_sample_stride_height = 448
487
+ self.tile_sample_stride_width = 448
488
+
489
+ def enable_tiling(
490
+ self,
491
+ tile_sample_min_height: Optional[int] = None,
492
+ tile_sample_min_width: Optional[int] = None,
493
+ tile_sample_stride_height: Optional[float] = None,
494
+ tile_sample_stride_width: Optional[float] = None,
495
+ ) -> None:
496
+ r"""
497
+ Enable tiled AE decoding. When this option is enabled, the AE will split the input tensor into tiles to compute
498
+ decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
499
+ processing larger images.
500
+
501
+ Args:
502
+ tile_sample_min_height (`int`, *optional*):
503
+ The minimum height required for a sample to be separated into tiles across the height dimension.
504
+ tile_sample_min_width (`int`, *optional*):
505
+ The minimum width required for a sample to be separated into tiles across the width dimension.
506
+ tile_sample_stride_height (`int`, *optional*):
507
+ The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
508
+ no tiling artifacts produced across the height dimension.
509
+ tile_sample_stride_width (`int`, *optional*):
510
+ The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
511
+ artifacts produced across the width dimension.
512
+ """
513
+ self.use_tiling = True
514
+ self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
515
+ self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
516
+ self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
517
+ self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
518
+
519
+ def disable_tiling(self) -> None:
520
+ r"""
521
+ Disable tiled AE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
522
+ decoding in one step.
523
+ """
524
+ self.use_tiling = False
525
+
526
+ def enable_slicing(self) -> None:
527
+ r"""
528
+ Enable sliced AE decoding. When this option is enabled, the AE will split the input tensor in slices to compute
529
+ decoding in several steps. This is useful to save some memory and allow larger batch sizes.
530
+ """
531
+ self.use_slicing = True
532
+
533
+ def disable_slicing(self) -> None:
534
+ r"""
535
+ Disable sliced AE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
536
+ decoding in one step.
537
+ """
538
+ self.use_slicing = False
539
+
540
+ def _encode(self, x: torch.Tensor) -> torch.Tensor:
541
+ batch_size, num_channels, height, width = x.shape
542
+
543
+ if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
544
+ return self.tiled_encode(x, return_dict=False)[0]
545
+
546
+ encoded = self.encoder(x)
547
+
548
+ return encoded
549
+
550
+ @apply_forward_hook
551
+ def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[EncoderOutput, Tuple[torch.Tensor]]:
552
+ r"""
553
+ Encode a batch of images into latents.
554
+
555
+ Args:
556
+ x (`torch.Tensor`): Input batch of images.
557
+ return_dict (`bool`, defaults to `True`):
558
+ Whether to return a [`~models.vae.EncoderOutput`] instead of a plain tuple.
559
+
560
+ Returns:
561
+ The latent representations of the encoded videos. If `return_dict` is True, a
562
+ [`~models.vae.EncoderOutput`] is returned, otherwise a plain `tuple` is returned.
563
+ """
564
+ if self.use_slicing and x.shape[0] > 1:
565
+ encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
566
+ encoded = torch.cat(encoded_slices)
567
+ else:
568
+ encoded = self._encode(x)
569
+
570
+ if not return_dict:
571
+ return (encoded,)
572
+ return EncoderOutput(latent=encoded)
573
+
574
+ def _decode(self, z: torch.Tensor) -> torch.Tensor:
575
+ batch_size, num_channels, height, width = z.shape
576
+
577
+ if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
578
+ return self.tiled_decode(z, return_dict=False)[0]
579
+
580
+ decoded = self.decoder(z)
581
+
582
+ return decoded
583
+
584
+ @apply_forward_hook
585
+ def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
586
+ r"""
587
+ Decode a batch of images.
588
+
589
+ Args:
590
+ z (`torch.Tensor`): Input batch of latent vectors.
591
+ return_dict (`bool`, defaults to `True`):
592
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
593
+
594
+ Returns:
595
+ [`~models.vae.DecoderOutput`] or `tuple`:
596
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
597
+ returned.
598
+ """
599
+ if self.use_slicing and z.size(0) > 1:
600
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
601
+ decoded = torch.cat(decoded_slices)
602
+ else:
603
+ decoded = self._decode(z)
604
+
605
+ if not return_dict:
606
+ return (decoded,)
607
+ return DecoderOutput(sample=decoded)
608
+
609
+ def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
610
+ raise NotImplementedError("`tiled_encode` has not been implemented for AutoencoderDC.")
611
+
612
+ def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
613
+ raise NotImplementedError("`tiled_decode` has not been implemented for AutoencoderDC.")
614
+
615
+ def forward(self, sample: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
616
+ encoded = self.encode(sample, return_dict=False)[0]
617
+ decoded = self.decode(encoded, return_dict=False)[0]
618
+ if not return_dict:
619
+ return (decoded,)
620
+ return DecoderOutput(sample=decoded)