diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,788 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from dataclasses import dataclass
16
+ from typing import Any, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from torch import nn
20
+ from torch.nn import functional as F
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...loaders import FromOriginalModelMixin
24
+ from ...utils import BaseOutput, logging
25
+ from ..attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ AttentionProcessor,
29
+ AttnAddedKVProcessor,
30
+ AttnProcessor,
31
+ )
32
+ from ..embeddings import TimestepEmbedding, Timesteps
33
+ from ..modeling_utils import ModelMixin
34
+ from ..unets.unet_2d_blocks import UNetMidBlock2DCrossAttn
35
+ from ..unets.unet_2d_condition import UNet2DConditionModel
36
+ from ..unets.unet_motion_model import CrossAttnDownBlockMotion, DownBlockMotion
37
+
38
+
39
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
40
+
41
+
42
+ @dataclass
43
+ class SparseControlNetOutput(BaseOutput):
44
+ """
45
+ The output of [`SparseControlNetModel`].
46
+
47
+ Args:
48
+ down_block_res_samples (`tuple[torch.Tensor]`):
49
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
50
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
51
+ used to condition the original UNet's downsampling activations.
52
+ mid_down_block_re_sample (`torch.Tensor`):
53
+ The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
54
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
55
+ Output can be used to condition the original UNet's middle block activation.
56
+ """
57
+
58
+ down_block_res_samples: Tuple[torch.Tensor]
59
+ mid_block_res_sample: torch.Tensor
60
+
61
+
62
+ class SparseControlNetConditioningEmbedding(nn.Module):
63
+ def __init__(
64
+ self,
65
+ conditioning_embedding_channels: int,
66
+ conditioning_channels: int = 3,
67
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
68
+ ):
69
+ super().__init__()
70
+
71
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
72
+ self.blocks = nn.ModuleList([])
73
+
74
+ for i in range(len(block_out_channels) - 1):
75
+ channel_in = block_out_channels[i]
76
+ channel_out = block_out_channels[i + 1]
77
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
78
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
79
+
80
+ self.conv_out = zero_module(
81
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
82
+ )
83
+
84
+ def forward(self, conditioning: torch.Tensor) -> torch.Tensor:
85
+ embedding = self.conv_in(conditioning)
86
+ embedding = F.silu(embedding)
87
+
88
+ for block in self.blocks:
89
+ embedding = block(embedding)
90
+ embedding = F.silu(embedding)
91
+
92
+ embedding = self.conv_out(embedding)
93
+ return embedding
94
+
95
+
96
+ class SparseControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
97
+ """
98
+ A SparseControlNet model as described in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion
99
+ Models](https://arxiv.org/abs/2311.16933).
100
+
101
+ Args:
102
+ in_channels (`int`, defaults to 4):
103
+ The number of channels in the input sample.
104
+ conditioning_channels (`int`, defaults to 4):
105
+ The number of input channels in the controlnet conditional embedding module. If
106
+ `concat_condition_embedding` is True, the value provided here is incremented by 1.
107
+ flip_sin_to_cos (`bool`, defaults to `True`):
108
+ Whether to flip the sin to cos in the time embedding.
109
+ freq_shift (`int`, defaults to 0):
110
+ The frequency shift to apply to the time embedding.
111
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
112
+ The tuple of downsample blocks to use.
113
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
114
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
115
+ The tuple of output channels for each block.
116
+ layers_per_block (`int`, defaults to 2):
117
+ The number of layers per block.
118
+ downsample_padding (`int`, defaults to 1):
119
+ The padding to use for the downsampling convolution.
120
+ mid_block_scale_factor (`float`, defaults to 1):
121
+ The scale factor to use for the mid block.
122
+ act_fn (`str`, defaults to "silu"):
123
+ The activation function to use.
124
+ norm_num_groups (`int`, *optional*, defaults to 32):
125
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
126
+ in post-processing.
127
+ norm_eps (`float`, defaults to 1e-5):
128
+ The epsilon to use for the normalization.
129
+ cross_attention_dim (`int`, defaults to 1280):
130
+ The dimension of the cross attention features.
131
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
132
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
133
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
134
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
135
+ transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
136
+ The number of transformer layers to use in each layer in the middle block.
137
+ attention_head_dim (`int` or `Tuple[int]`, defaults to 8):
138
+ The dimension of the attention heads.
139
+ num_attention_heads (`int` or `Tuple[int]`, *optional*):
140
+ The number of heads to use for multi-head attention.
141
+ use_linear_projection (`bool`, defaults to `False`):
142
+ upcast_attention (`bool`, defaults to `False`):
143
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
144
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
145
+ conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
146
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
147
+ global_pool_conditions (`bool`, defaults to `False`):
148
+ TODO(Patrick) - unused parameter
149
+ controlnet_conditioning_channel_order (`str`, defaults to `rgb`):
150
+ motion_max_seq_length (`int`, defaults to `32`):
151
+ The maximum sequence length to use in the motion module.
152
+ motion_num_attention_heads (`int` or `Tuple[int]`, defaults to `8`):
153
+ The number of heads to use in each attention layer of the motion module.
154
+ concat_conditioning_mask (`bool`, defaults to `True`):
155
+ use_simplified_condition_embedding (`bool`, defaults to `True`):
156
+ """
157
+
158
+ _supports_gradient_checkpointing = True
159
+
160
+ @register_to_config
161
+ def __init__(
162
+ self,
163
+ in_channels: int = 4,
164
+ conditioning_channels: int = 4,
165
+ flip_sin_to_cos: bool = True,
166
+ freq_shift: int = 0,
167
+ down_block_types: Tuple[str, ...] = (
168
+ "CrossAttnDownBlockMotion",
169
+ "CrossAttnDownBlockMotion",
170
+ "CrossAttnDownBlockMotion",
171
+ "DownBlockMotion",
172
+ ),
173
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
174
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
175
+ layers_per_block: int = 2,
176
+ downsample_padding: int = 1,
177
+ mid_block_scale_factor: float = 1,
178
+ act_fn: str = "silu",
179
+ norm_num_groups: Optional[int] = 32,
180
+ norm_eps: float = 1e-5,
181
+ cross_attention_dim: int = 768,
182
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
183
+ transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None,
184
+ temporal_transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
185
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
186
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
187
+ use_linear_projection: bool = False,
188
+ upcast_attention: bool = False,
189
+ resnet_time_scale_shift: str = "default",
190
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
191
+ global_pool_conditions: bool = False,
192
+ controlnet_conditioning_channel_order: str = "rgb",
193
+ motion_max_seq_length: int = 32,
194
+ motion_num_attention_heads: int = 8,
195
+ concat_conditioning_mask: bool = True,
196
+ use_simplified_condition_embedding: bool = True,
197
+ ):
198
+ super().__init__()
199
+ self.use_simplified_condition_embedding = use_simplified_condition_embedding
200
+
201
+ # If `num_attention_heads` is not defined (which is the case for most models)
202
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
203
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
204
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
205
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
206
+ # which is why we correct for the naming here.
207
+ num_attention_heads = num_attention_heads or attention_head_dim
208
+
209
+ # Check inputs
210
+ if len(block_out_channels) != len(down_block_types):
211
+ raise ValueError(
212
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
213
+ )
214
+
215
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
216
+ raise ValueError(
217
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
218
+ )
219
+
220
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
221
+ raise ValueError(
222
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
223
+ )
224
+
225
+ if isinstance(transformer_layers_per_block, int):
226
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
227
+ if isinstance(temporal_transformer_layers_per_block, int):
228
+ temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types)
229
+
230
+ # input
231
+ conv_in_kernel = 3
232
+ conv_in_padding = (conv_in_kernel - 1) // 2
233
+ self.conv_in = nn.Conv2d(
234
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
235
+ )
236
+
237
+ if concat_conditioning_mask:
238
+ conditioning_channels = conditioning_channels + 1
239
+
240
+ self.concat_conditioning_mask = concat_conditioning_mask
241
+
242
+ # control net conditioning embedding
243
+ if use_simplified_condition_embedding:
244
+ self.controlnet_cond_embedding = zero_module(
245
+ nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
246
+ )
247
+ else:
248
+ self.controlnet_cond_embedding = SparseControlNetConditioningEmbedding(
249
+ conditioning_embedding_channels=block_out_channels[0],
250
+ block_out_channels=conditioning_embedding_out_channels,
251
+ conditioning_channels=conditioning_channels,
252
+ )
253
+
254
+ # time
255
+ time_embed_dim = block_out_channels[0] * 4
256
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
257
+ timestep_input_dim = block_out_channels[0]
258
+
259
+ self.time_embedding = TimestepEmbedding(
260
+ timestep_input_dim,
261
+ time_embed_dim,
262
+ act_fn=act_fn,
263
+ )
264
+
265
+ self.down_blocks = nn.ModuleList([])
266
+ self.controlnet_down_blocks = nn.ModuleList([])
267
+
268
+ if isinstance(cross_attention_dim, int):
269
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
270
+
271
+ if isinstance(only_cross_attention, bool):
272
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
273
+
274
+ if isinstance(attention_head_dim, int):
275
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
276
+
277
+ if isinstance(num_attention_heads, int):
278
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
279
+
280
+ if isinstance(motion_num_attention_heads, int):
281
+ motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types)
282
+
283
+ # down
284
+ output_channel = block_out_channels[0]
285
+
286
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
287
+ controlnet_block = zero_module(controlnet_block)
288
+ self.controlnet_down_blocks.append(controlnet_block)
289
+
290
+ for i, down_block_type in enumerate(down_block_types):
291
+ input_channel = output_channel
292
+ output_channel = block_out_channels[i]
293
+ is_final_block = i == len(block_out_channels) - 1
294
+
295
+ if down_block_type == "CrossAttnDownBlockMotion":
296
+ down_block = CrossAttnDownBlockMotion(
297
+ in_channels=input_channel,
298
+ out_channels=output_channel,
299
+ temb_channels=time_embed_dim,
300
+ dropout=0,
301
+ num_layers=layers_per_block,
302
+ transformer_layers_per_block=transformer_layers_per_block[i],
303
+ resnet_eps=norm_eps,
304
+ resnet_time_scale_shift=resnet_time_scale_shift,
305
+ resnet_act_fn=act_fn,
306
+ resnet_groups=norm_num_groups,
307
+ resnet_pre_norm=True,
308
+ num_attention_heads=num_attention_heads[i],
309
+ cross_attention_dim=cross_attention_dim[i],
310
+ add_downsample=not is_final_block,
311
+ dual_cross_attention=False,
312
+ use_linear_projection=use_linear_projection,
313
+ only_cross_attention=only_cross_attention[i],
314
+ upcast_attention=upcast_attention,
315
+ temporal_num_attention_heads=motion_num_attention_heads[i],
316
+ temporal_max_seq_length=motion_max_seq_length,
317
+ temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
318
+ temporal_double_self_attention=False,
319
+ )
320
+ elif down_block_type == "DownBlockMotion":
321
+ down_block = DownBlockMotion(
322
+ in_channels=input_channel,
323
+ out_channels=output_channel,
324
+ temb_channels=time_embed_dim,
325
+ dropout=0,
326
+ num_layers=layers_per_block,
327
+ resnet_eps=norm_eps,
328
+ resnet_time_scale_shift=resnet_time_scale_shift,
329
+ resnet_act_fn=act_fn,
330
+ resnet_groups=norm_num_groups,
331
+ resnet_pre_norm=True,
332
+ add_downsample=not is_final_block,
333
+ temporal_num_attention_heads=motion_num_attention_heads[i],
334
+ temporal_max_seq_length=motion_max_seq_length,
335
+ temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
336
+ temporal_double_self_attention=False,
337
+ )
338
+ else:
339
+ raise ValueError(
340
+ "Invalid `block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`"
341
+ )
342
+
343
+ self.down_blocks.append(down_block)
344
+
345
+ for _ in range(layers_per_block):
346
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
347
+ controlnet_block = zero_module(controlnet_block)
348
+ self.controlnet_down_blocks.append(controlnet_block)
349
+
350
+ if not is_final_block:
351
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
352
+ controlnet_block = zero_module(controlnet_block)
353
+ self.controlnet_down_blocks.append(controlnet_block)
354
+
355
+ # mid
356
+ mid_block_channels = block_out_channels[-1]
357
+
358
+ controlnet_block = nn.Conv2d(mid_block_channels, mid_block_channels, kernel_size=1)
359
+ controlnet_block = zero_module(controlnet_block)
360
+ self.controlnet_mid_block = controlnet_block
361
+
362
+ if transformer_layers_per_mid_block is None:
363
+ transformer_layers_per_mid_block = (
364
+ transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1
365
+ )
366
+
367
+ self.mid_block = UNetMidBlock2DCrossAttn(
368
+ in_channels=mid_block_channels,
369
+ temb_channels=time_embed_dim,
370
+ dropout=0,
371
+ num_layers=1,
372
+ transformer_layers_per_block=transformer_layers_per_mid_block,
373
+ resnet_eps=norm_eps,
374
+ resnet_time_scale_shift=resnet_time_scale_shift,
375
+ resnet_act_fn=act_fn,
376
+ resnet_groups=norm_num_groups,
377
+ resnet_pre_norm=True,
378
+ num_attention_heads=num_attention_heads[-1],
379
+ output_scale_factor=mid_block_scale_factor,
380
+ cross_attention_dim=cross_attention_dim[-1],
381
+ dual_cross_attention=False,
382
+ use_linear_projection=use_linear_projection,
383
+ upcast_attention=upcast_attention,
384
+ attention_type="default",
385
+ )
386
+
387
+ @classmethod
388
+ def from_unet(
389
+ cls,
390
+ unet: UNet2DConditionModel,
391
+ controlnet_conditioning_channel_order: str = "rgb",
392
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
393
+ load_weights_from_unet: bool = True,
394
+ conditioning_channels: int = 3,
395
+ ) -> "SparseControlNetModel":
396
+ r"""
397
+ Instantiate a [`SparseControlNetModel`] from [`UNet2DConditionModel`].
398
+
399
+ Parameters:
400
+ unet (`UNet2DConditionModel`):
401
+ The UNet model weights to copy to the [`SparseControlNetModel`]. All configuration options are also
402
+ copied where applicable.
403
+ """
404
+ transformer_layers_per_block = (
405
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
406
+ )
407
+ down_block_types = unet.config.down_block_types
408
+
409
+ for i in range(len(down_block_types)):
410
+ if "CrossAttn" in down_block_types[i]:
411
+ down_block_types[i] = "CrossAttnDownBlockMotion"
412
+ elif "Down" in down_block_types[i]:
413
+ down_block_types[i] = "DownBlockMotion"
414
+ else:
415
+ raise ValueError("Invalid `block_type` encountered. Must be a cross-attention or down block")
416
+
417
+ controlnet = cls(
418
+ in_channels=unet.config.in_channels,
419
+ conditioning_channels=conditioning_channels,
420
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
421
+ freq_shift=unet.config.freq_shift,
422
+ down_block_types=unet.config.down_block_types,
423
+ only_cross_attention=unet.config.only_cross_attention,
424
+ block_out_channels=unet.config.block_out_channels,
425
+ layers_per_block=unet.config.layers_per_block,
426
+ downsample_padding=unet.config.downsample_padding,
427
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
428
+ act_fn=unet.config.act_fn,
429
+ norm_num_groups=unet.config.norm_num_groups,
430
+ norm_eps=unet.config.norm_eps,
431
+ cross_attention_dim=unet.config.cross_attention_dim,
432
+ transformer_layers_per_block=transformer_layers_per_block,
433
+ attention_head_dim=unet.config.attention_head_dim,
434
+ num_attention_heads=unet.config.num_attention_heads,
435
+ use_linear_projection=unet.config.use_linear_projection,
436
+ upcast_attention=unet.config.upcast_attention,
437
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
438
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
439
+ controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
440
+ )
441
+
442
+ if load_weights_from_unet:
443
+ controlnet.conv_in.load_state_dict(unet.conv_in.state_dict(), strict=False)
444
+ controlnet.time_proj.load_state_dict(unet.time_proj.state_dict(), strict=False)
445
+ controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict(), strict=False)
446
+ controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
447
+ controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
448
+
449
+ return controlnet
450
+
451
+ @property
452
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
453
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
454
+ r"""
455
+ Returns:
456
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
457
+ indexed by its weight name.
458
+ """
459
+ # set recursively
460
+ processors = {}
461
+
462
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
463
+ if hasattr(module, "get_processor"):
464
+ processors[f"{name}.processor"] = module.get_processor()
465
+
466
+ for sub_name, child in module.named_children():
467
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
468
+
469
+ return processors
470
+
471
+ for name, module in self.named_children():
472
+ fn_recursive_add_processors(name, module, processors)
473
+
474
+ return processors
475
+
476
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
477
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
478
+ r"""
479
+ Sets the attention processor to use to compute attention.
480
+
481
+ Parameters:
482
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
483
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
484
+ for **all** `Attention` layers.
485
+
486
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
487
+ processor. This is strongly recommended when setting trainable attention processors.
488
+
489
+ """
490
+ count = len(self.attn_processors.keys())
491
+
492
+ if isinstance(processor, dict) and len(processor) != count:
493
+ raise ValueError(
494
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
495
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
496
+ )
497
+
498
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
499
+ if hasattr(module, "set_processor"):
500
+ if not isinstance(processor, dict):
501
+ module.set_processor(processor)
502
+ else:
503
+ module.set_processor(processor.pop(f"{name}.processor"))
504
+
505
+ for sub_name, child in module.named_children():
506
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
507
+
508
+ for name, module in self.named_children():
509
+ fn_recursive_attn_processor(name, module, processor)
510
+
511
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
512
+ def set_default_attn_processor(self):
513
+ """
514
+ Disables custom attention processors and sets the default attention implementation.
515
+ """
516
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
517
+ processor = AttnAddedKVProcessor()
518
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
519
+ processor = AttnProcessor()
520
+ else:
521
+ raise ValueError(
522
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
523
+ )
524
+
525
+ self.set_attn_processor(processor)
526
+
527
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
528
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
529
+ r"""
530
+ Enable sliced attention computation.
531
+
532
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
533
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
534
+
535
+ Args:
536
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
537
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
538
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
539
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
540
+ must be a multiple of `slice_size`.
541
+ """
542
+ sliceable_head_dims = []
543
+
544
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
545
+ if hasattr(module, "set_attention_slice"):
546
+ sliceable_head_dims.append(module.sliceable_head_dim)
547
+
548
+ for child in module.children():
549
+ fn_recursive_retrieve_sliceable_dims(child)
550
+
551
+ # retrieve number of attention layers
552
+ for module in self.children():
553
+ fn_recursive_retrieve_sliceable_dims(module)
554
+
555
+ num_sliceable_layers = len(sliceable_head_dims)
556
+
557
+ if slice_size == "auto":
558
+ # half the attention head size is usually a good trade-off between
559
+ # speed and memory
560
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
561
+ elif slice_size == "max":
562
+ # make smallest slice possible
563
+ slice_size = num_sliceable_layers * [1]
564
+
565
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
566
+
567
+ if len(slice_size) != len(sliceable_head_dims):
568
+ raise ValueError(
569
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
570
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
571
+ )
572
+
573
+ for i in range(len(slice_size)):
574
+ size = slice_size[i]
575
+ dim = sliceable_head_dims[i]
576
+ if size is not None and size > dim:
577
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
578
+
579
+ # Recursively walk through all the children.
580
+ # Any children which exposes the set_attention_slice method
581
+ # gets the message
582
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
583
+ if hasattr(module, "set_attention_slice"):
584
+ module.set_attention_slice(slice_size.pop())
585
+
586
+ for child in module.children():
587
+ fn_recursive_set_attention_slice(child, slice_size)
588
+
589
+ reversed_slice_size = list(reversed(slice_size))
590
+ for module in self.children():
591
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
592
+
593
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
594
+ if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, UNetMidBlock2DCrossAttn)):
595
+ module.gradient_checkpointing = value
596
+
597
+ def forward(
598
+ self,
599
+ sample: torch.Tensor,
600
+ timestep: Union[torch.Tensor, float, int],
601
+ encoder_hidden_states: torch.Tensor,
602
+ controlnet_cond: torch.Tensor,
603
+ conditioning_scale: float = 1.0,
604
+ timestep_cond: Optional[torch.Tensor] = None,
605
+ attention_mask: Optional[torch.Tensor] = None,
606
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
607
+ conditioning_mask: Optional[torch.Tensor] = None,
608
+ guess_mode: bool = False,
609
+ return_dict: bool = True,
610
+ ) -> Union[SparseControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
611
+ """
612
+ The [`SparseControlNetModel`] forward method.
613
+
614
+ Args:
615
+ sample (`torch.Tensor`):
616
+ The noisy input tensor.
617
+ timestep (`Union[torch.Tensor, float, int]`):
618
+ The number of timesteps to denoise an input.
619
+ encoder_hidden_states (`torch.Tensor`):
620
+ The encoder hidden states.
621
+ controlnet_cond (`torch.Tensor`):
622
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
623
+ conditioning_scale (`float`, defaults to `1.0`):
624
+ The scale factor for ControlNet outputs.
625
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
626
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
627
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
628
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
629
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
630
+ embeddings.
631
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
632
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
633
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
634
+ negative values to the attention scores corresponding to "discard" tokens.
635
+ added_cond_kwargs (`dict`):
636
+ Additional conditions for the Stable Diffusion XL UNet.
637
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
638
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
639
+ guess_mode (`bool`, defaults to `False`):
640
+ In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
641
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
642
+ return_dict (`bool`, defaults to `True`):
643
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
644
+ Returns:
645
+ [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
646
+ If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
647
+ returned where the first element is the sample tensor.
648
+ """
649
+ sample_batch_size, sample_channels, sample_num_frames, sample_height, sample_width = sample.shape
650
+ sample = torch.zeros_like(sample)
651
+
652
+ # check channel order
653
+ channel_order = self.config.controlnet_conditioning_channel_order
654
+
655
+ if channel_order == "rgb":
656
+ # in rgb order by default
657
+ ...
658
+ elif channel_order == "bgr":
659
+ controlnet_cond = torch.flip(controlnet_cond, dims=[1])
660
+ else:
661
+ raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
662
+
663
+ # prepare attention_mask
664
+ if attention_mask is not None:
665
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
666
+ attention_mask = attention_mask.unsqueeze(1)
667
+
668
+ # 1. time
669
+ timesteps = timestep
670
+ if not torch.is_tensor(timesteps):
671
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
672
+ # This would be a good case for the `match` statement (Python 3.10+)
673
+ is_mps = sample.device.type == "mps"
674
+ if isinstance(timestep, float):
675
+ dtype = torch.float32 if is_mps else torch.float64
676
+ else:
677
+ dtype = torch.int32 if is_mps else torch.int64
678
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
679
+ elif len(timesteps.shape) == 0:
680
+ timesteps = timesteps[None].to(sample.device)
681
+
682
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
683
+ timesteps = timesteps.expand(sample.shape[0])
684
+
685
+ t_emb = self.time_proj(timesteps)
686
+
687
+ # timesteps does not contain any weights and will always return f32 tensors
688
+ # but time_embedding might actually be running in fp16. so we need to cast here.
689
+ # there might be better ways to encapsulate this.
690
+ t_emb = t_emb.to(dtype=sample.dtype)
691
+
692
+ emb = self.time_embedding(t_emb, timestep_cond)
693
+ emb = emb.repeat_interleave(sample_num_frames, dim=0)
694
+
695
+ # 2. pre-process
696
+ batch_size, channels, num_frames, height, width = sample.shape
697
+
698
+ sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
699
+ sample = self.conv_in(sample)
700
+
701
+ batch_frames, channels, height, width = sample.shape
702
+ sample = sample[:, None].reshape(sample_batch_size, sample_num_frames, channels, height, width)
703
+
704
+ if self.concat_conditioning_mask:
705
+ controlnet_cond = torch.cat([controlnet_cond, conditioning_mask], dim=1)
706
+
707
+ batch_size, channels, num_frames, height, width = controlnet_cond.shape
708
+ controlnet_cond = controlnet_cond.permute(0, 2, 1, 3, 4).reshape(
709
+ batch_size * num_frames, channels, height, width
710
+ )
711
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
712
+ batch_frames, channels, height, width = controlnet_cond.shape
713
+ controlnet_cond = controlnet_cond[:, None].reshape(batch_size, num_frames, channels, height, width)
714
+
715
+ sample = sample + controlnet_cond
716
+
717
+ batch_size, num_frames, channels, height, width = sample.shape
718
+ sample = sample.reshape(sample_batch_size * sample_num_frames, channels, height, width)
719
+
720
+ # 3. down
721
+ down_block_res_samples = (sample,)
722
+ for downsample_block in self.down_blocks:
723
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
724
+ sample, res_samples = downsample_block(
725
+ hidden_states=sample,
726
+ temb=emb,
727
+ encoder_hidden_states=encoder_hidden_states,
728
+ attention_mask=attention_mask,
729
+ num_frames=num_frames,
730
+ cross_attention_kwargs=cross_attention_kwargs,
731
+ )
732
+ else:
733
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
734
+
735
+ down_block_res_samples += res_samples
736
+
737
+ # 4. mid
738
+ if self.mid_block is not None:
739
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
740
+ sample = self.mid_block(
741
+ sample,
742
+ emb,
743
+ encoder_hidden_states=encoder_hidden_states,
744
+ attention_mask=attention_mask,
745
+ cross_attention_kwargs=cross_attention_kwargs,
746
+ )
747
+ else:
748
+ sample = self.mid_block(sample, emb)
749
+
750
+ # 5. Control net blocks
751
+ controlnet_down_block_res_samples = ()
752
+
753
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
754
+ down_block_res_sample = controlnet_block(down_block_res_sample)
755
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
756
+
757
+ down_block_res_samples = controlnet_down_block_res_samples
758
+ mid_block_res_sample = self.controlnet_mid_block(sample)
759
+
760
+ # 6. scaling
761
+ if guess_mode and not self.config.global_pool_conditions:
762
+ scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
763
+ scales = scales * conditioning_scale
764
+ down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
765
+ mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
766
+ else:
767
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
768
+ mid_block_res_sample = mid_block_res_sample * conditioning_scale
769
+
770
+ if self.config.global_pool_conditions:
771
+ down_block_res_samples = [
772
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
773
+ ]
774
+ mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
775
+
776
+ if not return_dict:
777
+ return (down_block_res_samples, mid_block_res_sample)
778
+
779
+ return SparseControlNetOutput(
780
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
781
+ )
782
+
783
+
784
+ # Copied from diffusers.models.controlnets.controlnet.zero_module
785
+ def zero_module(module: nn.Module) -> nn.Module:
786
+ for p in module.parameters():
787
+ nn.init.zeros_(p)
788
+ return module