diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,593 @@
|
|
1
|
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
import torch.nn as nn
|
21
|
+
import torch.nn.functional as F
|
22
|
+
|
23
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
25
|
+
from ...models.attention import FeedForward
|
26
|
+
from ...models.attention_processor import (
|
27
|
+
Attention,
|
28
|
+
AttentionProcessor,
|
29
|
+
FluxAttnProcessor2_0,
|
30
|
+
FluxAttnProcessor2_0_NPU,
|
31
|
+
FusedFluxAttnProcessor2_0,
|
32
|
+
)
|
33
|
+
from ...models.modeling_utils import ModelMixin
|
34
|
+
from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
35
|
+
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
36
|
+
from ...utils.import_utils import is_torch_npu_available
|
37
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
38
|
+
from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
39
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
40
|
+
|
41
|
+
|
42
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43
|
+
|
44
|
+
|
45
|
+
@maybe_allow_in_graph
|
46
|
+
class FluxSingleTransformerBlock(nn.Module):
|
47
|
+
r"""
|
48
|
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
49
|
+
|
50
|
+
Reference: https://arxiv.org/abs/2403.03206
|
51
|
+
|
52
|
+
Parameters:
|
53
|
+
dim (`int`): The number of channels in the input and output.
|
54
|
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
55
|
+
attention_head_dim (`int`): The number of channels in each head.
|
56
|
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
57
|
+
processing of `context` conditions.
|
58
|
+
"""
|
59
|
+
|
60
|
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
61
|
+
super().__init__()
|
62
|
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
63
|
+
|
64
|
+
self.norm = AdaLayerNormZeroSingle(dim)
|
65
|
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
66
|
+
self.act_mlp = nn.GELU(approximate="tanh")
|
67
|
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
68
|
+
|
69
|
+
if is_torch_npu_available():
|
70
|
+
processor = FluxAttnProcessor2_0_NPU()
|
71
|
+
else:
|
72
|
+
processor = FluxAttnProcessor2_0()
|
73
|
+
self.attn = Attention(
|
74
|
+
query_dim=dim,
|
75
|
+
cross_attention_dim=None,
|
76
|
+
dim_head=attention_head_dim,
|
77
|
+
heads=num_attention_heads,
|
78
|
+
out_dim=dim,
|
79
|
+
bias=True,
|
80
|
+
processor=processor,
|
81
|
+
qk_norm="rms_norm",
|
82
|
+
eps=1e-6,
|
83
|
+
pre_only=True,
|
84
|
+
)
|
85
|
+
|
86
|
+
def forward(
|
87
|
+
self,
|
88
|
+
hidden_states: torch.FloatTensor,
|
89
|
+
temb: torch.FloatTensor,
|
90
|
+
image_rotary_emb=None,
|
91
|
+
joint_attention_kwargs=None,
|
92
|
+
):
|
93
|
+
residual = hidden_states
|
94
|
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
95
|
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
96
|
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
97
|
+
attn_output = self.attn(
|
98
|
+
hidden_states=norm_hidden_states,
|
99
|
+
image_rotary_emb=image_rotary_emb,
|
100
|
+
**joint_attention_kwargs,
|
101
|
+
)
|
102
|
+
|
103
|
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
104
|
+
gate = gate.unsqueeze(1)
|
105
|
+
hidden_states = gate * self.proj_out(hidden_states)
|
106
|
+
hidden_states = residual + hidden_states
|
107
|
+
if hidden_states.dtype == torch.float16:
|
108
|
+
hidden_states = hidden_states.clip(-65504, 65504)
|
109
|
+
|
110
|
+
return hidden_states
|
111
|
+
|
112
|
+
|
113
|
+
@maybe_allow_in_graph
|
114
|
+
class FluxTransformerBlock(nn.Module):
|
115
|
+
r"""
|
116
|
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
117
|
+
|
118
|
+
Reference: https://arxiv.org/abs/2403.03206
|
119
|
+
|
120
|
+
Parameters:
|
121
|
+
dim (`int`): The number of channels in the input and output.
|
122
|
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
123
|
+
attention_head_dim (`int`): The number of channels in each head.
|
124
|
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
125
|
+
processing of `context` conditions.
|
126
|
+
"""
|
127
|
+
|
128
|
+
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
129
|
+
super().__init__()
|
130
|
+
|
131
|
+
self.norm1 = AdaLayerNormZero(dim)
|
132
|
+
|
133
|
+
self.norm1_context = AdaLayerNormZero(dim)
|
134
|
+
|
135
|
+
if hasattr(F, "scaled_dot_product_attention"):
|
136
|
+
processor = FluxAttnProcessor2_0()
|
137
|
+
else:
|
138
|
+
raise ValueError(
|
139
|
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
140
|
+
)
|
141
|
+
self.attn = Attention(
|
142
|
+
query_dim=dim,
|
143
|
+
cross_attention_dim=None,
|
144
|
+
added_kv_proj_dim=dim,
|
145
|
+
dim_head=attention_head_dim,
|
146
|
+
heads=num_attention_heads,
|
147
|
+
out_dim=dim,
|
148
|
+
context_pre_only=False,
|
149
|
+
bias=True,
|
150
|
+
processor=processor,
|
151
|
+
qk_norm=qk_norm,
|
152
|
+
eps=eps,
|
153
|
+
)
|
154
|
+
|
155
|
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
156
|
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
157
|
+
|
158
|
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
159
|
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
160
|
+
|
161
|
+
# let chunk size default to None
|
162
|
+
self._chunk_size = None
|
163
|
+
self._chunk_dim = 0
|
164
|
+
|
165
|
+
def forward(
|
166
|
+
self,
|
167
|
+
hidden_states: torch.FloatTensor,
|
168
|
+
encoder_hidden_states: torch.FloatTensor,
|
169
|
+
temb: torch.FloatTensor,
|
170
|
+
image_rotary_emb=None,
|
171
|
+
joint_attention_kwargs=None,
|
172
|
+
):
|
173
|
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
174
|
+
|
175
|
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
176
|
+
encoder_hidden_states, emb=temb
|
177
|
+
)
|
178
|
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
179
|
+
# Attention.
|
180
|
+
attention_outputs = self.attn(
|
181
|
+
hidden_states=norm_hidden_states,
|
182
|
+
encoder_hidden_states=norm_encoder_hidden_states,
|
183
|
+
image_rotary_emb=image_rotary_emb,
|
184
|
+
**joint_attention_kwargs,
|
185
|
+
)
|
186
|
+
|
187
|
+
if len(attention_outputs) == 2:
|
188
|
+
attn_output, context_attn_output = attention_outputs
|
189
|
+
elif len(attention_outputs) == 3:
|
190
|
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
191
|
+
|
192
|
+
# Process attention outputs for the `hidden_states`.
|
193
|
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
194
|
+
hidden_states = hidden_states + attn_output
|
195
|
+
|
196
|
+
norm_hidden_states = self.norm2(hidden_states)
|
197
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
198
|
+
|
199
|
+
ff_output = self.ff(norm_hidden_states)
|
200
|
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
201
|
+
|
202
|
+
hidden_states = hidden_states + ff_output
|
203
|
+
if len(attention_outputs) == 3:
|
204
|
+
hidden_states = hidden_states + ip_attn_output
|
205
|
+
|
206
|
+
# Process attention outputs for the `encoder_hidden_states`.
|
207
|
+
|
208
|
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
209
|
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
210
|
+
|
211
|
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
212
|
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
213
|
+
|
214
|
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
215
|
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
216
|
+
if encoder_hidden_states.dtype == torch.float16:
|
217
|
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
218
|
+
|
219
|
+
return encoder_hidden_states, hidden_states
|
220
|
+
|
221
|
+
|
222
|
+
class FluxTransformer2DModel(
|
223
|
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
|
224
|
+
):
|
225
|
+
"""
|
226
|
+
The Transformer model introduced in Flux.
|
227
|
+
|
228
|
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
229
|
+
|
230
|
+
Parameters:
|
231
|
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
232
|
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
233
|
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
234
|
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
235
|
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
236
|
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
237
|
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
238
|
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
239
|
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
240
|
+
"""
|
241
|
+
|
242
|
+
_supports_gradient_checkpointing = True
|
243
|
+
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
244
|
+
|
245
|
+
@register_to_config
|
246
|
+
def __init__(
|
247
|
+
self,
|
248
|
+
patch_size: int = 1,
|
249
|
+
in_channels: int = 64,
|
250
|
+
out_channels: Optional[int] = None,
|
251
|
+
num_layers: int = 19,
|
252
|
+
num_single_layers: int = 38,
|
253
|
+
attention_head_dim: int = 128,
|
254
|
+
num_attention_heads: int = 24,
|
255
|
+
joint_attention_dim: int = 4096,
|
256
|
+
pooled_projection_dim: int = 768,
|
257
|
+
guidance_embeds: bool = False,
|
258
|
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
259
|
+
):
|
260
|
+
super().__init__()
|
261
|
+
self.out_channels = out_channels or in_channels
|
262
|
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
263
|
+
|
264
|
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
265
|
+
|
266
|
+
text_time_guidance_cls = (
|
267
|
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
268
|
+
)
|
269
|
+
self.time_text_embed = text_time_guidance_cls(
|
270
|
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
271
|
+
)
|
272
|
+
|
273
|
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
274
|
+
self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim)
|
275
|
+
|
276
|
+
self.transformer_blocks = nn.ModuleList(
|
277
|
+
[
|
278
|
+
FluxTransformerBlock(
|
279
|
+
dim=self.inner_dim,
|
280
|
+
num_attention_heads=self.config.num_attention_heads,
|
281
|
+
attention_head_dim=self.config.attention_head_dim,
|
282
|
+
)
|
283
|
+
for i in range(self.config.num_layers)
|
284
|
+
]
|
285
|
+
)
|
286
|
+
|
287
|
+
self.single_transformer_blocks = nn.ModuleList(
|
288
|
+
[
|
289
|
+
FluxSingleTransformerBlock(
|
290
|
+
dim=self.inner_dim,
|
291
|
+
num_attention_heads=self.config.num_attention_heads,
|
292
|
+
attention_head_dim=self.config.attention_head_dim,
|
293
|
+
)
|
294
|
+
for i in range(self.config.num_single_layers)
|
295
|
+
]
|
296
|
+
)
|
297
|
+
|
298
|
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
299
|
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
300
|
+
|
301
|
+
self.gradient_checkpointing = False
|
302
|
+
|
303
|
+
@property
|
304
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
305
|
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
306
|
+
r"""
|
307
|
+
Returns:
|
308
|
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
309
|
+
indexed by its weight name.
|
310
|
+
"""
|
311
|
+
# set recursively
|
312
|
+
processors = {}
|
313
|
+
|
314
|
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
315
|
+
if hasattr(module, "get_processor"):
|
316
|
+
processors[f"{name}.processor"] = module.get_processor()
|
317
|
+
|
318
|
+
for sub_name, child in module.named_children():
|
319
|
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
320
|
+
|
321
|
+
return processors
|
322
|
+
|
323
|
+
for name, module in self.named_children():
|
324
|
+
fn_recursive_add_processors(name, module, processors)
|
325
|
+
|
326
|
+
return processors
|
327
|
+
|
328
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
329
|
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
330
|
+
r"""
|
331
|
+
Sets the attention processor to use to compute attention.
|
332
|
+
|
333
|
+
Parameters:
|
334
|
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
335
|
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
336
|
+
for **all** `Attention` layers.
|
337
|
+
|
338
|
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
339
|
+
processor. This is strongly recommended when setting trainable attention processors.
|
340
|
+
|
341
|
+
"""
|
342
|
+
count = len(self.attn_processors.keys())
|
343
|
+
|
344
|
+
if isinstance(processor, dict) and len(processor) != count:
|
345
|
+
raise ValueError(
|
346
|
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
347
|
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
348
|
+
)
|
349
|
+
|
350
|
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
351
|
+
if hasattr(module, "set_processor"):
|
352
|
+
if not isinstance(processor, dict):
|
353
|
+
module.set_processor(processor)
|
354
|
+
else:
|
355
|
+
module.set_processor(processor.pop(f"{name}.processor"))
|
356
|
+
|
357
|
+
for sub_name, child in module.named_children():
|
358
|
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
359
|
+
|
360
|
+
for name, module in self.named_children():
|
361
|
+
fn_recursive_attn_processor(name, module, processor)
|
362
|
+
|
363
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
364
|
+
def fuse_qkv_projections(self):
|
365
|
+
"""
|
366
|
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
367
|
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
368
|
+
|
369
|
+
<Tip warning={true}>
|
370
|
+
|
371
|
+
This API is 🧪 experimental.
|
372
|
+
|
373
|
+
</Tip>
|
374
|
+
"""
|
375
|
+
self.original_attn_processors = None
|
376
|
+
|
377
|
+
for _, attn_processor in self.attn_processors.items():
|
378
|
+
if "Added" in str(attn_processor.__class__.__name__):
|
379
|
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
380
|
+
|
381
|
+
self.original_attn_processors = self.attn_processors
|
382
|
+
|
383
|
+
for module in self.modules():
|
384
|
+
if isinstance(module, Attention):
|
385
|
+
module.fuse_projections(fuse=True)
|
386
|
+
|
387
|
+
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
388
|
+
|
389
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
390
|
+
def unfuse_qkv_projections(self):
|
391
|
+
"""Disables the fused QKV projection if enabled.
|
392
|
+
|
393
|
+
<Tip warning={true}>
|
394
|
+
|
395
|
+
This API is 🧪 experimental.
|
396
|
+
|
397
|
+
</Tip>
|
398
|
+
|
399
|
+
"""
|
400
|
+
if self.original_attn_processors is not None:
|
401
|
+
self.set_attn_processor(self.original_attn_processors)
|
402
|
+
|
403
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
404
|
+
if hasattr(module, "gradient_checkpointing"):
|
405
|
+
module.gradient_checkpointing = value
|
406
|
+
|
407
|
+
def forward(
|
408
|
+
self,
|
409
|
+
hidden_states: torch.Tensor,
|
410
|
+
encoder_hidden_states: torch.Tensor = None,
|
411
|
+
pooled_projections: torch.Tensor = None,
|
412
|
+
timestep: torch.LongTensor = None,
|
413
|
+
img_ids: torch.Tensor = None,
|
414
|
+
txt_ids: torch.Tensor = None,
|
415
|
+
guidance: torch.Tensor = None,
|
416
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
417
|
+
controlnet_block_samples=None,
|
418
|
+
controlnet_single_block_samples=None,
|
419
|
+
return_dict: bool = True,
|
420
|
+
controlnet_blocks_repeat: bool = False,
|
421
|
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
422
|
+
"""
|
423
|
+
The [`FluxTransformer2DModel`] forward method.
|
424
|
+
|
425
|
+
Args:
|
426
|
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
427
|
+
Input `hidden_states`.
|
428
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
429
|
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
430
|
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
431
|
+
from the embeddings of input conditions.
|
432
|
+
timestep ( `torch.LongTensor`):
|
433
|
+
Used to indicate denoising step.
|
434
|
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
435
|
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
436
|
+
joint_attention_kwargs (`dict`, *optional*):
|
437
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
438
|
+
`self.processor` in
|
439
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
440
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
441
|
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
442
|
+
tuple.
|
443
|
+
|
444
|
+
Returns:
|
445
|
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
446
|
+
`tuple` where the first element is the sample tensor.
|
447
|
+
"""
|
448
|
+
if joint_attention_kwargs is not None:
|
449
|
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
450
|
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
451
|
+
else:
|
452
|
+
lora_scale = 1.0
|
453
|
+
|
454
|
+
if USE_PEFT_BACKEND:
|
455
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
456
|
+
scale_lora_layers(self, lora_scale)
|
457
|
+
else:
|
458
|
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
459
|
+
logger.warning(
|
460
|
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
461
|
+
)
|
462
|
+
|
463
|
+
hidden_states = self.x_embedder(hidden_states)
|
464
|
+
|
465
|
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
466
|
+
if guidance is not None:
|
467
|
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
468
|
+
else:
|
469
|
+
guidance = None
|
470
|
+
|
471
|
+
temb = (
|
472
|
+
self.time_text_embed(timestep, pooled_projections)
|
473
|
+
if guidance is None
|
474
|
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
475
|
+
)
|
476
|
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
477
|
+
|
478
|
+
if txt_ids.ndim == 3:
|
479
|
+
logger.warning(
|
480
|
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
481
|
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
482
|
+
)
|
483
|
+
txt_ids = txt_ids[0]
|
484
|
+
if img_ids.ndim == 3:
|
485
|
+
logger.warning(
|
486
|
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
487
|
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
488
|
+
)
|
489
|
+
img_ids = img_ids[0]
|
490
|
+
|
491
|
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
492
|
+
image_rotary_emb = self.pos_embed(ids)
|
493
|
+
|
494
|
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
495
|
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
496
|
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
497
|
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
498
|
+
|
499
|
+
for index_block, block in enumerate(self.transformer_blocks):
|
500
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
501
|
+
|
502
|
+
def create_custom_forward(module, return_dict=None):
|
503
|
+
def custom_forward(*inputs):
|
504
|
+
if return_dict is not None:
|
505
|
+
return module(*inputs, return_dict=return_dict)
|
506
|
+
else:
|
507
|
+
return module(*inputs)
|
508
|
+
|
509
|
+
return custom_forward
|
510
|
+
|
511
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
512
|
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
513
|
+
create_custom_forward(block),
|
514
|
+
hidden_states,
|
515
|
+
encoder_hidden_states,
|
516
|
+
temb,
|
517
|
+
image_rotary_emb,
|
518
|
+
**ckpt_kwargs,
|
519
|
+
)
|
520
|
+
|
521
|
+
else:
|
522
|
+
encoder_hidden_states, hidden_states = block(
|
523
|
+
hidden_states=hidden_states,
|
524
|
+
encoder_hidden_states=encoder_hidden_states,
|
525
|
+
temb=temb,
|
526
|
+
image_rotary_emb=image_rotary_emb,
|
527
|
+
joint_attention_kwargs=joint_attention_kwargs,
|
528
|
+
)
|
529
|
+
|
530
|
+
# controlnet residual
|
531
|
+
if controlnet_block_samples is not None:
|
532
|
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
533
|
+
interval_control = int(np.ceil(interval_control))
|
534
|
+
# For Xlabs ControlNet.
|
535
|
+
if controlnet_blocks_repeat:
|
536
|
+
hidden_states = (
|
537
|
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
538
|
+
)
|
539
|
+
else:
|
540
|
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
541
|
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
542
|
+
|
543
|
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
544
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
545
|
+
|
546
|
+
def create_custom_forward(module, return_dict=None):
|
547
|
+
def custom_forward(*inputs):
|
548
|
+
if return_dict is not None:
|
549
|
+
return module(*inputs, return_dict=return_dict)
|
550
|
+
else:
|
551
|
+
return module(*inputs)
|
552
|
+
|
553
|
+
return custom_forward
|
554
|
+
|
555
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
556
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
557
|
+
create_custom_forward(block),
|
558
|
+
hidden_states,
|
559
|
+
temb,
|
560
|
+
image_rotary_emb,
|
561
|
+
**ckpt_kwargs,
|
562
|
+
)
|
563
|
+
|
564
|
+
else:
|
565
|
+
hidden_states = block(
|
566
|
+
hidden_states=hidden_states,
|
567
|
+
temb=temb,
|
568
|
+
image_rotary_emb=image_rotary_emb,
|
569
|
+
joint_attention_kwargs=joint_attention_kwargs,
|
570
|
+
)
|
571
|
+
|
572
|
+
# controlnet residual
|
573
|
+
if controlnet_single_block_samples is not None:
|
574
|
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
575
|
+
interval_control = int(np.ceil(interval_control))
|
576
|
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
577
|
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
578
|
+
+ controlnet_single_block_samples[index_block // interval_control]
|
579
|
+
)
|
580
|
+
|
581
|
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
582
|
+
|
583
|
+
hidden_states = self.norm_out(hidden_states, temb)
|
584
|
+
output = self.proj_out(hidden_states)
|
585
|
+
|
586
|
+
if USE_PEFT_BACKEND:
|
587
|
+
# remove `lora_scale` from each PEFT layer
|
588
|
+
unscale_lora_layers(self, lora_scale)
|
589
|
+
|
590
|
+
if not return_dict:
|
591
|
+
return (output,)
|
592
|
+
|
593
|
+
return Transformer2DModelOutput(sample=output)
|