diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,593 @@
1
+ # Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import Any, Dict, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ import torch.nn as nn
21
+ import torch.nn.functional as F
22
+
23
+ from ...configuration_utils import ConfigMixin, register_to_config
24
+ from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
25
+ from ...models.attention import FeedForward
26
+ from ...models.attention_processor import (
27
+ Attention,
28
+ AttentionProcessor,
29
+ FluxAttnProcessor2_0,
30
+ FluxAttnProcessor2_0_NPU,
31
+ FusedFluxAttnProcessor2_0,
32
+ )
33
+ from ...models.modeling_utils import ModelMixin
34
+ from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
35
+ from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
36
+ from ...utils.import_utils import is_torch_npu_available
37
+ from ...utils.torch_utils import maybe_allow_in_graph
38
+ from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
39
+ from ..modeling_outputs import Transformer2DModelOutput
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+
45
+ @maybe_allow_in_graph
46
+ class FluxSingleTransformerBlock(nn.Module):
47
+ r"""
48
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
49
+
50
+ Reference: https://arxiv.org/abs/2403.03206
51
+
52
+ Parameters:
53
+ dim (`int`): The number of channels in the input and output.
54
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
55
+ attention_head_dim (`int`): The number of channels in each head.
56
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
57
+ processing of `context` conditions.
58
+ """
59
+
60
+ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
61
+ super().__init__()
62
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
63
+
64
+ self.norm = AdaLayerNormZeroSingle(dim)
65
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
66
+ self.act_mlp = nn.GELU(approximate="tanh")
67
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
68
+
69
+ if is_torch_npu_available():
70
+ processor = FluxAttnProcessor2_0_NPU()
71
+ else:
72
+ processor = FluxAttnProcessor2_0()
73
+ self.attn = Attention(
74
+ query_dim=dim,
75
+ cross_attention_dim=None,
76
+ dim_head=attention_head_dim,
77
+ heads=num_attention_heads,
78
+ out_dim=dim,
79
+ bias=True,
80
+ processor=processor,
81
+ qk_norm="rms_norm",
82
+ eps=1e-6,
83
+ pre_only=True,
84
+ )
85
+
86
+ def forward(
87
+ self,
88
+ hidden_states: torch.FloatTensor,
89
+ temb: torch.FloatTensor,
90
+ image_rotary_emb=None,
91
+ joint_attention_kwargs=None,
92
+ ):
93
+ residual = hidden_states
94
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
95
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
96
+ joint_attention_kwargs = joint_attention_kwargs or {}
97
+ attn_output = self.attn(
98
+ hidden_states=norm_hidden_states,
99
+ image_rotary_emb=image_rotary_emb,
100
+ **joint_attention_kwargs,
101
+ )
102
+
103
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
104
+ gate = gate.unsqueeze(1)
105
+ hidden_states = gate * self.proj_out(hidden_states)
106
+ hidden_states = residual + hidden_states
107
+ if hidden_states.dtype == torch.float16:
108
+ hidden_states = hidden_states.clip(-65504, 65504)
109
+
110
+ return hidden_states
111
+
112
+
113
+ @maybe_allow_in_graph
114
+ class FluxTransformerBlock(nn.Module):
115
+ r"""
116
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
117
+
118
+ Reference: https://arxiv.org/abs/2403.03206
119
+
120
+ Parameters:
121
+ dim (`int`): The number of channels in the input and output.
122
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
123
+ attention_head_dim (`int`): The number of channels in each head.
124
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
125
+ processing of `context` conditions.
126
+ """
127
+
128
+ def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
129
+ super().__init__()
130
+
131
+ self.norm1 = AdaLayerNormZero(dim)
132
+
133
+ self.norm1_context = AdaLayerNormZero(dim)
134
+
135
+ if hasattr(F, "scaled_dot_product_attention"):
136
+ processor = FluxAttnProcessor2_0()
137
+ else:
138
+ raise ValueError(
139
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
140
+ )
141
+ self.attn = Attention(
142
+ query_dim=dim,
143
+ cross_attention_dim=None,
144
+ added_kv_proj_dim=dim,
145
+ dim_head=attention_head_dim,
146
+ heads=num_attention_heads,
147
+ out_dim=dim,
148
+ context_pre_only=False,
149
+ bias=True,
150
+ processor=processor,
151
+ qk_norm=qk_norm,
152
+ eps=eps,
153
+ )
154
+
155
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
156
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
157
+
158
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
159
+ self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
160
+
161
+ # let chunk size default to None
162
+ self._chunk_size = None
163
+ self._chunk_dim = 0
164
+
165
+ def forward(
166
+ self,
167
+ hidden_states: torch.FloatTensor,
168
+ encoder_hidden_states: torch.FloatTensor,
169
+ temb: torch.FloatTensor,
170
+ image_rotary_emb=None,
171
+ joint_attention_kwargs=None,
172
+ ):
173
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
174
+
175
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
176
+ encoder_hidden_states, emb=temb
177
+ )
178
+ joint_attention_kwargs = joint_attention_kwargs or {}
179
+ # Attention.
180
+ attention_outputs = self.attn(
181
+ hidden_states=norm_hidden_states,
182
+ encoder_hidden_states=norm_encoder_hidden_states,
183
+ image_rotary_emb=image_rotary_emb,
184
+ **joint_attention_kwargs,
185
+ )
186
+
187
+ if len(attention_outputs) == 2:
188
+ attn_output, context_attn_output = attention_outputs
189
+ elif len(attention_outputs) == 3:
190
+ attn_output, context_attn_output, ip_attn_output = attention_outputs
191
+
192
+ # Process attention outputs for the `hidden_states`.
193
+ attn_output = gate_msa.unsqueeze(1) * attn_output
194
+ hidden_states = hidden_states + attn_output
195
+
196
+ norm_hidden_states = self.norm2(hidden_states)
197
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
198
+
199
+ ff_output = self.ff(norm_hidden_states)
200
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
201
+
202
+ hidden_states = hidden_states + ff_output
203
+ if len(attention_outputs) == 3:
204
+ hidden_states = hidden_states + ip_attn_output
205
+
206
+ # Process attention outputs for the `encoder_hidden_states`.
207
+
208
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
209
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
210
+
211
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
212
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
213
+
214
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
215
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
216
+ if encoder_hidden_states.dtype == torch.float16:
217
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
218
+
219
+ return encoder_hidden_states, hidden_states
220
+
221
+
222
+ class FluxTransformer2DModel(
223
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
224
+ ):
225
+ """
226
+ The Transformer model introduced in Flux.
227
+
228
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
229
+
230
+ Parameters:
231
+ patch_size (`int`): Patch size to turn the input data into small patches.
232
+ in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
233
+ num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
234
+ num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
235
+ attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
236
+ num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
237
+ joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
238
+ pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
239
+ guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
240
+ """
241
+
242
+ _supports_gradient_checkpointing = True
243
+ _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
244
+
245
+ @register_to_config
246
+ def __init__(
247
+ self,
248
+ patch_size: int = 1,
249
+ in_channels: int = 64,
250
+ out_channels: Optional[int] = None,
251
+ num_layers: int = 19,
252
+ num_single_layers: int = 38,
253
+ attention_head_dim: int = 128,
254
+ num_attention_heads: int = 24,
255
+ joint_attention_dim: int = 4096,
256
+ pooled_projection_dim: int = 768,
257
+ guidance_embeds: bool = False,
258
+ axes_dims_rope: Tuple[int] = (16, 56, 56),
259
+ ):
260
+ super().__init__()
261
+ self.out_channels = out_channels or in_channels
262
+ self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
263
+
264
+ self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
265
+
266
+ text_time_guidance_cls = (
267
+ CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
268
+ )
269
+ self.time_text_embed = text_time_guidance_cls(
270
+ embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
271
+ )
272
+
273
+ self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
274
+ self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim)
275
+
276
+ self.transformer_blocks = nn.ModuleList(
277
+ [
278
+ FluxTransformerBlock(
279
+ dim=self.inner_dim,
280
+ num_attention_heads=self.config.num_attention_heads,
281
+ attention_head_dim=self.config.attention_head_dim,
282
+ )
283
+ for i in range(self.config.num_layers)
284
+ ]
285
+ )
286
+
287
+ self.single_transformer_blocks = nn.ModuleList(
288
+ [
289
+ FluxSingleTransformerBlock(
290
+ dim=self.inner_dim,
291
+ num_attention_heads=self.config.num_attention_heads,
292
+ attention_head_dim=self.config.attention_head_dim,
293
+ )
294
+ for i in range(self.config.num_single_layers)
295
+ ]
296
+ )
297
+
298
+ self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
299
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
300
+
301
+ self.gradient_checkpointing = False
302
+
303
+ @property
304
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
305
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
306
+ r"""
307
+ Returns:
308
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
309
+ indexed by its weight name.
310
+ """
311
+ # set recursively
312
+ processors = {}
313
+
314
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
315
+ if hasattr(module, "get_processor"):
316
+ processors[f"{name}.processor"] = module.get_processor()
317
+
318
+ for sub_name, child in module.named_children():
319
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
320
+
321
+ return processors
322
+
323
+ for name, module in self.named_children():
324
+ fn_recursive_add_processors(name, module, processors)
325
+
326
+ return processors
327
+
328
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
329
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
330
+ r"""
331
+ Sets the attention processor to use to compute attention.
332
+
333
+ Parameters:
334
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
335
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
336
+ for **all** `Attention` layers.
337
+
338
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
339
+ processor. This is strongly recommended when setting trainable attention processors.
340
+
341
+ """
342
+ count = len(self.attn_processors.keys())
343
+
344
+ if isinstance(processor, dict) and len(processor) != count:
345
+ raise ValueError(
346
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
347
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
348
+ )
349
+
350
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
351
+ if hasattr(module, "set_processor"):
352
+ if not isinstance(processor, dict):
353
+ module.set_processor(processor)
354
+ else:
355
+ module.set_processor(processor.pop(f"{name}.processor"))
356
+
357
+ for sub_name, child in module.named_children():
358
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
359
+
360
+ for name, module in self.named_children():
361
+ fn_recursive_attn_processor(name, module, processor)
362
+
363
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
364
+ def fuse_qkv_projections(self):
365
+ """
366
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
367
+ are fused. For cross-attention modules, key and value projection matrices are fused.
368
+
369
+ <Tip warning={true}>
370
+
371
+ This API is 🧪 experimental.
372
+
373
+ </Tip>
374
+ """
375
+ self.original_attn_processors = None
376
+
377
+ for _, attn_processor in self.attn_processors.items():
378
+ if "Added" in str(attn_processor.__class__.__name__):
379
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
380
+
381
+ self.original_attn_processors = self.attn_processors
382
+
383
+ for module in self.modules():
384
+ if isinstance(module, Attention):
385
+ module.fuse_projections(fuse=True)
386
+
387
+ self.set_attn_processor(FusedFluxAttnProcessor2_0())
388
+
389
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
390
+ def unfuse_qkv_projections(self):
391
+ """Disables the fused QKV projection if enabled.
392
+
393
+ <Tip warning={true}>
394
+
395
+ This API is 🧪 experimental.
396
+
397
+ </Tip>
398
+
399
+ """
400
+ if self.original_attn_processors is not None:
401
+ self.set_attn_processor(self.original_attn_processors)
402
+
403
+ def _set_gradient_checkpointing(self, module, value=False):
404
+ if hasattr(module, "gradient_checkpointing"):
405
+ module.gradient_checkpointing = value
406
+
407
+ def forward(
408
+ self,
409
+ hidden_states: torch.Tensor,
410
+ encoder_hidden_states: torch.Tensor = None,
411
+ pooled_projections: torch.Tensor = None,
412
+ timestep: torch.LongTensor = None,
413
+ img_ids: torch.Tensor = None,
414
+ txt_ids: torch.Tensor = None,
415
+ guidance: torch.Tensor = None,
416
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
417
+ controlnet_block_samples=None,
418
+ controlnet_single_block_samples=None,
419
+ return_dict: bool = True,
420
+ controlnet_blocks_repeat: bool = False,
421
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
422
+ """
423
+ The [`FluxTransformer2DModel`] forward method.
424
+
425
+ Args:
426
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
427
+ Input `hidden_states`.
428
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
429
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
430
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
431
+ from the embeddings of input conditions.
432
+ timestep ( `torch.LongTensor`):
433
+ Used to indicate denoising step.
434
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
435
+ A list of tensors that if specified are added to the residuals of transformer blocks.
436
+ joint_attention_kwargs (`dict`, *optional*):
437
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
438
+ `self.processor` in
439
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
440
+ return_dict (`bool`, *optional*, defaults to `True`):
441
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
442
+ tuple.
443
+
444
+ Returns:
445
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
446
+ `tuple` where the first element is the sample tensor.
447
+ """
448
+ if joint_attention_kwargs is not None:
449
+ joint_attention_kwargs = joint_attention_kwargs.copy()
450
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
451
+ else:
452
+ lora_scale = 1.0
453
+
454
+ if USE_PEFT_BACKEND:
455
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
456
+ scale_lora_layers(self, lora_scale)
457
+ else:
458
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
459
+ logger.warning(
460
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
461
+ )
462
+
463
+ hidden_states = self.x_embedder(hidden_states)
464
+
465
+ timestep = timestep.to(hidden_states.dtype) * 1000
466
+ if guidance is not None:
467
+ guidance = guidance.to(hidden_states.dtype) * 1000
468
+ else:
469
+ guidance = None
470
+
471
+ temb = (
472
+ self.time_text_embed(timestep, pooled_projections)
473
+ if guidance is None
474
+ else self.time_text_embed(timestep, guidance, pooled_projections)
475
+ )
476
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
477
+
478
+ if txt_ids.ndim == 3:
479
+ logger.warning(
480
+ "Passing `txt_ids` 3d torch.Tensor is deprecated."
481
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
482
+ )
483
+ txt_ids = txt_ids[0]
484
+ if img_ids.ndim == 3:
485
+ logger.warning(
486
+ "Passing `img_ids` 3d torch.Tensor is deprecated."
487
+ "Please remove the batch dimension and pass it as a 2d torch Tensor"
488
+ )
489
+ img_ids = img_ids[0]
490
+
491
+ ids = torch.cat((txt_ids, img_ids), dim=0)
492
+ image_rotary_emb = self.pos_embed(ids)
493
+
494
+ if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
495
+ ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
496
+ ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
497
+ joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
498
+
499
+ for index_block, block in enumerate(self.transformer_blocks):
500
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
501
+
502
+ def create_custom_forward(module, return_dict=None):
503
+ def custom_forward(*inputs):
504
+ if return_dict is not None:
505
+ return module(*inputs, return_dict=return_dict)
506
+ else:
507
+ return module(*inputs)
508
+
509
+ return custom_forward
510
+
511
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
512
+ encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
513
+ create_custom_forward(block),
514
+ hidden_states,
515
+ encoder_hidden_states,
516
+ temb,
517
+ image_rotary_emb,
518
+ **ckpt_kwargs,
519
+ )
520
+
521
+ else:
522
+ encoder_hidden_states, hidden_states = block(
523
+ hidden_states=hidden_states,
524
+ encoder_hidden_states=encoder_hidden_states,
525
+ temb=temb,
526
+ image_rotary_emb=image_rotary_emb,
527
+ joint_attention_kwargs=joint_attention_kwargs,
528
+ )
529
+
530
+ # controlnet residual
531
+ if controlnet_block_samples is not None:
532
+ interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
533
+ interval_control = int(np.ceil(interval_control))
534
+ # For Xlabs ControlNet.
535
+ if controlnet_blocks_repeat:
536
+ hidden_states = (
537
+ hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
538
+ )
539
+ else:
540
+ hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
541
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
542
+
543
+ for index_block, block in enumerate(self.single_transformer_blocks):
544
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
545
+
546
+ def create_custom_forward(module, return_dict=None):
547
+ def custom_forward(*inputs):
548
+ if return_dict is not None:
549
+ return module(*inputs, return_dict=return_dict)
550
+ else:
551
+ return module(*inputs)
552
+
553
+ return custom_forward
554
+
555
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
556
+ hidden_states = torch.utils.checkpoint.checkpoint(
557
+ create_custom_forward(block),
558
+ hidden_states,
559
+ temb,
560
+ image_rotary_emb,
561
+ **ckpt_kwargs,
562
+ )
563
+
564
+ else:
565
+ hidden_states = block(
566
+ hidden_states=hidden_states,
567
+ temb=temb,
568
+ image_rotary_emb=image_rotary_emb,
569
+ joint_attention_kwargs=joint_attention_kwargs,
570
+ )
571
+
572
+ # controlnet residual
573
+ if controlnet_single_block_samples is not None:
574
+ interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
575
+ interval_control = int(np.ceil(interval_control))
576
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
577
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
578
+ + controlnet_single_block_samples[index_block // interval_control]
579
+ )
580
+
581
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
582
+
583
+ hidden_states = self.norm_out(hidden_states, temb)
584
+ output = self.proj_out(hidden_states)
585
+
586
+ if USE_PEFT_BACKEND:
587
+ # remove `lora_scale` from each PEFT layer
588
+ unscale_lora_layers(self, lora_scale)
589
+
590
+ if not return_dict:
591
+ return (output,)
592
+
593
+ return Transformer2DModelOutput(sample=output)