diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -23,9 +23,10 @@ import torch
|
|
23
23
|
import torch.nn.functional as F
|
24
24
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
25
25
|
|
26
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
26
27
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
27
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
28
|
-
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
28
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
29
|
+
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
|
29
30
|
from ...models.lora import adjust_lora_scale_text_encoder
|
30
31
|
from ...schedulers import KarrasDiffusionSchedulers
|
31
32
|
from ...utils import (
|
@@ -40,7 +41,6 @@ from ...utils.torch_utils import is_compiled_module, randn_tensor
|
|
40
41
|
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
41
42
|
from ..stable_diffusion import StableDiffusionPipelineOutput
|
42
43
|
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
43
|
-
from .multicontrolnet import MultiControlNetModel
|
44
44
|
|
45
45
|
|
46
46
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -117,134 +117,11 @@ def retrieve_latents(
|
|
117
117
|
raise AttributeError("Could not access latents of provided encoder_output")
|
118
118
|
|
119
119
|
|
120
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
|
121
|
-
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
|
122
|
-
"""
|
123
|
-
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
124
|
-
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
125
|
-
``image`` and ``1`` for the ``mask``.
|
126
|
-
|
127
|
-
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
128
|
-
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
129
|
-
|
130
|
-
Args:
|
131
|
-
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
132
|
-
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
133
|
-
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
134
|
-
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
135
|
-
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
136
|
-
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
137
|
-
|
138
|
-
|
139
|
-
Raises:
|
140
|
-
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
141
|
-
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
142
|
-
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
143
|
-
(ot the other way around).
|
144
|
-
|
145
|
-
Returns:
|
146
|
-
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
147
|
-
dimensions: ``batch x channels x height x width``.
|
148
|
-
"""
|
149
|
-
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
150
|
-
deprecate(
|
151
|
-
"prepare_mask_and_masked_image",
|
152
|
-
"0.30.0",
|
153
|
-
deprecation_message,
|
154
|
-
)
|
155
|
-
if image is None:
|
156
|
-
raise ValueError("`image` input cannot be undefined.")
|
157
|
-
|
158
|
-
if mask is None:
|
159
|
-
raise ValueError("`mask_image` input cannot be undefined.")
|
160
|
-
|
161
|
-
if isinstance(image, torch.Tensor):
|
162
|
-
if not isinstance(mask, torch.Tensor):
|
163
|
-
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
164
|
-
|
165
|
-
# Batch single image
|
166
|
-
if image.ndim == 3:
|
167
|
-
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
168
|
-
image = image.unsqueeze(0)
|
169
|
-
|
170
|
-
# Batch and add channel dim for single mask
|
171
|
-
if mask.ndim == 2:
|
172
|
-
mask = mask.unsqueeze(0).unsqueeze(0)
|
173
|
-
|
174
|
-
# Batch single mask or add channel dim
|
175
|
-
if mask.ndim == 3:
|
176
|
-
# Single batched mask, no channel dim or single mask not batched but channel dim
|
177
|
-
if mask.shape[0] == 1:
|
178
|
-
mask = mask.unsqueeze(0)
|
179
|
-
|
180
|
-
# Batched masks no channel dim
|
181
|
-
else:
|
182
|
-
mask = mask.unsqueeze(1)
|
183
|
-
|
184
|
-
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
185
|
-
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
186
|
-
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
187
|
-
|
188
|
-
# Check image is in [-1, 1]
|
189
|
-
if image.min() < -1 or image.max() > 1:
|
190
|
-
raise ValueError("Image should be in [-1, 1] range")
|
191
|
-
|
192
|
-
# Check mask is in [0, 1]
|
193
|
-
if mask.min() < 0 or mask.max() > 1:
|
194
|
-
raise ValueError("Mask should be in [0, 1] range")
|
195
|
-
|
196
|
-
# Binarize mask
|
197
|
-
mask[mask < 0.5] = 0
|
198
|
-
mask[mask >= 0.5] = 1
|
199
|
-
|
200
|
-
# Image as float32
|
201
|
-
image = image.to(dtype=torch.float32)
|
202
|
-
elif isinstance(mask, torch.Tensor):
|
203
|
-
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
204
|
-
else:
|
205
|
-
# preprocess image
|
206
|
-
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
207
|
-
image = [image]
|
208
|
-
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
209
|
-
# resize all images w.r.t passed height an width
|
210
|
-
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
211
|
-
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
212
|
-
image = np.concatenate(image, axis=0)
|
213
|
-
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
214
|
-
image = np.concatenate([i[None, :] for i in image], axis=0)
|
215
|
-
|
216
|
-
image = image.transpose(0, 3, 1, 2)
|
217
|
-
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
218
|
-
|
219
|
-
# preprocess mask
|
220
|
-
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
221
|
-
mask = [mask]
|
222
|
-
|
223
|
-
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
224
|
-
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
225
|
-
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
226
|
-
mask = mask.astype(np.float32) / 255.0
|
227
|
-
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
228
|
-
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
229
|
-
|
230
|
-
mask[mask < 0.5] = 0
|
231
|
-
mask[mask >= 0.5] = 1
|
232
|
-
mask = torch.from_numpy(mask)
|
233
|
-
|
234
|
-
masked_image = image * (mask < 0.5)
|
235
|
-
|
236
|
-
# n.b. ensure backwards compatibility as old function does not return image
|
237
|
-
if return_image:
|
238
|
-
return mask, masked_image, image
|
239
|
-
|
240
|
-
return mask, masked_image
|
241
|
-
|
242
|
-
|
243
120
|
class StableDiffusionControlNetInpaintPipeline(
|
244
121
|
DiffusionPipeline,
|
245
122
|
StableDiffusionMixin,
|
246
123
|
TextualInversionLoaderMixin,
|
247
|
-
|
124
|
+
StableDiffusionLoraLoaderMixin,
|
248
125
|
IPAdapterMixin,
|
249
126
|
FromSingleFileMixin,
|
250
127
|
):
|
@@ -256,8 +133,8 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
256
133
|
|
257
134
|
The pipeline also inherits the following loading methods:
|
258
135
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
259
|
-
- [`~loaders.
|
260
|
-
- [`~loaders.
|
136
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
137
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
261
138
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
262
139
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
263
140
|
|
@@ -364,8 +241,8 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
364
241
|
num_images_per_prompt,
|
365
242
|
do_classifier_free_guidance,
|
366
243
|
negative_prompt=None,
|
367
|
-
prompt_embeds: Optional[torch.
|
368
|
-
negative_prompt_embeds: Optional[torch.
|
244
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
245
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
369
246
|
lora_scale: Optional[float] = None,
|
370
247
|
**kwargs,
|
371
248
|
):
|
@@ -397,8 +274,8 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
397
274
|
num_images_per_prompt,
|
398
275
|
do_classifier_free_guidance,
|
399
276
|
negative_prompt=None,
|
400
|
-
prompt_embeds: Optional[torch.
|
401
|
-
negative_prompt_embeds: Optional[torch.
|
277
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
278
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
402
279
|
lora_scale: Optional[float] = None,
|
403
280
|
clip_skip: Optional[int] = None,
|
404
281
|
):
|
@@ -418,10 +295,10 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
418
295
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
419
296
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
420
297
|
less than `1`).
|
421
|
-
prompt_embeds (`torch.
|
298
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
422
299
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
423
300
|
provided, text embeddings will be generated from `prompt` input argument.
|
424
|
-
negative_prompt_embeds (`torch.
|
301
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
425
302
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
426
303
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
427
304
|
argument.
|
@@ -433,7 +310,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
433
310
|
"""
|
434
311
|
# set lora scale so that monkey patched LoRA
|
435
312
|
# function of text encoder can correctly access it
|
436
|
-
if lora_scale is not None and isinstance(self,
|
313
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
437
314
|
self._lora_scale = lora_scale
|
438
315
|
|
439
316
|
# dynamically adjust the LoRA scale
|
@@ -565,9 +442,10 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
565
442
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
566
443
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
567
444
|
|
568
|
-
if
|
569
|
-
|
570
|
-
|
445
|
+
if self.text_encoder is not None:
|
446
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
447
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
448
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
571
449
|
|
572
450
|
return prompt_embeds, negative_prompt_embeds
|
573
451
|
|
@@ -600,6 +478,9 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
600
478
|
def prepare_ip_adapter_image_embeds(
|
601
479
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
602
480
|
):
|
481
|
+
image_embeds = []
|
482
|
+
if do_classifier_free_guidance:
|
483
|
+
negative_image_embeds = []
|
603
484
|
if ip_adapter_image_embeds is None:
|
604
485
|
if not isinstance(ip_adapter_image, list):
|
605
486
|
ip_adapter_image = [ip_adapter_image]
|
@@ -609,7 +490,6 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
609
490
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
610
491
|
)
|
611
492
|
|
612
|
-
image_embeds = []
|
613
493
|
for single_ip_adapter_image, image_proj_layer in zip(
|
614
494
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
615
495
|
):
|
@@ -617,36 +497,28 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
617
497
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
618
498
|
single_ip_adapter_image, device, 1, output_hidden_state
|
619
499
|
)
|
620
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
621
|
-
single_negative_image_embeds = torch.stack(
|
622
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
623
|
-
)
|
624
500
|
|
501
|
+
image_embeds.append(single_image_embeds[None, :])
|
625
502
|
if do_classifier_free_guidance:
|
626
|
-
|
627
|
-
single_image_embeds = single_image_embeds.to(device)
|
628
|
-
|
629
|
-
image_embeds.append(single_image_embeds)
|
503
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
630
504
|
else:
|
631
|
-
repeat_dims = [1]
|
632
|
-
image_embeds = []
|
633
505
|
for single_image_embeds in ip_adapter_image_embeds:
|
634
506
|
if do_classifier_free_guidance:
|
635
507
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
636
|
-
|
637
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
638
|
-
)
|
639
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
640
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
641
|
-
)
|
642
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
643
|
-
else:
|
644
|
-
single_image_embeds = single_image_embeds.repeat(
|
645
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
646
|
-
)
|
508
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
647
509
|
image_embeds.append(single_image_embeds)
|
648
510
|
|
649
|
-
|
511
|
+
ip_adapter_image_embeds = []
|
512
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
513
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
514
|
+
if do_classifier_free_guidance:
|
515
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
516
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
517
|
+
|
518
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
519
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
520
|
+
|
521
|
+
return ip_adapter_image_embeds
|
650
522
|
|
651
523
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
652
524
|
def run_safety_checker(self, image, device, dtype):
|
@@ -972,7 +844,12 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
972
844
|
return_noise=False,
|
973
845
|
return_image_latents=False,
|
974
846
|
):
|
975
|
-
shape = (
|
847
|
+
shape = (
|
848
|
+
batch_size,
|
849
|
+
num_channels_latents,
|
850
|
+
int(height) // self.vae_scale_factor,
|
851
|
+
int(width) // self.vae_scale_factor,
|
852
|
+
)
|
976
853
|
if isinstance(generator, list) and len(generator) != batch_size:
|
977
854
|
raise ValueError(
|
978
855
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -1098,6 +975,10 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1098
975
|
def num_timesteps(self):
|
1099
976
|
return self._num_timesteps
|
1100
977
|
|
978
|
+
@property
|
979
|
+
def interrupt(self):
|
980
|
+
return self._interrupt
|
981
|
+
|
1101
982
|
@torch.no_grad()
|
1102
983
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1103
984
|
def __call__(
|
@@ -1116,11 +997,11 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1116
997
|
num_images_per_prompt: Optional[int] = 1,
|
1117
998
|
eta: float = 0.0,
|
1118
999
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1119
|
-
latents: Optional[torch.
|
1120
|
-
prompt_embeds: Optional[torch.
|
1121
|
-
negative_prompt_embeds: Optional[torch.
|
1000
|
+
latents: Optional[torch.Tensor] = None,
|
1001
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1002
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1122
1003
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1123
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
1004
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1124
1005
|
output_type: Optional[str] = "pil",
|
1125
1006
|
return_dict: bool = True,
|
1126
1007
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -1129,7 +1010,9 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1129
1010
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
1130
1011
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
1131
1012
|
clip_skip: Optional[int] = None,
|
1132
|
-
callback_on_step_end: Optional[
|
1013
|
+
callback_on_step_end: Optional[
|
1014
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1015
|
+
] = None,
|
1133
1016
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1134
1017
|
**kwargs,
|
1135
1018
|
):
|
@@ -1139,14 +1022,14 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1139
1022
|
Args:
|
1140
1023
|
prompt (`str` or `List[str]`, *optional*):
|
1141
1024
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1142
|
-
image (`torch.
|
1025
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
|
1143
1026
|
`List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1144
1027
|
`Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
|
1145
1028
|
NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
|
1146
1029
|
list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
|
1147
1030
|
a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
|
1148
1031
|
latents as `image`, but if passing latents directly it is not encoded again.
|
1149
|
-
mask_image (`torch.
|
1032
|
+
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
|
1150
1033
|
`List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1151
1034
|
`Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
1152
1035
|
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
@@ -1154,24 +1037,25 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1154
1037
|
color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
|
1155
1038
|
H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
|
1156
1039
|
W, 1)`, or `(H, W)`.
|
1157
|
-
control_image (`torch.
|
1158
|
-
`List[List[torch.
|
1040
|
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`,
|
1041
|
+
`List[List[torch.Tensor]]`, or `List[List[PIL.Image.Image]]`):
|
1159
1042
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
1160
|
-
specified as `torch.
|
1161
|
-
|
1162
|
-
|
1163
|
-
|
1164
|
-
|
1043
|
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
1044
|
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
1045
|
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
1046
|
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
1047
|
+
to a single ControlNet.
|
1165
1048
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1166
1049
|
The height in pixels of the generated image.
|
1167
1050
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1168
1051
|
The width in pixels of the generated image.
|
1169
1052
|
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1170
|
-
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1171
|
-
`padding_mask_crop` is not `None`, it will first find a rectangular region
|
1172
|
-
contains all masked area, and then expand that area based
|
1173
|
-
|
1174
|
-
|
1053
|
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1054
|
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1055
|
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1056
|
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1057
|
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1058
|
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1175
1059
|
strength (`float`, *optional*, defaults to 1.0):
|
1176
1060
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1177
1061
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
@@ -1195,22 +1079,22 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1195
1079
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1196
1080
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1197
1081
|
generation deterministic.
|
1198
|
-
latents (`torch.
|
1082
|
+
latents (`torch.Tensor`, *optional*):
|
1199
1083
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1200
1084
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1201
1085
|
tensor is generated by sampling using the supplied random `generator`.
|
1202
|
-
prompt_embeds (`torch.
|
1086
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1203
1087
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1204
1088
|
provided, text embeddings are generated from the `prompt` input argument.
|
1205
|
-
negative_prompt_embeds (`torch.
|
1089
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1206
1090
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1207
1091
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1208
1092
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1209
|
-
ip_adapter_image_embeds (`List[torch.
|
1210
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1211
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1212
|
-
if `do_classifier_free_guidance` is set to `True`.
|
1213
|
-
|
1093
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1094
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1095
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1096
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1097
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1214
1098
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
1215
1099
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1216
1100
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -1233,15 +1117,15 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1233
1117
|
clip_skip (`int`, *optional*):
|
1234
1118
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1235
1119
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1236
|
-
callback_on_step_end (`Callable`, *optional*):
|
1237
|
-
A function
|
1238
|
-
with the following arguments: `callback_on_step_end(self:
|
1239
|
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1240
|
-
`callback_on_step_end_tensor_inputs`.
|
1120
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1121
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1122
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1123
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1124
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1241
1125
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1242
1126
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1243
1127
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1244
|
-
`._callback_tensor_inputs` attribute of your
|
1128
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1245
1129
|
|
1246
1130
|
Examples:
|
1247
1131
|
|
@@ -1269,6 +1153,9 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1269
1153
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1270
1154
|
)
|
1271
1155
|
|
1156
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1157
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1158
|
+
|
1272
1159
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1273
1160
|
|
1274
1161
|
# align format for control guidance
|
@@ -1307,6 +1194,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1307
1194
|
self._guidance_scale = guidance_scale
|
1308
1195
|
self._clip_skip = clip_skip
|
1309
1196
|
self._cross_attention_kwargs = cross_attention_kwargs
|
1197
|
+
self._interrupt = False
|
1310
1198
|
|
1311
1199
|
# 2. Define call parameters
|
1312
1200
|
if prompt is not None and isinstance(prompt, str):
|
@@ -1491,6 +1379,9 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1491
1379
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1492
1380
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1493
1381
|
for i, t in enumerate(timesteps):
|
1382
|
+
if self.interrupt:
|
1383
|
+
continue
|
1384
|
+
|
1494
1385
|
# expand the latents if we are doing classifier free guidance
|
1495
1386
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1496
1387
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
@@ -1524,7 +1415,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1524
1415
|
)
|
1525
1416
|
|
1526
1417
|
if guess_mode and self.do_classifier_free_guidance:
|
1527
|
-
#
|
1418
|
+
# Inferred ControlNet only for the conditional batch.
|
1528
1419
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1529
1420
|
# add 0 to the unconditional batch to keep it unchanged.
|
1530
1421
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|