diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -20,11 +20,14 @@ import numpy as np
|
|
20
20
|
import torch
|
21
21
|
|
22
22
|
from ..configuration_utils import ConfigMixin, register_to_config
|
23
|
-
from ..utils import BaseOutput, logging
|
23
|
+
from ..utils import BaseOutput, is_scipy_available, logging
|
24
24
|
from ..utils.torch_utils import randn_tensor
|
25
25
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
26
26
|
|
27
27
|
|
28
|
+
if is_scipy_available():
|
29
|
+
import scipy.stats
|
30
|
+
|
28
31
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29
32
|
|
30
33
|
|
@@ -35,16 +38,16 @@ class EulerDiscreteSchedulerOutput(BaseOutput):
|
|
35
38
|
Output class for the scheduler's `step` function output.
|
36
39
|
|
37
40
|
Args:
|
38
|
-
prev_sample (`torch.
|
41
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
39
42
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
40
43
|
denoising loop.
|
41
|
-
pred_original_sample (`torch.
|
44
|
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
42
45
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
43
46
|
`pred_original_sample` can be used to preview progress or for guidance.
|
44
47
|
"""
|
45
48
|
|
46
|
-
prev_sample: torch.
|
47
|
-
pred_original_sample: Optional[torch.
|
49
|
+
prev_sample: torch.Tensor
|
50
|
+
pred_original_sample: Optional[torch.Tensor] = None
|
48
51
|
|
49
52
|
|
50
53
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
@@ -82,7 +85,7 @@ def betas_for_alpha_bar(
|
|
82
85
|
return math.exp(t * -12.0)
|
83
86
|
|
84
87
|
else:
|
85
|
-
raise ValueError(f"Unsupported
|
88
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
86
89
|
|
87
90
|
betas = []
|
88
91
|
for i in range(num_diffusion_timesteps):
|
@@ -99,11 +102,11 @@ def rescale_zero_terminal_snr(betas):
|
|
99
102
|
|
100
103
|
|
101
104
|
Args:
|
102
|
-
betas (`torch.
|
105
|
+
betas (`torch.Tensor`):
|
103
106
|
the betas that the scheduler is being initialized with.
|
104
107
|
|
105
108
|
Returns:
|
106
|
-
`torch.
|
109
|
+
`torch.Tensor`: rescaled betas with zero terminal SNR
|
107
110
|
"""
|
108
111
|
# Convert betas to alphas_bar_sqrt
|
109
112
|
alphas = 1.0 - betas
|
@@ -158,6 +161,11 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
158
161
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
159
162
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
160
163
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
164
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
165
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
166
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
167
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
168
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
161
169
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
162
170
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
163
171
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
@@ -167,6 +175,9 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
167
175
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
168
176
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
169
177
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
178
|
+
final_sigmas_type (`str`, defaults to `"zero"`):
|
179
|
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
180
|
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
170
181
|
"""
|
171
182
|
|
172
183
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
@@ -183,13 +194,22 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
183
194
|
prediction_type: str = "epsilon",
|
184
195
|
interpolation_type: str = "linear",
|
185
196
|
use_karras_sigmas: Optional[bool] = False,
|
197
|
+
use_exponential_sigmas: Optional[bool] = False,
|
198
|
+
use_beta_sigmas: Optional[bool] = False,
|
186
199
|
sigma_min: Optional[float] = None,
|
187
200
|
sigma_max: Optional[float] = None,
|
188
201
|
timestep_spacing: str = "linspace",
|
189
202
|
timestep_type: str = "discrete", # can be "discrete" or "continuous"
|
190
203
|
steps_offset: int = 0,
|
191
204
|
rescale_betas_zero_snr: bool = False,
|
205
|
+
final_sigmas_type: str = "zero", # can be "zero" or "sigma_min"
|
192
206
|
):
|
207
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
208
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
209
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
210
|
+
raise ValueError(
|
211
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
212
|
+
)
|
193
213
|
if trained_betas is not None:
|
194
214
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
195
215
|
elif beta_schedule == "linear":
|
@@ -201,7 +221,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
201
221
|
# Glide cosine schedule
|
202
222
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
203
223
|
else:
|
204
|
-
raise NotImplementedError(f"{beta_schedule}
|
224
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
205
225
|
|
206
226
|
if rescale_betas_zero_snr:
|
207
227
|
self.betas = rescale_zero_terminal_snr(self.betas)
|
@@ -231,6 +251,8 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
231
251
|
|
232
252
|
self.is_scale_input_called = False
|
233
253
|
self.use_karras_sigmas = use_karras_sigmas
|
254
|
+
self.use_exponential_sigmas = use_exponential_sigmas
|
255
|
+
self.use_beta_sigmas = use_beta_sigmas
|
234
256
|
|
235
257
|
self._step_index = None
|
236
258
|
self._begin_index = None
|
@@ -248,7 +270,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
248
270
|
@property
|
249
271
|
def step_index(self):
|
250
272
|
"""
|
251
|
-
The index counter for current timestep. It will
|
273
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
252
274
|
"""
|
253
275
|
return self._step_index
|
254
276
|
|
@@ -270,21 +292,19 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
270
292
|
"""
|
271
293
|
self._begin_index = begin_index
|
272
294
|
|
273
|
-
def scale_model_input(
|
274
|
-
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
275
|
-
) -> torch.FloatTensor:
|
295
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
276
296
|
"""
|
277
297
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
278
298
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
279
299
|
|
280
300
|
Args:
|
281
|
-
sample (`torch.
|
301
|
+
sample (`torch.Tensor`):
|
282
302
|
The input sample.
|
283
303
|
timestep (`int`, *optional*):
|
284
304
|
The current timestep in the diffusion chain.
|
285
305
|
|
286
306
|
Returns:
|
287
|
-
`torch.
|
307
|
+
`torch.Tensor`:
|
288
308
|
A scaled input sample.
|
289
309
|
"""
|
290
310
|
if self.step_index is None:
|
@@ -296,7 +316,13 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
296
316
|
self.is_scale_input_called = True
|
297
317
|
return sample
|
298
318
|
|
299
|
-
def set_timesteps(
|
319
|
+
def set_timesteps(
|
320
|
+
self,
|
321
|
+
num_inference_steps: int = None,
|
322
|
+
device: Union[str, torch.device] = None,
|
323
|
+
timesteps: Optional[List[int]] = None,
|
324
|
+
sigmas: Optional[List[float]] = None,
|
325
|
+
):
|
300
326
|
"""
|
301
327
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
302
328
|
|
@@ -305,60 +331,123 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
305
331
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
306
332
|
device (`str` or `torch.device`, *optional*):
|
307
333
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
334
|
+
timesteps (`List[int]`, *optional*):
|
335
|
+
Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
|
336
|
+
based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
|
337
|
+
must be `None`, and `timestep_spacing` attribute will be ignored.
|
338
|
+
sigmas (`List[float]`, *optional*):
|
339
|
+
Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas
|
340
|
+
will be generated based on the relevant scheduler attributes. If `sigmas` is passed,
|
341
|
+
`num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the
|
342
|
+
custom sigmas schedule.
|
308
343
|
"""
|
309
|
-
self.num_inference_steps = num_inference_steps
|
310
344
|
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
timesteps
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
else:
|
345
|
+
if timesteps is not None and sigmas is not None:
|
346
|
+
raise ValueError("Only one of `timesteps` or `sigmas` should be set.")
|
347
|
+
if num_inference_steps is None and timesteps is None and sigmas is None:
|
348
|
+
raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.")
|
349
|
+
if num_inference_steps is not None and (timesteps is not None or sigmas is not None):
|
350
|
+
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.")
|
351
|
+
if timesteps is not None and self.config.use_karras_sigmas:
|
352
|
+
raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
|
353
|
+
if timesteps is not None and self.config.use_exponential_sigmas:
|
354
|
+
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
|
355
|
+
if timesteps is not None and self.config.use_beta_sigmas:
|
356
|
+
raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
|
357
|
+
if (
|
358
|
+
timesteps is not None
|
359
|
+
and self.config.timestep_type == "continuous"
|
360
|
+
and self.config.prediction_type == "v_prediction"
|
361
|
+
):
|
329
362
|
raise ValueError(
|
330
|
-
|
363
|
+
"Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`."
|
331
364
|
)
|
332
365
|
|
333
|
-
|
334
|
-
|
366
|
+
if num_inference_steps is None:
|
367
|
+
num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1
|
368
|
+
self.num_inference_steps = num_inference_steps
|
335
369
|
|
336
|
-
if
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
else:
|
341
|
-
raise ValueError(
|
342
|
-
f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
|
343
|
-
" 'linear' or 'log_linear'"
|
344
|
-
)
|
370
|
+
if sigmas is not None:
|
371
|
+
log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5))
|
372
|
+
sigmas = np.array(sigmas).astype(np.float32)
|
373
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]])
|
345
374
|
|
346
|
-
|
347
|
-
|
348
|
-
|
375
|
+
else:
|
376
|
+
if timesteps is not None:
|
377
|
+
timesteps = np.array(timesteps).astype(np.float32)
|
378
|
+
else:
|
379
|
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
380
|
+
if self.config.timestep_spacing == "linspace":
|
381
|
+
timesteps = np.linspace(
|
382
|
+
0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32
|
383
|
+
)[::-1].copy()
|
384
|
+
elif self.config.timestep_spacing == "leading":
|
385
|
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
386
|
+
# creates integer timesteps by multiplying by ratio
|
387
|
+
# casting to int to avoid issues when num_inference_step is power of 3
|
388
|
+
timesteps = (
|
389
|
+
(np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
|
390
|
+
)
|
391
|
+
timesteps += self.config.steps_offset
|
392
|
+
elif self.config.timestep_spacing == "trailing":
|
393
|
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
394
|
+
# creates integer timesteps by multiplying by ratio
|
395
|
+
# casting to int to avoid issues when num_inference_step is power of 3
|
396
|
+
timesteps = (
|
397
|
+
(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
|
398
|
+
)
|
399
|
+
timesteps -= 1
|
400
|
+
else:
|
401
|
+
raise ValueError(
|
402
|
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
403
|
+
)
|
404
|
+
|
405
|
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
406
|
+
log_sigmas = np.log(sigmas)
|
407
|
+
if self.config.interpolation_type == "linear":
|
408
|
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
409
|
+
elif self.config.interpolation_type == "log_linear":
|
410
|
+
sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
|
411
|
+
else:
|
412
|
+
raise ValueError(
|
413
|
+
f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
|
414
|
+
" 'linear' or 'log_linear'"
|
415
|
+
)
|
416
|
+
|
417
|
+
if self.config.use_karras_sigmas:
|
418
|
+
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
419
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
420
|
+
|
421
|
+
elif self.config.use_exponential_sigmas:
|
422
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
423
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
424
|
+
|
425
|
+
elif self.config.use_beta_sigmas:
|
426
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
427
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
428
|
+
|
429
|
+
if self.config.final_sigmas_type == "sigma_min":
|
430
|
+
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
431
|
+
elif self.config.final_sigmas_type == "zero":
|
432
|
+
sigma_last = 0
|
433
|
+
else:
|
434
|
+
raise ValueError(
|
435
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
436
|
+
)
|
437
|
+
|
438
|
+
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
349
439
|
|
350
440
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
351
441
|
|
352
442
|
# TODO: Support the full EDM scalings for all prediction types and timestep types
|
353
443
|
if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
|
354
|
-
self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(device=device)
|
444
|
+
self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device)
|
355
445
|
else:
|
356
446
|
self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)
|
357
447
|
|
358
|
-
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
359
448
|
self._step_index = None
|
360
449
|
self._begin_index = None
|
361
|
-
self.sigmas =
|
450
|
+
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
362
451
|
|
363
452
|
def _sigma_to_t(self, sigma, log_sigmas):
|
364
453
|
# get log sigma
|
@@ -384,7 +473,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
384
473
|
return t
|
385
474
|
|
386
475
|
# Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
|
387
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
476
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
388
477
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
389
478
|
|
390
479
|
# Hack to make sure that other schedulers which copy this function don't break
|
@@ -409,6 +498,59 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
409
498
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
410
499
|
return sigmas
|
411
500
|
|
501
|
+
# Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26
|
502
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
503
|
+
"""Constructs an exponential noise schedule."""
|
504
|
+
|
505
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
506
|
+
# TODO: Add this logic to the other schedulers
|
507
|
+
if hasattr(self.config, "sigma_min"):
|
508
|
+
sigma_min = self.config.sigma_min
|
509
|
+
else:
|
510
|
+
sigma_min = None
|
511
|
+
|
512
|
+
if hasattr(self.config, "sigma_max"):
|
513
|
+
sigma_max = self.config.sigma_max
|
514
|
+
else:
|
515
|
+
sigma_max = None
|
516
|
+
|
517
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
518
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
519
|
+
|
520
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
521
|
+
return sigmas
|
522
|
+
|
523
|
+
def _convert_to_beta(
|
524
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
525
|
+
) -> torch.Tensor:
|
526
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
527
|
+
|
528
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
529
|
+
# TODO: Add this logic to the other schedulers
|
530
|
+
if hasattr(self.config, "sigma_min"):
|
531
|
+
sigma_min = self.config.sigma_min
|
532
|
+
else:
|
533
|
+
sigma_min = None
|
534
|
+
|
535
|
+
if hasattr(self.config, "sigma_max"):
|
536
|
+
sigma_max = self.config.sigma_max
|
537
|
+
else:
|
538
|
+
sigma_max = None
|
539
|
+
|
540
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
541
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
542
|
+
|
543
|
+
sigmas = np.array(
|
544
|
+
[
|
545
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
546
|
+
for ppf in [
|
547
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
548
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
549
|
+
]
|
550
|
+
]
|
551
|
+
)
|
552
|
+
return sigmas
|
553
|
+
|
412
554
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
413
555
|
if schedule_timesteps is None:
|
414
556
|
schedule_timesteps = self.timesteps
|
@@ -433,9 +575,9 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
433
575
|
|
434
576
|
def step(
|
435
577
|
self,
|
436
|
-
model_output: torch.
|
437
|
-
timestep: Union[float, torch.
|
438
|
-
sample: torch.
|
578
|
+
model_output: torch.Tensor,
|
579
|
+
timestep: Union[float, torch.Tensor],
|
580
|
+
sample: torch.Tensor,
|
439
581
|
s_churn: float = 0.0,
|
440
582
|
s_tmin: float = 0.0,
|
441
583
|
s_tmax: float = float("inf"),
|
@@ -448,11 +590,11 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
448
590
|
process from the learned model outputs (most often the predicted noise).
|
449
591
|
|
450
592
|
Args:
|
451
|
-
model_output (`torch.
|
593
|
+
model_output (`torch.Tensor`):
|
452
594
|
The direct output from learned diffusion model.
|
453
595
|
timestep (`float`):
|
454
596
|
The current discrete timestep in the diffusion chain.
|
455
|
-
sample (`torch.
|
597
|
+
sample (`torch.Tensor`):
|
456
598
|
A current instance of a sample created by the diffusion process.
|
457
599
|
s_churn (`float`):
|
458
600
|
s_tmin (`float`):
|
@@ -471,11 +613,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
471
613
|
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
472
614
|
"""
|
473
615
|
|
474
|
-
if (
|
475
|
-
isinstance(timestep, int)
|
476
|
-
or isinstance(timestep, torch.IntTensor)
|
477
|
-
or isinstance(timestep, torch.LongTensor)
|
478
|
-
):
|
616
|
+
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
|
479
617
|
raise ValueError(
|
480
618
|
(
|
481
619
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
@@ -500,14 +638,13 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
500
638
|
|
501
639
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
502
640
|
|
503
|
-
noise = randn_tensor(
|
504
|
-
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
505
|
-
)
|
506
|
-
|
507
|
-
eps = noise * s_noise
|
508
641
|
sigma_hat = sigma * (gamma + 1)
|
509
642
|
|
510
643
|
if gamma > 0:
|
644
|
+
noise = randn_tensor(
|
645
|
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
646
|
+
)
|
647
|
+
eps = noise * s_noise
|
511
648
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
512
649
|
|
513
650
|
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
@@ -539,16 +676,19 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
539
676
|
self._step_index += 1
|
540
677
|
|
541
678
|
if not return_dict:
|
542
|
-
return (
|
679
|
+
return (
|
680
|
+
prev_sample,
|
681
|
+
pred_original_sample,
|
682
|
+
)
|
543
683
|
|
544
684
|
return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
545
685
|
|
546
686
|
def add_noise(
|
547
687
|
self,
|
548
|
-
original_samples: torch.
|
549
|
-
noise: torch.
|
550
|
-
timesteps: torch.
|
551
|
-
) -> torch.
|
688
|
+
original_samples: torch.Tensor,
|
689
|
+
noise: torch.Tensor,
|
690
|
+
timesteps: torch.Tensor,
|
691
|
+
) -> torch.Tensor:
|
552
692
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
553
693
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
554
694
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
@@ -562,7 +702,11 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
562
702
|
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
563
703
|
if self.begin_index is None:
|
564
704
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
705
|
+
elif self.step_index is not None:
|
706
|
+
# add_noise is called after first denoising step (for inpainting)
|
707
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
565
708
|
else:
|
709
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
566
710
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
567
711
|
|
568
712
|
sigma = sigmas[step_indices].flatten()
|
@@ -572,5 +716,42 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
572
716
|
noisy_samples = original_samples + noise * sigma
|
573
717
|
return noisy_samples
|
574
718
|
|
719
|
+
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
|
720
|
+
if (
|
721
|
+
isinstance(timesteps, int)
|
722
|
+
or isinstance(timesteps, torch.IntTensor)
|
723
|
+
or isinstance(timesteps, torch.LongTensor)
|
724
|
+
):
|
725
|
+
raise ValueError(
|
726
|
+
(
|
727
|
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
728
|
+
" `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass"
|
729
|
+
" one of the `scheduler.timesteps` as a timestep."
|
730
|
+
),
|
731
|
+
)
|
732
|
+
|
733
|
+
if sample.device.type == "mps" and torch.is_floating_point(timesteps):
|
734
|
+
# mps does not support float64
|
735
|
+
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
|
736
|
+
timesteps = timesteps.to(sample.device, dtype=torch.float32)
|
737
|
+
else:
|
738
|
+
schedule_timesteps = self.timesteps.to(sample.device)
|
739
|
+
timesteps = timesteps.to(sample.device)
|
740
|
+
|
741
|
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
742
|
+
alphas_cumprod = self.alphas_cumprod.to(sample)
|
743
|
+
sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5
|
744
|
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
745
|
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
746
|
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
747
|
+
|
748
|
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5
|
749
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
750
|
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
751
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
752
|
+
|
753
|
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
754
|
+
return velocity
|
755
|
+
|
575
756
|
def __len__(self):
|
576
757
|
return self.config.num_train_timesteps
|