diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1482 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Dict, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ import torch.nn as nn
21
+ import torch.nn.functional as F
22
+
23
+ from ...configuration_utils import ConfigMixin, register_to_config
24
+ from ...loaders.single_file_model import FromOriginalModelMixin
25
+ from ...utils import logging
26
+ from ...utils.accelerate_utils import apply_forward_hook
27
+ from ..activations import get_activation
28
+ from ..downsampling import CogVideoXDownsample3D
29
+ from ..modeling_outputs import AutoencoderKLOutput
30
+ from ..modeling_utils import ModelMixin
31
+ from ..upsampling import CogVideoXUpsample3D
32
+ from .vae import DecoderOutput, DiagonalGaussianDistribution
33
+
34
+
35
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
36
+
37
+
38
+ class CogVideoXSafeConv3d(nn.Conv3d):
39
+ r"""
40
+ A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model.
41
+ """
42
+
43
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
44
+ memory_count = (
45
+ (input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3
46
+ )
47
+
48
+ # Set to 2GB, suitable for CuDNN
49
+ if memory_count > 2:
50
+ kernel_size = self.kernel_size[0]
51
+ part_num = int(memory_count / 2) + 1
52
+ input_chunks = torch.chunk(input, part_num, dim=2)
53
+
54
+ if kernel_size > 1:
55
+ input_chunks = [input_chunks[0]] + [
56
+ torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
57
+ for i in range(1, len(input_chunks))
58
+ ]
59
+
60
+ output_chunks = []
61
+ for input_chunk in input_chunks:
62
+ output_chunks.append(super().forward(input_chunk))
63
+ output = torch.cat(output_chunks, dim=2)
64
+ return output
65
+ else:
66
+ return super().forward(input)
67
+
68
+
69
+ class CogVideoXCausalConv3d(nn.Module):
70
+ r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model.
71
+
72
+ Args:
73
+ in_channels (`int`): Number of channels in the input tensor.
74
+ out_channels (`int`): Number of output channels produced by the convolution.
75
+ kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel.
76
+ stride (`int`, defaults to `1`): Stride of the convolution.
77
+ dilation (`int`, defaults to `1`): Dilation rate of the convolution.
78
+ pad_mode (`str`, defaults to `"constant"`): Padding mode.
79
+ """
80
+
81
+ def __init__(
82
+ self,
83
+ in_channels: int,
84
+ out_channels: int,
85
+ kernel_size: Union[int, Tuple[int, int, int]],
86
+ stride: int = 1,
87
+ dilation: int = 1,
88
+ pad_mode: str = "constant",
89
+ ):
90
+ super().__init__()
91
+
92
+ if isinstance(kernel_size, int):
93
+ kernel_size = (kernel_size,) * 3
94
+
95
+ time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
96
+
97
+ # TODO(aryan): configure calculation based on stride and dilation in the future.
98
+ # Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi
99
+ time_pad = time_kernel_size - 1
100
+ height_pad = (height_kernel_size - 1) // 2
101
+ width_pad = (width_kernel_size - 1) // 2
102
+
103
+ self.pad_mode = pad_mode
104
+ self.height_pad = height_pad
105
+ self.width_pad = width_pad
106
+ self.time_pad = time_pad
107
+ self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
108
+
109
+ self.temporal_dim = 2
110
+ self.time_kernel_size = time_kernel_size
111
+
112
+ stride = stride if isinstance(stride, tuple) else (stride, 1, 1)
113
+ dilation = (dilation, 1, 1)
114
+ self.conv = CogVideoXSafeConv3d(
115
+ in_channels=in_channels,
116
+ out_channels=out_channels,
117
+ kernel_size=kernel_size,
118
+ stride=stride,
119
+ dilation=dilation,
120
+ )
121
+
122
+ def fake_context_parallel_forward(
123
+ self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None
124
+ ) -> torch.Tensor:
125
+ if self.pad_mode == "replicate":
126
+ inputs = F.pad(inputs, self.time_causal_padding, mode="replicate")
127
+ else:
128
+ kernel_size = self.time_kernel_size
129
+ if kernel_size > 1:
130
+ cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1)
131
+ inputs = torch.cat(cached_inputs + [inputs], dim=2)
132
+ return inputs
133
+
134
+ def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor:
135
+ inputs = self.fake_context_parallel_forward(inputs, conv_cache)
136
+
137
+ if self.pad_mode == "replicate":
138
+ conv_cache = None
139
+ else:
140
+ padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad)
141
+ conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone()
142
+ inputs = F.pad(inputs, padding_2d, mode="constant", value=0)
143
+
144
+ output = self.conv(inputs)
145
+ return output, conv_cache
146
+
147
+
148
+ class CogVideoXSpatialNorm3D(nn.Module):
149
+ r"""
150
+ Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific
151
+ to 3D-video like data.
152
+
153
+ CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model.
154
+
155
+ Args:
156
+ f_channels (`int`):
157
+ The number of channels for input to group normalization layer, and output of the spatial norm layer.
158
+ zq_channels (`int`):
159
+ The number of channels for the quantized vector as described in the paper.
160
+ groups (`int`):
161
+ Number of groups to separate the channels into for group normalization.
162
+ """
163
+
164
+ def __init__(
165
+ self,
166
+ f_channels: int,
167
+ zq_channels: int,
168
+ groups: int = 32,
169
+ ):
170
+ super().__init__()
171
+ self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True)
172
+ self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
173
+ self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
174
+
175
+ def forward(
176
+ self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
177
+ ) -> torch.Tensor:
178
+ new_conv_cache = {}
179
+ conv_cache = conv_cache or {}
180
+
181
+ if f.shape[2] > 1 and f.shape[2] % 2 == 1:
182
+ f_first, f_rest = f[:, :, :1], f[:, :, 1:]
183
+ f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:]
184
+ z_first, z_rest = zq[:, :, :1], zq[:, :, 1:]
185
+ z_first = F.interpolate(z_first, size=f_first_size)
186
+ z_rest = F.interpolate(z_rest, size=f_rest_size)
187
+ zq = torch.cat([z_first, z_rest], dim=2)
188
+ else:
189
+ zq = F.interpolate(zq, size=f.shape[-3:])
190
+
191
+ conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y"))
192
+ conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b"))
193
+
194
+ norm_f = self.norm_layer(f)
195
+ new_f = norm_f * conv_y + conv_b
196
+ return new_f, new_conv_cache
197
+
198
+
199
+ class CogVideoXResnetBlock3D(nn.Module):
200
+ r"""
201
+ A 3D ResNet block used in the CogVideoX model.
202
+
203
+ Args:
204
+ in_channels (`int`):
205
+ Number of input channels.
206
+ out_channels (`int`, *optional*):
207
+ Number of output channels. If None, defaults to `in_channels`.
208
+ dropout (`float`, defaults to `0.0`):
209
+ Dropout rate.
210
+ temb_channels (`int`, defaults to `512`):
211
+ Number of time embedding channels.
212
+ groups (`int`, defaults to `32`):
213
+ Number of groups to separate the channels into for group normalization.
214
+ eps (`float`, defaults to `1e-6`):
215
+ Epsilon value for normalization layers.
216
+ non_linearity (`str`, defaults to `"swish"`):
217
+ Activation function to use.
218
+ conv_shortcut (bool, defaults to `False`):
219
+ Whether or not to use a convolution shortcut.
220
+ spatial_norm_dim (`int`, *optional*):
221
+ The dimension to use for spatial norm if it is to be used instead of group norm.
222
+ pad_mode (str, defaults to `"first"`):
223
+ Padding mode.
224
+ """
225
+
226
+ def __init__(
227
+ self,
228
+ in_channels: int,
229
+ out_channels: Optional[int] = None,
230
+ dropout: float = 0.0,
231
+ temb_channels: int = 512,
232
+ groups: int = 32,
233
+ eps: float = 1e-6,
234
+ non_linearity: str = "swish",
235
+ conv_shortcut: bool = False,
236
+ spatial_norm_dim: Optional[int] = None,
237
+ pad_mode: str = "first",
238
+ ):
239
+ super().__init__()
240
+
241
+ out_channels = out_channels or in_channels
242
+
243
+ self.in_channels = in_channels
244
+ self.out_channels = out_channels
245
+ self.nonlinearity = get_activation(non_linearity)
246
+ self.use_conv_shortcut = conv_shortcut
247
+ self.spatial_norm_dim = spatial_norm_dim
248
+
249
+ if spatial_norm_dim is None:
250
+ self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps)
251
+ self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps)
252
+ else:
253
+ self.norm1 = CogVideoXSpatialNorm3D(
254
+ f_channels=in_channels,
255
+ zq_channels=spatial_norm_dim,
256
+ groups=groups,
257
+ )
258
+ self.norm2 = CogVideoXSpatialNorm3D(
259
+ f_channels=out_channels,
260
+ zq_channels=spatial_norm_dim,
261
+ groups=groups,
262
+ )
263
+
264
+ self.conv1 = CogVideoXCausalConv3d(
265
+ in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
266
+ )
267
+
268
+ if temb_channels > 0:
269
+ self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels)
270
+
271
+ self.dropout = nn.Dropout(dropout)
272
+ self.conv2 = CogVideoXCausalConv3d(
273
+ in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
274
+ )
275
+
276
+ if self.in_channels != self.out_channels:
277
+ if self.use_conv_shortcut:
278
+ self.conv_shortcut = CogVideoXCausalConv3d(
279
+ in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
280
+ )
281
+ else:
282
+ self.conv_shortcut = CogVideoXSafeConv3d(
283
+ in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
284
+ )
285
+
286
+ def forward(
287
+ self,
288
+ inputs: torch.Tensor,
289
+ temb: Optional[torch.Tensor] = None,
290
+ zq: Optional[torch.Tensor] = None,
291
+ conv_cache: Optional[Dict[str, torch.Tensor]] = None,
292
+ ) -> torch.Tensor:
293
+ new_conv_cache = {}
294
+ conv_cache = conv_cache or {}
295
+
296
+ hidden_states = inputs
297
+
298
+ if zq is not None:
299
+ hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1"))
300
+ else:
301
+ hidden_states = self.norm1(hidden_states)
302
+
303
+ hidden_states = self.nonlinearity(hidden_states)
304
+ hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
305
+
306
+ if temb is not None:
307
+ hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None]
308
+
309
+ if zq is not None:
310
+ hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2"))
311
+ else:
312
+ hidden_states = self.norm2(hidden_states)
313
+
314
+ hidden_states = self.nonlinearity(hidden_states)
315
+ hidden_states = self.dropout(hidden_states)
316
+ hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
317
+
318
+ if self.in_channels != self.out_channels:
319
+ if self.use_conv_shortcut:
320
+ inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut(
321
+ inputs, conv_cache=conv_cache.get("conv_shortcut")
322
+ )
323
+ else:
324
+ inputs = self.conv_shortcut(inputs)
325
+
326
+ hidden_states = hidden_states + inputs
327
+ return hidden_states, new_conv_cache
328
+
329
+
330
+ class CogVideoXDownBlock3D(nn.Module):
331
+ r"""
332
+ A downsampling block used in the CogVideoX model.
333
+
334
+ Args:
335
+ in_channels (`int`):
336
+ Number of input channels.
337
+ out_channels (`int`, *optional*):
338
+ Number of output channels. If None, defaults to `in_channels`.
339
+ temb_channels (`int`, defaults to `512`):
340
+ Number of time embedding channels.
341
+ num_layers (`int`, defaults to `1`):
342
+ Number of resnet layers.
343
+ dropout (`float`, defaults to `0.0`):
344
+ Dropout rate.
345
+ resnet_eps (`float`, defaults to `1e-6`):
346
+ Epsilon value for normalization layers.
347
+ resnet_act_fn (`str`, defaults to `"swish"`):
348
+ Activation function to use.
349
+ resnet_groups (`int`, defaults to `32`):
350
+ Number of groups to separate the channels into for group normalization.
351
+ add_downsample (`bool`, defaults to `True`):
352
+ Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
353
+ compress_time (`bool`, defaults to `False`):
354
+ Whether or not to downsample across temporal dimension.
355
+ pad_mode (str, defaults to `"first"`):
356
+ Padding mode.
357
+ """
358
+
359
+ _supports_gradient_checkpointing = True
360
+
361
+ def __init__(
362
+ self,
363
+ in_channels: int,
364
+ out_channels: int,
365
+ temb_channels: int,
366
+ dropout: float = 0.0,
367
+ num_layers: int = 1,
368
+ resnet_eps: float = 1e-6,
369
+ resnet_act_fn: str = "swish",
370
+ resnet_groups: int = 32,
371
+ add_downsample: bool = True,
372
+ downsample_padding: int = 0,
373
+ compress_time: bool = False,
374
+ pad_mode: str = "first",
375
+ ):
376
+ super().__init__()
377
+
378
+ resnets = []
379
+ for i in range(num_layers):
380
+ in_channel = in_channels if i == 0 else out_channels
381
+ resnets.append(
382
+ CogVideoXResnetBlock3D(
383
+ in_channels=in_channel,
384
+ out_channels=out_channels,
385
+ dropout=dropout,
386
+ temb_channels=temb_channels,
387
+ groups=resnet_groups,
388
+ eps=resnet_eps,
389
+ non_linearity=resnet_act_fn,
390
+ pad_mode=pad_mode,
391
+ )
392
+ )
393
+
394
+ self.resnets = nn.ModuleList(resnets)
395
+ self.downsamplers = None
396
+
397
+ if add_downsample:
398
+ self.downsamplers = nn.ModuleList(
399
+ [
400
+ CogVideoXDownsample3D(
401
+ out_channels, out_channels, padding=downsample_padding, compress_time=compress_time
402
+ )
403
+ ]
404
+ )
405
+
406
+ self.gradient_checkpointing = False
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: torch.Tensor,
411
+ temb: Optional[torch.Tensor] = None,
412
+ zq: Optional[torch.Tensor] = None,
413
+ conv_cache: Optional[Dict[str, torch.Tensor]] = None,
414
+ ) -> torch.Tensor:
415
+ r"""Forward method of the `CogVideoXDownBlock3D` class."""
416
+
417
+ new_conv_cache = {}
418
+ conv_cache = conv_cache or {}
419
+
420
+ for i, resnet in enumerate(self.resnets):
421
+ conv_cache_key = f"resnet_{i}"
422
+
423
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
424
+
425
+ def create_custom_forward(module):
426
+ def create_forward(*inputs):
427
+ return module(*inputs)
428
+
429
+ return create_forward
430
+
431
+ hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
432
+ create_custom_forward(resnet),
433
+ hidden_states,
434
+ temb,
435
+ zq,
436
+ conv_cache.get(conv_cache_key),
437
+ )
438
+ else:
439
+ hidden_states, new_conv_cache[conv_cache_key] = resnet(
440
+ hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
441
+ )
442
+
443
+ if self.downsamplers is not None:
444
+ for downsampler in self.downsamplers:
445
+ hidden_states = downsampler(hidden_states)
446
+
447
+ return hidden_states, new_conv_cache
448
+
449
+
450
+ class CogVideoXMidBlock3D(nn.Module):
451
+ r"""
452
+ A middle block used in the CogVideoX model.
453
+
454
+ Args:
455
+ in_channels (`int`):
456
+ Number of input channels.
457
+ temb_channels (`int`, defaults to `512`):
458
+ Number of time embedding channels.
459
+ dropout (`float`, defaults to `0.0`):
460
+ Dropout rate.
461
+ num_layers (`int`, defaults to `1`):
462
+ Number of resnet layers.
463
+ resnet_eps (`float`, defaults to `1e-6`):
464
+ Epsilon value for normalization layers.
465
+ resnet_act_fn (`str`, defaults to `"swish"`):
466
+ Activation function to use.
467
+ resnet_groups (`int`, defaults to `32`):
468
+ Number of groups to separate the channels into for group normalization.
469
+ spatial_norm_dim (`int`, *optional*):
470
+ The dimension to use for spatial norm if it is to be used instead of group norm.
471
+ pad_mode (str, defaults to `"first"`):
472
+ Padding mode.
473
+ """
474
+
475
+ _supports_gradient_checkpointing = True
476
+
477
+ def __init__(
478
+ self,
479
+ in_channels: int,
480
+ temb_channels: int,
481
+ dropout: float = 0.0,
482
+ num_layers: int = 1,
483
+ resnet_eps: float = 1e-6,
484
+ resnet_act_fn: str = "swish",
485
+ resnet_groups: int = 32,
486
+ spatial_norm_dim: Optional[int] = None,
487
+ pad_mode: str = "first",
488
+ ):
489
+ super().__init__()
490
+
491
+ resnets = []
492
+ for _ in range(num_layers):
493
+ resnets.append(
494
+ CogVideoXResnetBlock3D(
495
+ in_channels=in_channels,
496
+ out_channels=in_channels,
497
+ dropout=dropout,
498
+ temb_channels=temb_channels,
499
+ groups=resnet_groups,
500
+ eps=resnet_eps,
501
+ spatial_norm_dim=spatial_norm_dim,
502
+ non_linearity=resnet_act_fn,
503
+ pad_mode=pad_mode,
504
+ )
505
+ )
506
+ self.resnets = nn.ModuleList(resnets)
507
+
508
+ self.gradient_checkpointing = False
509
+
510
+ def forward(
511
+ self,
512
+ hidden_states: torch.Tensor,
513
+ temb: Optional[torch.Tensor] = None,
514
+ zq: Optional[torch.Tensor] = None,
515
+ conv_cache: Optional[Dict[str, torch.Tensor]] = None,
516
+ ) -> torch.Tensor:
517
+ r"""Forward method of the `CogVideoXMidBlock3D` class."""
518
+
519
+ new_conv_cache = {}
520
+ conv_cache = conv_cache or {}
521
+
522
+ for i, resnet in enumerate(self.resnets):
523
+ conv_cache_key = f"resnet_{i}"
524
+
525
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
526
+
527
+ def create_custom_forward(module):
528
+ def create_forward(*inputs):
529
+ return module(*inputs)
530
+
531
+ return create_forward
532
+
533
+ hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
534
+ create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key)
535
+ )
536
+ else:
537
+ hidden_states, new_conv_cache[conv_cache_key] = resnet(
538
+ hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
539
+ )
540
+
541
+ return hidden_states, new_conv_cache
542
+
543
+
544
+ class CogVideoXUpBlock3D(nn.Module):
545
+ r"""
546
+ An upsampling block used in the CogVideoX model.
547
+
548
+ Args:
549
+ in_channels (`int`):
550
+ Number of input channels.
551
+ out_channels (`int`, *optional*):
552
+ Number of output channels. If None, defaults to `in_channels`.
553
+ temb_channels (`int`, defaults to `512`):
554
+ Number of time embedding channels.
555
+ dropout (`float`, defaults to `0.0`):
556
+ Dropout rate.
557
+ num_layers (`int`, defaults to `1`):
558
+ Number of resnet layers.
559
+ resnet_eps (`float`, defaults to `1e-6`):
560
+ Epsilon value for normalization layers.
561
+ resnet_act_fn (`str`, defaults to `"swish"`):
562
+ Activation function to use.
563
+ resnet_groups (`int`, defaults to `32`):
564
+ Number of groups to separate the channels into for group normalization.
565
+ spatial_norm_dim (`int`, defaults to `16`):
566
+ The dimension to use for spatial norm if it is to be used instead of group norm.
567
+ add_upsample (`bool`, defaults to `True`):
568
+ Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension.
569
+ compress_time (`bool`, defaults to `False`):
570
+ Whether or not to downsample across temporal dimension.
571
+ pad_mode (str, defaults to `"first"`):
572
+ Padding mode.
573
+ """
574
+
575
+ def __init__(
576
+ self,
577
+ in_channels: int,
578
+ out_channels: int,
579
+ temb_channels: int,
580
+ dropout: float = 0.0,
581
+ num_layers: int = 1,
582
+ resnet_eps: float = 1e-6,
583
+ resnet_act_fn: str = "swish",
584
+ resnet_groups: int = 32,
585
+ spatial_norm_dim: int = 16,
586
+ add_upsample: bool = True,
587
+ upsample_padding: int = 1,
588
+ compress_time: bool = False,
589
+ pad_mode: str = "first",
590
+ ):
591
+ super().__init__()
592
+
593
+ resnets = []
594
+ for i in range(num_layers):
595
+ in_channel = in_channels if i == 0 else out_channels
596
+ resnets.append(
597
+ CogVideoXResnetBlock3D(
598
+ in_channels=in_channel,
599
+ out_channels=out_channels,
600
+ dropout=dropout,
601
+ temb_channels=temb_channels,
602
+ groups=resnet_groups,
603
+ eps=resnet_eps,
604
+ non_linearity=resnet_act_fn,
605
+ spatial_norm_dim=spatial_norm_dim,
606
+ pad_mode=pad_mode,
607
+ )
608
+ )
609
+
610
+ self.resnets = nn.ModuleList(resnets)
611
+ self.upsamplers = None
612
+
613
+ if add_upsample:
614
+ self.upsamplers = nn.ModuleList(
615
+ [
616
+ CogVideoXUpsample3D(
617
+ out_channels, out_channels, padding=upsample_padding, compress_time=compress_time
618
+ )
619
+ ]
620
+ )
621
+
622
+ self.gradient_checkpointing = False
623
+
624
+ def forward(
625
+ self,
626
+ hidden_states: torch.Tensor,
627
+ temb: Optional[torch.Tensor] = None,
628
+ zq: Optional[torch.Tensor] = None,
629
+ conv_cache: Optional[Dict[str, torch.Tensor]] = None,
630
+ ) -> torch.Tensor:
631
+ r"""Forward method of the `CogVideoXUpBlock3D` class."""
632
+
633
+ new_conv_cache = {}
634
+ conv_cache = conv_cache or {}
635
+
636
+ for i, resnet in enumerate(self.resnets):
637
+ conv_cache_key = f"resnet_{i}"
638
+
639
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
640
+
641
+ def create_custom_forward(module):
642
+ def create_forward(*inputs):
643
+ return module(*inputs)
644
+
645
+ return create_forward
646
+
647
+ hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
648
+ create_custom_forward(resnet),
649
+ hidden_states,
650
+ temb,
651
+ zq,
652
+ conv_cache.get(conv_cache_key),
653
+ )
654
+ else:
655
+ hidden_states, new_conv_cache[conv_cache_key] = resnet(
656
+ hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
657
+ )
658
+
659
+ if self.upsamplers is not None:
660
+ for upsampler in self.upsamplers:
661
+ hidden_states = upsampler(hidden_states)
662
+
663
+ return hidden_states, new_conv_cache
664
+
665
+
666
+ class CogVideoXEncoder3D(nn.Module):
667
+ r"""
668
+ The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation.
669
+
670
+ Args:
671
+ in_channels (`int`, *optional*, defaults to 3):
672
+ The number of input channels.
673
+ out_channels (`int`, *optional*, defaults to 3):
674
+ The number of output channels.
675
+ down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
676
+ The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
677
+ options.
678
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
679
+ The number of output channels for each block.
680
+ act_fn (`str`, *optional*, defaults to `"silu"`):
681
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
682
+ layers_per_block (`int`, *optional*, defaults to 2):
683
+ The number of layers per block.
684
+ norm_num_groups (`int`, *optional*, defaults to 32):
685
+ The number of groups for normalization.
686
+ """
687
+
688
+ _supports_gradient_checkpointing = True
689
+
690
+ def __init__(
691
+ self,
692
+ in_channels: int = 3,
693
+ out_channels: int = 16,
694
+ down_block_types: Tuple[str, ...] = (
695
+ "CogVideoXDownBlock3D",
696
+ "CogVideoXDownBlock3D",
697
+ "CogVideoXDownBlock3D",
698
+ "CogVideoXDownBlock3D",
699
+ ),
700
+ block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
701
+ layers_per_block: int = 3,
702
+ act_fn: str = "silu",
703
+ norm_eps: float = 1e-6,
704
+ norm_num_groups: int = 32,
705
+ dropout: float = 0.0,
706
+ pad_mode: str = "first",
707
+ temporal_compression_ratio: float = 4,
708
+ ):
709
+ super().__init__()
710
+
711
+ # log2 of temporal_compress_times
712
+ temporal_compress_level = int(np.log2(temporal_compression_ratio))
713
+
714
+ self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode)
715
+ self.down_blocks = nn.ModuleList([])
716
+
717
+ # down blocks
718
+ output_channel = block_out_channels[0]
719
+ for i, down_block_type in enumerate(down_block_types):
720
+ input_channel = output_channel
721
+ output_channel = block_out_channels[i]
722
+ is_final_block = i == len(block_out_channels) - 1
723
+ compress_time = i < temporal_compress_level
724
+
725
+ if down_block_type == "CogVideoXDownBlock3D":
726
+ down_block = CogVideoXDownBlock3D(
727
+ in_channels=input_channel,
728
+ out_channels=output_channel,
729
+ temb_channels=0,
730
+ dropout=dropout,
731
+ num_layers=layers_per_block,
732
+ resnet_eps=norm_eps,
733
+ resnet_act_fn=act_fn,
734
+ resnet_groups=norm_num_groups,
735
+ add_downsample=not is_final_block,
736
+ compress_time=compress_time,
737
+ )
738
+ else:
739
+ raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`")
740
+
741
+ self.down_blocks.append(down_block)
742
+
743
+ # mid block
744
+ self.mid_block = CogVideoXMidBlock3D(
745
+ in_channels=block_out_channels[-1],
746
+ temb_channels=0,
747
+ dropout=dropout,
748
+ num_layers=2,
749
+ resnet_eps=norm_eps,
750
+ resnet_act_fn=act_fn,
751
+ resnet_groups=norm_num_groups,
752
+ pad_mode=pad_mode,
753
+ )
754
+
755
+ self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6)
756
+ self.conv_act = nn.SiLU()
757
+ self.conv_out = CogVideoXCausalConv3d(
758
+ block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode
759
+ )
760
+
761
+ self.gradient_checkpointing = False
762
+
763
+ def forward(
764
+ self,
765
+ sample: torch.Tensor,
766
+ temb: Optional[torch.Tensor] = None,
767
+ conv_cache: Optional[Dict[str, torch.Tensor]] = None,
768
+ ) -> torch.Tensor:
769
+ r"""The forward method of the `CogVideoXEncoder3D` class."""
770
+
771
+ new_conv_cache = {}
772
+ conv_cache = conv_cache or {}
773
+
774
+ hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
775
+
776
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
777
+
778
+ def create_custom_forward(module):
779
+ def custom_forward(*inputs):
780
+ return module(*inputs)
781
+
782
+ return custom_forward
783
+
784
+ # 1. Down
785
+ for i, down_block in enumerate(self.down_blocks):
786
+ conv_cache_key = f"down_block_{i}"
787
+ hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
788
+ create_custom_forward(down_block),
789
+ hidden_states,
790
+ temb,
791
+ None,
792
+ conv_cache.get(conv_cache_key),
793
+ )
794
+
795
+ # 2. Mid
796
+ hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint(
797
+ create_custom_forward(self.mid_block),
798
+ hidden_states,
799
+ temb,
800
+ None,
801
+ conv_cache.get("mid_block"),
802
+ )
803
+ else:
804
+ # 1. Down
805
+ for i, down_block in enumerate(self.down_blocks):
806
+ conv_cache_key = f"down_block_{i}"
807
+ hidden_states, new_conv_cache[conv_cache_key] = down_block(
808
+ hidden_states, temb, None, conv_cache.get(conv_cache_key)
809
+ )
810
+
811
+ # 2. Mid
812
+ hidden_states, new_conv_cache["mid_block"] = self.mid_block(
813
+ hidden_states, temb, None, conv_cache=conv_cache.get("mid_block")
814
+ )
815
+
816
+ # 3. Post-process
817
+ hidden_states = self.norm_out(hidden_states)
818
+ hidden_states = self.conv_act(hidden_states)
819
+
820
+ hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))
821
+
822
+ return hidden_states, new_conv_cache
823
+
824
+
825
+ class CogVideoXDecoder3D(nn.Module):
826
+ r"""
827
+ The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
828
+ sample.
829
+
830
+ Args:
831
+ in_channels (`int`, *optional*, defaults to 3):
832
+ The number of input channels.
833
+ out_channels (`int`, *optional*, defaults to 3):
834
+ The number of output channels.
835
+ up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
836
+ The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
837
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
838
+ The number of output channels for each block.
839
+ act_fn (`str`, *optional*, defaults to `"silu"`):
840
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
841
+ layers_per_block (`int`, *optional*, defaults to 2):
842
+ The number of layers per block.
843
+ norm_num_groups (`int`, *optional*, defaults to 32):
844
+ The number of groups for normalization.
845
+ """
846
+
847
+ _supports_gradient_checkpointing = True
848
+
849
+ def __init__(
850
+ self,
851
+ in_channels: int = 16,
852
+ out_channels: int = 3,
853
+ up_block_types: Tuple[str, ...] = (
854
+ "CogVideoXUpBlock3D",
855
+ "CogVideoXUpBlock3D",
856
+ "CogVideoXUpBlock3D",
857
+ "CogVideoXUpBlock3D",
858
+ ),
859
+ block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
860
+ layers_per_block: int = 3,
861
+ act_fn: str = "silu",
862
+ norm_eps: float = 1e-6,
863
+ norm_num_groups: int = 32,
864
+ dropout: float = 0.0,
865
+ pad_mode: str = "first",
866
+ temporal_compression_ratio: float = 4,
867
+ ):
868
+ super().__init__()
869
+
870
+ reversed_block_out_channels = list(reversed(block_out_channels))
871
+
872
+ self.conv_in = CogVideoXCausalConv3d(
873
+ in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode
874
+ )
875
+
876
+ # mid block
877
+ self.mid_block = CogVideoXMidBlock3D(
878
+ in_channels=reversed_block_out_channels[0],
879
+ temb_channels=0,
880
+ num_layers=2,
881
+ resnet_eps=norm_eps,
882
+ resnet_act_fn=act_fn,
883
+ resnet_groups=norm_num_groups,
884
+ spatial_norm_dim=in_channels,
885
+ pad_mode=pad_mode,
886
+ )
887
+
888
+ # up blocks
889
+ self.up_blocks = nn.ModuleList([])
890
+
891
+ output_channel = reversed_block_out_channels[0]
892
+ temporal_compress_level = int(np.log2(temporal_compression_ratio))
893
+
894
+ for i, up_block_type in enumerate(up_block_types):
895
+ prev_output_channel = output_channel
896
+ output_channel = reversed_block_out_channels[i]
897
+ is_final_block = i == len(block_out_channels) - 1
898
+ compress_time = i < temporal_compress_level
899
+
900
+ if up_block_type == "CogVideoXUpBlock3D":
901
+ up_block = CogVideoXUpBlock3D(
902
+ in_channels=prev_output_channel,
903
+ out_channels=output_channel,
904
+ temb_channels=0,
905
+ dropout=dropout,
906
+ num_layers=layers_per_block + 1,
907
+ resnet_eps=norm_eps,
908
+ resnet_act_fn=act_fn,
909
+ resnet_groups=norm_num_groups,
910
+ spatial_norm_dim=in_channels,
911
+ add_upsample=not is_final_block,
912
+ compress_time=compress_time,
913
+ pad_mode=pad_mode,
914
+ )
915
+ prev_output_channel = output_channel
916
+ else:
917
+ raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`")
918
+
919
+ self.up_blocks.append(up_block)
920
+
921
+ self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups)
922
+ self.conv_act = nn.SiLU()
923
+ self.conv_out = CogVideoXCausalConv3d(
924
+ reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode
925
+ )
926
+
927
+ self.gradient_checkpointing = False
928
+
929
+ def forward(
930
+ self,
931
+ sample: torch.Tensor,
932
+ temb: Optional[torch.Tensor] = None,
933
+ conv_cache: Optional[Dict[str, torch.Tensor]] = None,
934
+ ) -> torch.Tensor:
935
+ r"""The forward method of the `CogVideoXDecoder3D` class."""
936
+
937
+ new_conv_cache = {}
938
+ conv_cache = conv_cache or {}
939
+
940
+ hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
941
+
942
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
943
+
944
+ def create_custom_forward(module):
945
+ def custom_forward(*inputs):
946
+ return module(*inputs)
947
+
948
+ return custom_forward
949
+
950
+ # 1. Mid
951
+ hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint(
952
+ create_custom_forward(self.mid_block),
953
+ hidden_states,
954
+ temb,
955
+ sample,
956
+ conv_cache.get("mid_block"),
957
+ )
958
+
959
+ # 2. Up
960
+ for i, up_block in enumerate(self.up_blocks):
961
+ conv_cache_key = f"up_block_{i}"
962
+ hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
963
+ create_custom_forward(up_block),
964
+ hidden_states,
965
+ temb,
966
+ sample,
967
+ conv_cache.get(conv_cache_key),
968
+ )
969
+ else:
970
+ # 1. Mid
971
+ hidden_states, new_conv_cache["mid_block"] = self.mid_block(
972
+ hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block")
973
+ )
974
+
975
+ # 2. Up
976
+ for i, up_block in enumerate(self.up_blocks):
977
+ conv_cache_key = f"up_block_{i}"
978
+ hidden_states, new_conv_cache[conv_cache_key] = up_block(
979
+ hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key)
980
+ )
981
+
982
+ # 3. Post-process
983
+ hidden_states, new_conv_cache["norm_out"] = self.norm_out(
984
+ hidden_states, sample, conv_cache=conv_cache.get("norm_out")
985
+ )
986
+ hidden_states = self.conv_act(hidden_states)
987
+ hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))
988
+
989
+ return hidden_states, new_conv_cache
990
+
991
+
992
+ class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
993
+ r"""
994
+ A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
995
+ [CogVideoX](https://github.com/THUDM/CogVideo).
996
+
997
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
998
+ for all models (such as downloading or saving).
999
+
1000
+ Parameters:
1001
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
1002
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
1003
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
1004
+ Tuple of downsample block types.
1005
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
1006
+ Tuple of upsample block types.
1007
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
1008
+ Tuple of block output channels.
1009
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
1010
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
1011
+ scaling_factor (`float`, *optional*, defaults to `1.15258426`):
1012
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
1013
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
1014
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
1015
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
1016
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
1017
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
1018
+ force_upcast (`bool`, *optional*, default to `True`):
1019
+ If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
1020
+ can be fine-tuned / trained to a lower range without loosing too much precision in which case
1021
+ `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
1022
+ """
1023
+
1024
+ _supports_gradient_checkpointing = True
1025
+ _no_split_modules = ["CogVideoXResnetBlock3D"]
1026
+
1027
+ @register_to_config
1028
+ def __init__(
1029
+ self,
1030
+ in_channels: int = 3,
1031
+ out_channels: int = 3,
1032
+ down_block_types: Tuple[str] = (
1033
+ "CogVideoXDownBlock3D",
1034
+ "CogVideoXDownBlock3D",
1035
+ "CogVideoXDownBlock3D",
1036
+ "CogVideoXDownBlock3D",
1037
+ ),
1038
+ up_block_types: Tuple[str] = (
1039
+ "CogVideoXUpBlock3D",
1040
+ "CogVideoXUpBlock3D",
1041
+ "CogVideoXUpBlock3D",
1042
+ "CogVideoXUpBlock3D",
1043
+ ),
1044
+ block_out_channels: Tuple[int] = (128, 256, 256, 512),
1045
+ latent_channels: int = 16,
1046
+ layers_per_block: int = 3,
1047
+ act_fn: str = "silu",
1048
+ norm_eps: float = 1e-6,
1049
+ norm_num_groups: int = 32,
1050
+ temporal_compression_ratio: float = 4,
1051
+ sample_height: int = 480,
1052
+ sample_width: int = 720,
1053
+ scaling_factor: float = 1.15258426,
1054
+ shift_factor: Optional[float] = None,
1055
+ latents_mean: Optional[Tuple[float]] = None,
1056
+ latents_std: Optional[Tuple[float]] = None,
1057
+ force_upcast: float = True,
1058
+ use_quant_conv: bool = False,
1059
+ use_post_quant_conv: bool = False,
1060
+ invert_scale_latents: bool = False,
1061
+ ):
1062
+ super().__init__()
1063
+
1064
+ self.encoder = CogVideoXEncoder3D(
1065
+ in_channels=in_channels,
1066
+ out_channels=latent_channels,
1067
+ down_block_types=down_block_types,
1068
+ block_out_channels=block_out_channels,
1069
+ layers_per_block=layers_per_block,
1070
+ act_fn=act_fn,
1071
+ norm_eps=norm_eps,
1072
+ norm_num_groups=norm_num_groups,
1073
+ temporal_compression_ratio=temporal_compression_ratio,
1074
+ )
1075
+ self.decoder = CogVideoXDecoder3D(
1076
+ in_channels=latent_channels,
1077
+ out_channels=out_channels,
1078
+ up_block_types=up_block_types,
1079
+ block_out_channels=block_out_channels,
1080
+ layers_per_block=layers_per_block,
1081
+ act_fn=act_fn,
1082
+ norm_eps=norm_eps,
1083
+ norm_num_groups=norm_num_groups,
1084
+ temporal_compression_ratio=temporal_compression_ratio,
1085
+ )
1086
+ self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
1087
+ self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None
1088
+
1089
+ self.use_slicing = False
1090
+ self.use_tiling = False
1091
+
1092
+ # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not
1093
+ # recommended because the temporal parts of the VAE, here, are tricky to understand.
1094
+ # If you decode X latent frames together, the number of output frames is:
1095
+ # (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames
1096
+ #
1097
+ # Example with num_latent_frames_batch_size = 2:
1098
+ # - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together
1099
+ # => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
1100
+ # => 6 * 8 = 48 frames
1101
+ # - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together
1102
+ # => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) +
1103
+ # ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
1104
+ # => 1 * 9 + 5 * 8 = 49 frames
1105
+ # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that
1106
+ # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
1107
+ # number of temporal frames.
1108
+ self.num_latent_frames_batch_size = 2
1109
+ self.num_sample_frames_batch_size = 8
1110
+
1111
+ # We make the minimum height and width of sample for tiling half that of the generally supported
1112
+ self.tile_sample_min_height = sample_height // 2
1113
+ self.tile_sample_min_width = sample_width // 2
1114
+ self.tile_latent_min_height = int(
1115
+ self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
1116
+ )
1117
+ self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
1118
+
1119
+ # These are experimental overlap factors that were chosen based on experimentation and seem to work best for
1120
+ # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX
1121
+ # and so the tiling implementation has only been tested on those specific resolutions.
1122
+ self.tile_overlap_factor_height = 1 / 6
1123
+ self.tile_overlap_factor_width = 1 / 5
1124
+
1125
+ def _set_gradient_checkpointing(self, module, value=False):
1126
+ if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)):
1127
+ module.gradient_checkpointing = value
1128
+
1129
+ def enable_tiling(
1130
+ self,
1131
+ tile_sample_min_height: Optional[int] = None,
1132
+ tile_sample_min_width: Optional[int] = None,
1133
+ tile_overlap_factor_height: Optional[float] = None,
1134
+ tile_overlap_factor_width: Optional[float] = None,
1135
+ ) -> None:
1136
+ r"""
1137
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
1138
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
1139
+ processing larger images.
1140
+
1141
+ Args:
1142
+ tile_sample_min_height (`int`, *optional*):
1143
+ The minimum height required for a sample to be separated into tiles across the height dimension.
1144
+ tile_sample_min_width (`int`, *optional*):
1145
+ The minimum width required for a sample to be separated into tiles across the width dimension.
1146
+ tile_overlap_factor_height (`int`, *optional*):
1147
+ The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
1148
+ no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
1149
+ value might cause more tiles to be processed leading to slow down of the decoding process.
1150
+ tile_overlap_factor_width (`int`, *optional*):
1151
+ The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
1152
+ are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
1153
+ value might cause more tiles to be processed leading to slow down of the decoding process.
1154
+ """
1155
+ self.use_tiling = True
1156
+ self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
1157
+ self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
1158
+ self.tile_latent_min_height = int(
1159
+ self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
1160
+ )
1161
+ self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
1162
+ self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
1163
+ self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width
1164
+
1165
+ def disable_tiling(self) -> None:
1166
+ r"""
1167
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
1168
+ decoding in one step.
1169
+ """
1170
+ self.use_tiling = False
1171
+
1172
+ def enable_slicing(self) -> None:
1173
+ r"""
1174
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
1175
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
1176
+ """
1177
+ self.use_slicing = True
1178
+
1179
+ def disable_slicing(self) -> None:
1180
+ r"""
1181
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
1182
+ decoding in one step.
1183
+ """
1184
+ self.use_slicing = False
1185
+
1186
+ def _encode(self, x: torch.Tensor) -> torch.Tensor:
1187
+ batch_size, num_channels, num_frames, height, width = x.shape
1188
+
1189
+ if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
1190
+ return self.tiled_encode(x)
1191
+
1192
+ frame_batch_size = self.num_sample_frames_batch_size
1193
+ # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
1194
+ # As the extra single frame is handled inside the loop, it is not required to round up here.
1195
+ num_batches = max(num_frames // frame_batch_size, 1)
1196
+ conv_cache = None
1197
+ enc = []
1198
+
1199
+ for i in range(num_batches):
1200
+ remaining_frames = num_frames % frame_batch_size
1201
+ start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
1202
+ end_frame = frame_batch_size * (i + 1) + remaining_frames
1203
+ x_intermediate = x[:, :, start_frame:end_frame]
1204
+ x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache)
1205
+ if self.quant_conv is not None:
1206
+ x_intermediate = self.quant_conv(x_intermediate)
1207
+ enc.append(x_intermediate)
1208
+
1209
+ enc = torch.cat(enc, dim=2)
1210
+ return enc
1211
+
1212
+ @apply_forward_hook
1213
+ def encode(
1214
+ self, x: torch.Tensor, return_dict: bool = True
1215
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
1216
+ """
1217
+ Encode a batch of images into latents.
1218
+
1219
+ Args:
1220
+ x (`torch.Tensor`): Input batch of images.
1221
+ return_dict (`bool`, *optional*, defaults to `True`):
1222
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
1223
+
1224
+ Returns:
1225
+ The latent representations of the encoded videos. If `return_dict` is True, a
1226
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
1227
+ """
1228
+ if self.use_slicing and x.shape[0] > 1:
1229
+ encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
1230
+ h = torch.cat(encoded_slices)
1231
+ else:
1232
+ h = self._encode(x)
1233
+
1234
+ posterior = DiagonalGaussianDistribution(h)
1235
+
1236
+ if not return_dict:
1237
+ return (posterior,)
1238
+ return AutoencoderKLOutput(latent_dist=posterior)
1239
+
1240
+ def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
1241
+ batch_size, num_channels, num_frames, height, width = z.shape
1242
+
1243
+ if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
1244
+ return self.tiled_decode(z, return_dict=return_dict)
1245
+
1246
+ frame_batch_size = self.num_latent_frames_batch_size
1247
+ num_batches = max(num_frames // frame_batch_size, 1)
1248
+ conv_cache = None
1249
+ dec = []
1250
+
1251
+ for i in range(num_batches):
1252
+ remaining_frames = num_frames % frame_batch_size
1253
+ start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
1254
+ end_frame = frame_batch_size * (i + 1) + remaining_frames
1255
+ z_intermediate = z[:, :, start_frame:end_frame]
1256
+ if self.post_quant_conv is not None:
1257
+ z_intermediate = self.post_quant_conv(z_intermediate)
1258
+ z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
1259
+ dec.append(z_intermediate)
1260
+
1261
+ dec = torch.cat(dec, dim=2)
1262
+
1263
+ if not return_dict:
1264
+ return (dec,)
1265
+
1266
+ return DecoderOutput(sample=dec)
1267
+
1268
+ @apply_forward_hook
1269
+ def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
1270
+ """
1271
+ Decode a batch of images.
1272
+
1273
+ Args:
1274
+ z (`torch.Tensor`): Input batch of latent vectors.
1275
+ return_dict (`bool`, *optional*, defaults to `True`):
1276
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
1277
+
1278
+ Returns:
1279
+ [`~models.vae.DecoderOutput`] or `tuple`:
1280
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
1281
+ returned.
1282
+ """
1283
+ if self.use_slicing and z.shape[0] > 1:
1284
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
1285
+ decoded = torch.cat(decoded_slices)
1286
+ else:
1287
+ decoded = self._decode(z).sample
1288
+
1289
+ if not return_dict:
1290
+ return (decoded,)
1291
+ return DecoderOutput(sample=decoded)
1292
+
1293
+ def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
1294
+ blend_extent = min(a.shape[3], b.shape[3], blend_extent)
1295
+ for y in range(blend_extent):
1296
+ b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
1297
+ y / blend_extent
1298
+ )
1299
+ return b
1300
+
1301
+ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
1302
+ blend_extent = min(a.shape[4], b.shape[4], blend_extent)
1303
+ for x in range(blend_extent):
1304
+ b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
1305
+ x / blend_extent
1306
+ )
1307
+ return b
1308
+
1309
+ def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
1310
+ r"""Encode a batch of images using a tiled encoder.
1311
+
1312
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
1313
+ steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
1314
+ different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
1315
+ tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
1316
+ output, but they should be much less noticeable.
1317
+
1318
+ Args:
1319
+ x (`torch.Tensor`): Input batch of videos.
1320
+
1321
+ Returns:
1322
+ `torch.Tensor`:
1323
+ The latent representation of the encoded videos.
1324
+ """
1325
+ # For a rough memory estimate, take a look at the `tiled_decode` method.
1326
+ batch_size, num_channels, num_frames, height, width = x.shape
1327
+
1328
+ overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height))
1329
+ overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width))
1330
+ blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height)
1331
+ blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width)
1332
+ row_limit_height = self.tile_latent_min_height - blend_extent_height
1333
+ row_limit_width = self.tile_latent_min_width - blend_extent_width
1334
+ frame_batch_size = self.num_sample_frames_batch_size
1335
+
1336
+ # Split x into overlapping tiles and encode them separately.
1337
+ # The tiles have an overlap to avoid seams between tiles.
1338
+ rows = []
1339
+ for i in range(0, height, overlap_height):
1340
+ row = []
1341
+ for j in range(0, width, overlap_width):
1342
+ # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
1343
+ # As the extra single frame is handled inside the loop, it is not required to round up here.
1344
+ num_batches = max(num_frames // frame_batch_size, 1)
1345
+ conv_cache = None
1346
+ time = []
1347
+
1348
+ for k in range(num_batches):
1349
+ remaining_frames = num_frames % frame_batch_size
1350
+ start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
1351
+ end_frame = frame_batch_size * (k + 1) + remaining_frames
1352
+ tile = x[
1353
+ :,
1354
+ :,
1355
+ start_frame:end_frame,
1356
+ i : i + self.tile_sample_min_height,
1357
+ j : j + self.tile_sample_min_width,
1358
+ ]
1359
+ tile, conv_cache = self.encoder(tile, conv_cache=conv_cache)
1360
+ if self.quant_conv is not None:
1361
+ tile = self.quant_conv(tile)
1362
+ time.append(tile)
1363
+
1364
+ row.append(torch.cat(time, dim=2))
1365
+ rows.append(row)
1366
+
1367
+ result_rows = []
1368
+ for i, row in enumerate(rows):
1369
+ result_row = []
1370
+ for j, tile in enumerate(row):
1371
+ # blend the above tile and the left tile
1372
+ # to the current tile and add the current tile to the result row
1373
+ if i > 0:
1374
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
1375
+ if j > 0:
1376
+ tile = self.blend_h(row[j - 1], tile, blend_extent_width)
1377
+ result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
1378
+ result_rows.append(torch.cat(result_row, dim=4))
1379
+
1380
+ enc = torch.cat(result_rows, dim=3)
1381
+ return enc
1382
+
1383
+ def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
1384
+ r"""
1385
+ Decode a batch of images using a tiled decoder.
1386
+
1387
+ Args:
1388
+ z (`torch.Tensor`): Input batch of latent vectors.
1389
+ return_dict (`bool`, *optional*, defaults to `True`):
1390
+ Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
1391
+
1392
+ Returns:
1393
+ [`~models.vae.DecoderOutput`] or `tuple`:
1394
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
1395
+ returned.
1396
+ """
1397
+ # Rough memory assessment:
1398
+ # - In CogVideoX-2B, there are a total of 24 CausalConv3d layers.
1399
+ # - The biggest intermediate dimensions are: [1, 128, 9, 480, 720].
1400
+ # - Assume fp16 (2 bytes per value).
1401
+ # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB
1402
+ #
1403
+ # Memory assessment when using tiling:
1404
+ # - Assume everything as above but now HxW is 240x360 by tiling in half
1405
+ # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB
1406
+
1407
+ batch_size, num_channels, num_frames, height, width = z.shape
1408
+
1409
+ overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
1410
+ overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
1411
+ blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
1412
+ blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
1413
+ row_limit_height = self.tile_sample_min_height - blend_extent_height
1414
+ row_limit_width = self.tile_sample_min_width - blend_extent_width
1415
+ frame_batch_size = self.num_latent_frames_batch_size
1416
+
1417
+ # Split z into overlapping tiles and decode them separately.
1418
+ # The tiles have an overlap to avoid seams between tiles.
1419
+ rows = []
1420
+ for i in range(0, height, overlap_height):
1421
+ row = []
1422
+ for j in range(0, width, overlap_width):
1423
+ num_batches = max(num_frames // frame_batch_size, 1)
1424
+ conv_cache = None
1425
+ time = []
1426
+
1427
+ for k in range(num_batches):
1428
+ remaining_frames = num_frames % frame_batch_size
1429
+ start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
1430
+ end_frame = frame_batch_size * (k + 1) + remaining_frames
1431
+ tile = z[
1432
+ :,
1433
+ :,
1434
+ start_frame:end_frame,
1435
+ i : i + self.tile_latent_min_height,
1436
+ j : j + self.tile_latent_min_width,
1437
+ ]
1438
+ if self.post_quant_conv is not None:
1439
+ tile = self.post_quant_conv(tile)
1440
+ tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
1441
+ time.append(tile)
1442
+
1443
+ row.append(torch.cat(time, dim=2))
1444
+ rows.append(row)
1445
+
1446
+ result_rows = []
1447
+ for i, row in enumerate(rows):
1448
+ result_row = []
1449
+ for j, tile in enumerate(row):
1450
+ # blend the above tile and the left tile
1451
+ # to the current tile and add the current tile to the result row
1452
+ if i > 0:
1453
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
1454
+ if j > 0:
1455
+ tile = self.blend_h(row[j - 1], tile, blend_extent_width)
1456
+ result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
1457
+ result_rows.append(torch.cat(result_row, dim=4))
1458
+
1459
+ dec = torch.cat(result_rows, dim=3)
1460
+
1461
+ if not return_dict:
1462
+ return (dec,)
1463
+
1464
+ return DecoderOutput(sample=dec)
1465
+
1466
+ def forward(
1467
+ self,
1468
+ sample: torch.Tensor,
1469
+ sample_posterior: bool = False,
1470
+ return_dict: bool = True,
1471
+ generator: Optional[torch.Generator] = None,
1472
+ ) -> Union[torch.Tensor, torch.Tensor]:
1473
+ x = sample
1474
+ posterior = self.encode(x).latent_dist
1475
+ if sample_posterior:
1476
+ z = posterior.sample(generator=generator)
1477
+ else:
1478
+ z = posterior.mode()
1479
+ dec = self.decode(z).sample
1480
+ if not return_dict:
1481
+ return (dec,)
1482
+ return DecoderOutput(sample=dec)