diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -11,39 +11,32 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
from dataclasses import dataclass
|
15
14
|
from typing import Any, Dict, Optional
|
16
15
|
|
17
16
|
import torch
|
18
17
|
import torch.nn.functional as F
|
19
18
|
from torch import nn
|
20
19
|
|
21
|
-
from ...configuration_utils import
|
22
|
-
from ...utils import
|
20
|
+
from ...configuration_utils import LegacyConfigMixin, register_to_config
|
21
|
+
from ...utils import deprecate, is_torch_version, logging
|
23
22
|
from ..attention import BasicTransformerBlock
|
24
23
|
from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
|
25
|
-
from ..
|
24
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
25
|
+
from ..modeling_utils import LegacyModelMixin
|
26
26
|
from ..normalization import AdaLayerNormSingle
|
27
27
|
|
28
28
|
|
29
29
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30
30
|
|
31
31
|
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
Args:
|
38
|
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
39
|
-
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
40
|
-
distributions for the unnoised latent pixels.
|
41
|
-
"""
|
42
|
-
|
43
|
-
sample: torch.FloatTensor
|
32
|
+
class Transformer2DModelOutput(Transformer2DModelOutput):
|
33
|
+
def __init__(self, *args, **kwargs):
|
34
|
+
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
|
35
|
+
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
|
36
|
+
super().__init__(*args, **kwargs)
|
44
37
|
|
45
38
|
|
46
|
-
class Transformer2DModel(
|
39
|
+
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
|
47
40
|
"""
|
48
41
|
A 2D Transformer model for image-like data.
|
49
42
|
|
@@ -72,6 +65,7 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
72
65
|
"""
|
73
66
|
|
74
67
|
_supports_gradient_checkpointing = True
|
68
|
+
_no_split_modules = ["BasicTransformerBlock"]
|
75
69
|
|
76
70
|
@register_to_config
|
77
71
|
def __init__(
|
@@ -100,8 +94,11 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
100
94
|
attention_type: str = "default",
|
101
95
|
caption_channels: int = None,
|
102
96
|
interpolation_scale: float = None,
|
97
|
+
use_additional_conditions: Optional[bool] = None,
|
103
98
|
):
|
104
99
|
super().__init__()
|
100
|
+
|
101
|
+
# Validate inputs.
|
105
102
|
if patch_size is not None:
|
106
103
|
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
|
107
104
|
raise NotImplementedError(
|
@@ -112,31 +109,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
112
109
|
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
113
110
|
)
|
114
111
|
|
115
|
-
self.use_linear_projection = use_linear_projection
|
116
|
-
self.num_attention_heads = num_attention_heads
|
117
|
-
self.attention_head_dim = attention_head_dim
|
118
|
-
inner_dim = num_attention_heads * attention_head_dim
|
119
|
-
|
120
|
-
conv_cls = nn.Conv2d
|
121
|
-
linear_cls = nn.Linear
|
122
|
-
|
123
112
|
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
124
113
|
# Define whether input is continuous or discrete depending on configuration
|
125
114
|
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
126
115
|
self.is_input_vectorized = num_vector_embeds is not None
|
127
116
|
self.is_input_patches = in_channels is not None and patch_size is not None
|
128
117
|
|
129
|
-
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
130
|
-
deprecation_message = (
|
131
|
-
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
132
|
-
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
133
|
-
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
134
|
-
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
135
|
-
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
136
|
-
)
|
137
|
-
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
138
|
-
norm_type = "ada_norm"
|
139
|
-
|
140
118
|
if self.is_input_continuous and self.is_input_vectorized:
|
141
119
|
raise ValueError(
|
142
120
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
@@ -153,104 +131,194 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
153
131
|
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
154
132
|
)
|
155
133
|
|
156
|
-
|
157
|
-
|
158
|
-
|
134
|
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
135
|
+
deprecation_message = (
|
136
|
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
137
|
+
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
|
138
|
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
139
|
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
140
|
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
141
|
+
)
|
142
|
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
143
|
+
norm_type = "ada_norm"
|
159
144
|
|
160
|
-
|
161
|
-
|
162
|
-
|
145
|
+
# Set some common variables used across the board.
|
146
|
+
self.use_linear_projection = use_linear_projection
|
147
|
+
self.interpolation_scale = interpolation_scale
|
148
|
+
self.caption_channels = caption_channels
|
149
|
+
self.num_attention_heads = num_attention_heads
|
150
|
+
self.attention_head_dim = attention_head_dim
|
151
|
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
152
|
+
self.in_channels = in_channels
|
153
|
+
self.out_channels = in_channels if out_channels is None else out_channels
|
154
|
+
self.gradient_checkpointing = False
|
155
|
+
|
156
|
+
if use_additional_conditions is None:
|
157
|
+
if norm_type == "ada_norm_single" and sample_size == 128:
|
158
|
+
use_additional_conditions = True
|
163
159
|
else:
|
164
|
-
|
160
|
+
use_additional_conditions = False
|
161
|
+
self.use_additional_conditions = use_additional_conditions
|
162
|
+
|
163
|
+
# 2. Initialize the right blocks.
|
164
|
+
# These functions follow a common structure:
|
165
|
+
# a. Initialize the input blocks. b. Initialize the transformer blocks.
|
166
|
+
# c. Initialize the output blocks and other projection blocks when necessary.
|
167
|
+
if self.is_input_continuous:
|
168
|
+
self._init_continuous_input(norm_type=norm_type)
|
165
169
|
elif self.is_input_vectorized:
|
166
|
-
|
167
|
-
|
170
|
+
self._init_vectorized_inputs(norm_type=norm_type)
|
171
|
+
elif self.is_input_patches:
|
172
|
+
self._init_patched_inputs(norm_type=norm_type)
|
168
173
|
|
169
|
-
|
170
|
-
|
171
|
-
self.
|
172
|
-
|
174
|
+
def _init_continuous_input(self, norm_type):
|
175
|
+
self.norm = torch.nn.GroupNorm(
|
176
|
+
num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
|
177
|
+
)
|
178
|
+
if self.use_linear_projection:
|
179
|
+
self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
|
180
|
+
else:
|
181
|
+
self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
|
173
182
|
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
183
|
+
self.transformer_blocks = nn.ModuleList(
|
184
|
+
[
|
185
|
+
BasicTransformerBlock(
|
186
|
+
self.inner_dim,
|
187
|
+
self.config.num_attention_heads,
|
188
|
+
self.config.attention_head_dim,
|
189
|
+
dropout=self.config.dropout,
|
190
|
+
cross_attention_dim=self.config.cross_attention_dim,
|
191
|
+
activation_fn=self.config.activation_fn,
|
192
|
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
193
|
+
attention_bias=self.config.attention_bias,
|
194
|
+
only_cross_attention=self.config.only_cross_attention,
|
195
|
+
double_self_attention=self.config.double_self_attention,
|
196
|
+
upcast_attention=self.config.upcast_attention,
|
197
|
+
norm_type=norm_type,
|
198
|
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
199
|
+
norm_eps=self.config.norm_eps,
|
200
|
+
attention_type=self.config.attention_type,
|
201
|
+
)
|
202
|
+
for _ in range(self.config.num_layers)
|
203
|
+
]
|
204
|
+
)
|
179
205
|
|
180
|
-
|
181
|
-
self.
|
206
|
+
if self.use_linear_projection:
|
207
|
+
self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
|
208
|
+
else:
|
209
|
+
self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
|
182
210
|
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
211
|
+
def _init_vectorized_inputs(self, norm_type):
|
212
|
+
assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
213
|
+
assert (
|
214
|
+
self.config.num_vector_embeds is not None
|
215
|
+
), "Transformer2DModel over discrete input must provide num_embed"
|
216
|
+
|
217
|
+
self.height = self.config.sample_size
|
218
|
+
self.width = self.config.sample_size
|
219
|
+
self.num_latent_pixels = self.height * self.width
|
220
|
+
|
221
|
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
222
|
+
num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
|
223
|
+
)
|
195
224
|
|
196
|
-
# 3. Define transformers blocks
|
197
225
|
self.transformer_blocks = nn.ModuleList(
|
198
226
|
[
|
199
227
|
BasicTransformerBlock(
|
200
|
-
inner_dim,
|
201
|
-
num_attention_heads,
|
202
|
-
attention_head_dim,
|
203
|
-
dropout=dropout,
|
204
|
-
cross_attention_dim=cross_attention_dim,
|
205
|
-
activation_fn=activation_fn,
|
206
|
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
207
|
-
attention_bias=attention_bias,
|
208
|
-
only_cross_attention=only_cross_attention,
|
209
|
-
double_self_attention=double_self_attention,
|
210
|
-
upcast_attention=upcast_attention,
|
228
|
+
self.inner_dim,
|
229
|
+
self.config.num_attention_heads,
|
230
|
+
self.config.attention_head_dim,
|
231
|
+
dropout=self.config.dropout,
|
232
|
+
cross_attention_dim=self.config.cross_attention_dim,
|
233
|
+
activation_fn=self.config.activation_fn,
|
234
|
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
235
|
+
attention_bias=self.config.attention_bias,
|
236
|
+
only_cross_attention=self.config.only_cross_attention,
|
237
|
+
double_self_attention=self.config.double_self_attention,
|
238
|
+
upcast_attention=self.config.upcast_attention,
|
211
239
|
norm_type=norm_type,
|
212
|
-
norm_elementwise_affine=norm_elementwise_affine,
|
213
|
-
norm_eps=norm_eps,
|
214
|
-
attention_type=attention_type,
|
240
|
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
241
|
+
norm_eps=self.config.norm_eps,
|
242
|
+
attention_type=self.config.attention_type,
|
215
243
|
)
|
216
|
-
for
|
244
|
+
for _ in range(self.config.num_layers)
|
217
245
|
]
|
218
246
|
)
|
219
247
|
|
220
|
-
|
221
|
-
self.
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
self.
|
233
|
-
self.
|
234
|
-
|
235
|
-
|
236
|
-
self.
|
237
|
-
self.
|
238
|
-
self.
|
239
|
-
|
240
|
-
|
248
|
+
self.norm_out = nn.LayerNorm(self.inner_dim)
|
249
|
+
self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
|
250
|
+
|
251
|
+
def _init_patched_inputs(self, norm_type):
|
252
|
+
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
253
|
+
|
254
|
+
self.height = self.config.sample_size
|
255
|
+
self.width = self.config.sample_size
|
256
|
+
|
257
|
+
self.patch_size = self.config.patch_size
|
258
|
+
interpolation_scale = (
|
259
|
+
self.config.interpolation_scale
|
260
|
+
if self.config.interpolation_scale is not None
|
261
|
+
else max(self.config.sample_size // 64, 1)
|
262
|
+
)
|
263
|
+
self.pos_embed = PatchEmbed(
|
264
|
+
height=self.config.sample_size,
|
265
|
+
width=self.config.sample_size,
|
266
|
+
patch_size=self.config.patch_size,
|
267
|
+
in_channels=self.in_channels,
|
268
|
+
embed_dim=self.inner_dim,
|
269
|
+
interpolation_scale=interpolation_scale,
|
270
|
+
)
|
271
|
+
|
272
|
+
self.transformer_blocks = nn.ModuleList(
|
273
|
+
[
|
274
|
+
BasicTransformerBlock(
|
275
|
+
self.inner_dim,
|
276
|
+
self.config.num_attention_heads,
|
277
|
+
self.config.attention_head_dim,
|
278
|
+
dropout=self.config.dropout,
|
279
|
+
cross_attention_dim=self.config.cross_attention_dim,
|
280
|
+
activation_fn=self.config.activation_fn,
|
281
|
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
282
|
+
attention_bias=self.config.attention_bias,
|
283
|
+
only_cross_attention=self.config.only_cross_attention,
|
284
|
+
double_self_attention=self.config.double_self_attention,
|
285
|
+
upcast_attention=self.config.upcast_attention,
|
286
|
+
norm_type=norm_type,
|
287
|
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
288
|
+
norm_eps=self.config.norm_eps,
|
289
|
+
attention_type=self.config.attention_type,
|
290
|
+
)
|
291
|
+
for _ in range(self.config.num_layers)
|
292
|
+
]
|
293
|
+
)
|
294
|
+
|
295
|
+
if self.config.norm_type != "ada_norm_single":
|
296
|
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
297
|
+
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
298
|
+
self.proj_out_2 = nn.Linear(
|
299
|
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
300
|
+
)
|
301
|
+
elif self.config.norm_type == "ada_norm_single":
|
302
|
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
303
|
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
304
|
+
self.proj_out = nn.Linear(
|
305
|
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
306
|
+
)
|
307
|
+
|
308
|
+
# PixArt-Alpha blocks.
|
241
309
|
self.adaln_single = None
|
242
|
-
self.
|
243
|
-
if norm_type == "ada_norm_single":
|
244
|
-
self.use_additional_conditions = self.config.sample_size == 128
|
310
|
+
if self.config.norm_type == "ada_norm_single":
|
245
311
|
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
246
312
|
# additional conditions until we find better name
|
247
|
-
self.adaln_single = AdaLayerNormSingle(
|
313
|
+
self.adaln_single = AdaLayerNormSingle(
|
314
|
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
315
|
+
)
|
248
316
|
|
249
317
|
self.caption_projection = None
|
250
|
-
if caption_channels is not None:
|
251
|
-
self.caption_projection = PixArtAlphaTextProjection(
|
252
|
-
|
253
|
-
|
318
|
+
if self.caption_channels is not None:
|
319
|
+
self.caption_projection = PixArtAlphaTextProjection(
|
320
|
+
in_features=self.caption_channels, hidden_size=self.inner_dim
|
321
|
+
)
|
254
322
|
|
255
323
|
def _set_gradient_checkpointing(self, module, value=False):
|
256
324
|
if hasattr(module, "gradient_checkpointing"):
|
@@ -272,9 +340,9 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
272
340
|
The [`Transformer2DModel`] forward method.
|
273
341
|
|
274
342
|
Args:
|
275
|
-
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.
|
343
|
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
|
276
344
|
Input `hidden_states`.
|
277
|
-
encoder_hidden_states ( `torch.
|
345
|
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
278
346
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
279
347
|
self-attention.
|
280
348
|
timestep ( `torch.LongTensor`, *optional*):
|
@@ -303,12 +371,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
303
371
|
tuple.
|
304
372
|
|
305
373
|
Returns:
|
306
|
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned,
|
307
|
-
`tuple` where the first element is the sample tensor.
|
374
|
+
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
|
375
|
+
otherwise a `tuple` where the first element is the sample tensor.
|
308
376
|
"""
|
309
377
|
if cross_attention_kwargs is not None:
|
310
378
|
if cross_attention_kwargs.get("scale", None) is not None:
|
311
|
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is
|
379
|
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
312
380
|
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
313
381
|
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
314
382
|
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
@@ -334,43 +402,20 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
334
402
|
|
335
403
|
# 1. Input
|
336
404
|
if self.is_input_continuous:
|
337
|
-
|
405
|
+
batch_size, _, height, width = hidden_states.shape
|
338
406
|
residual = hidden_states
|
339
|
-
|
340
|
-
hidden_states = self.norm(hidden_states)
|
341
|
-
if not self.use_linear_projection:
|
342
|
-
hidden_states = self.proj_in(hidden_states)
|
343
|
-
inner_dim = hidden_states.shape[1]
|
344
|
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
345
|
-
else:
|
346
|
-
inner_dim = hidden_states.shape[1]
|
347
|
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
348
|
-
hidden_states = self.proj_in(hidden_states)
|
349
|
-
|
407
|
+
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
|
350
408
|
elif self.is_input_vectorized:
|
351
409
|
hidden_states = self.latent_image_embedding(hidden_states)
|
352
410
|
elif self.is_input_patches:
|
353
411
|
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
354
|
-
hidden_states = self.
|
355
|
-
|
356
|
-
|
357
|
-
if self.use_additional_conditions and added_cond_kwargs is None:
|
358
|
-
raise ValueError(
|
359
|
-
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
360
|
-
)
|
361
|
-
batch_size = hidden_states.shape[0]
|
362
|
-
timestep, embedded_timestep = self.adaln_single(
|
363
|
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
364
|
-
)
|
412
|
+
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
|
413
|
+
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
|
414
|
+
)
|
365
415
|
|
366
416
|
# 2. Blocks
|
367
|
-
if self.caption_projection is not None:
|
368
|
-
batch_size = hidden_states.shape[0]
|
369
|
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
370
|
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
371
|
-
|
372
417
|
for block in self.transformer_blocks:
|
373
|
-
if
|
418
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
374
419
|
|
375
420
|
def create_custom_forward(module, return_dict=None):
|
376
421
|
def custom_forward(*inputs):
|
@@ -406,51 +451,116 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
406
451
|
|
407
452
|
# 3. Output
|
408
453
|
if self.is_input_continuous:
|
409
|
-
|
410
|
-
hidden_states
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
454
|
+
output = self._get_output_for_continuous_inputs(
|
455
|
+
hidden_states=hidden_states,
|
456
|
+
residual=residual,
|
457
|
+
batch_size=batch_size,
|
458
|
+
height=height,
|
459
|
+
width=width,
|
460
|
+
inner_dim=inner_dim,
|
461
|
+
)
|
417
462
|
elif self.is_input_vectorized:
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
463
|
+
output = self._get_output_for_vectorized_inputs(hidden_states)
|
464
|
+
elif self.is_input_patches:
|
465
|
+
output = self._get_output_for_patched_inputs(
|
466
|
+
hidden_states=hidden_states,
|
467
|
+
timestep=timestep,
|
468
|
+
class_labels=class_labels,
|
469
|
+
embedded_timestep=embedded_timestep,
|
470
|
+
height=height,
|
471
|
+
width=width,
|
472
|
+
)
|
422
473
|
|
423
|
-
|
424
|
-
|
474
|
+
if not return_dict:
|
475
|
+
return (output,)
|
476
|
+
|
477
|
+
return Transformer2DModelOutput(sample=output)
|
425
478
|
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
479
|
+
def _operate_on_continuous_inputs(self, hidden_states):
|
480
|
+
batch, _, height, width = hidden_states.shape
|
481
|
+
hidden_states = self.norm(hidden_states)
|
482
|
+
|
483
|
+
if not self.use_linear_projection:
|
484
|
+
hidden_states = self.proj_in(hidden_states)
|
485
|
+
inner_dim = hidden_states.shape[1]
|
486
|
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
487
|
+
else:
|
488
|
+
inner_dim = hidden_states.shape[1]
|
489
|
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
490
|
+
hidden_states = self.proj_in(hidden_states)
|
491
|
+
|
492
|
+
return hidden_states, inner_dim
|
493
|
+
|
494
|
+
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
|
495
|
+
batch_size = hidden_states.shape[0]
|
496
|
+
hidden_states = self.pos_embed(hidden_states)
|
497
|
+
embedded_timestep = None
|
498
|
+
|
499
|
+
if self.adaln_single is not None:
|
500
|
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
501
|
+
raise ValueError(
|
502
|
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
430
503
|
)
|
431
|
-
|
432
|
-
|
433
|
-
hidden_states = self.proj_out_2(hidden_states)
|
434
|
-
elif self.config.norm_type == "ada_norm_single":
|
435
|
-
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
436
|
-
hidden_states = self.norm_out(hidden_states)
|
437
|
-
# Modulation
|
438
|
-
hidden_states = hidden_states * (1 + scale) + shift
|
439
|
-
hidden_states = self.proj_out(hidden_states)
|
440
|
-
hidden_states = hidden_states.squeeze(1)
|
441
|
-
|
442
|
-
# unpatchify
|
443
|
-
if self.adaln_single is None:
|
444
|
-
height = width = int(hidden_states.shape[1] ** 0.5)
|
445
|
-
hidden_states = hidden_states.reshape(
|
446
|
-
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
504
|
+
timestep, embedded_timestep = self.adaln_single(
|
505
|
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
447
506
|
)
|
448
|
-
|
449
|
-
|
450
|
-
|
507
|
+
|
508
|
+
if self.caption_projection is not None:
|
509
|
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
510
|
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
511
|
+
|
512
|
+
return hidden_states, encoder_hidden_states, timestep, embedded_timestep
|
513
|
+
|
514
|
+
def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
|
515
|
+
if not self.use_linear_projection:
|
516
|
+
hidden_states = (
|
517
|
+
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
518
|
+
)
|
519
|
+
hidden_states = self.proj_out(hidden_states)
|
520
|
+
else:
|
521
|
+
hidden_states = self.proj_out(hidden_states)
|
522
|
+
hidden_states = (
|
523
|
+
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
451
524
|
)
|
452
525
|
|
453
|
-
|
454
|
-
|
526
|
+
output = hidden_states + residual
|
527
|
+
return output
|
455
528
|
|
456
|
-
|
529
|
+
def _get_output_for_vectorized_inputs(self, hidden_states):
|
530
|
+
hidden_states = self.norm_out(hidden_states)
|
531
|
+
logits = self.out(hidden_states)
|
532
|
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
533
|
+
logits = logits.permute(0, 2, 1)
|
534
|
+
# log(p(x_0))
|
535
|
+
output = F.log_softmax(logits.double(), dim=1).float()
|
536
|
+
return output
|
537
|
+
|
538
|
+
def _get_output_for_patched_inputs(
|
539
|
+
self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
|
540
|
+
):
|
541
|
+
if self.config.norm_type != "ada_norm_single":
|
542
|
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
543
|
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
544
|
+
)
|
545
|
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
546
|
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
547
|
+
hidden_states = self.proj_out_2(hidden_states)
|
548
|
+
elif self.config.norm_type == "ada_norm_single":
|
549
|
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
550
|
+
hidden_states = self.norm_out(hidden_states)
|
551
|
+
# Modulation
|
552
|
+
hidden_states = hidden_states * (1 + scale) + shift
|
553
|
+
hidden_states = self.proj_out(hidden_states)
|
554
|
+
hidden_states = hidden_states.squeeze(1)
|
555
|
+
|
556
|
+
# unpatchify
|
557
|
+
if self.adaln_single is None:
|
558
|
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
559
|
+
hidden_states = hidden_states.reshape(
|
560
|
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
561
|
+
)
|
562
|
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
563
|
+
output = hidden_states.reshape(
|
564
|
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
565
|
+
)
|
566
|
+
return output
|