diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -11,39 +11,32 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- from dataclasses import dataclass
15
14
  from typing import Any, Dict, Optional
16
15
 
17
16
  import torch
18
17
  import torch.nn.functional as F
19
18
  from torch import nn
20
19
 
21
- from ...configuration_utils import ConfigMixin, register_to_config
22
- from ...utils import BaseOutput, deprecate, is_torch_version, logging
20
+ from ...configuration_utils import LegacyConfigMixin, register_to_config
21
+ from ...utils import deprecate, is_torch_version, logging
23
22
  from ..attention import BasicTransformerBlock
24
23
  from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
25
- from ..modeling_utils import ModelMixin
24
+ from ..modeling_outputs import Transformer2DModelOutput
25
+ from ..modeling_utils import LegacyModelMixin
26
26
  from ..normalization import AdaLayerNormSingle
27
27
 
28
28
 
29
29
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
30
 
31
31
 
32
- @dataclass
33
- class Transformer2DModelOutput(BaseOutput):
34
- """
35
- The output of [`Transformer2DModel`].
36
-
37
- Args:
38
- sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
39
- The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
40
- distributions for the unnoised latent pixels.
41
- """
42
-
43
- sample: torch.FloatTensor
32
+ class Transformer2DModelOutput(Transformer2DModelOutput):
33
+ def __init__(self, *args, **kwargs):
34
+ deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
35
+ deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
36
+ super().__init__(*args, **kwargs)
44
37
 
45
38
 
46
- class Transformer2DModel(ModelMixin, ConfigMixin):
39
+ class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
47
40
  """
48
41
  A 2D Transformer model for image-like data.
49
42
 
@@ -72,6 +65,7 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
72
65
  """
73
66
 
74
67
  _supports_gradient_checkpointing = True
68
+ _no_split_modules = ["BasicTransformerBlock"]
75
69
 
76
70
  @register_to_config
77
71
  def __init__(
@@ -100,8 +94,11 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
100
94
  attention_type: str = "default",
101
95
  caption_channels: int = None,
102
96
  interpolation_scale: float = None,
97
+ use_additional_conditions: Optional[bool] = None,
103
98
  ):
104
99
  super().__init__()
100
+
101
+ # Validate inputs.
105
102
  if patch_size is not None:
106
103
  if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
107
104
  raise NotImplementedError(
@@ -112,31 +109,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
112
109
  f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
113
110
  )
114
111
 
115
- self.use_linear_projection = use_linear_projection
116
- self.num_attention_heads = num_attention_heads
117
- self.attention_head_dim = attention_head_dim
118
- inner_dim = num_attention_heads * attention_head_dim
119
-
120
- conv_cls = nn.Conv2d
121
- linear_cls = nn.Linear
122
-
123
112
  # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
124
113
  # Define whether input is continuous or discrete depending on configuration
125
114
  self.is_input_continuous = (in_channels is not None) and (patch_size is None)
126
115
  self.is_input_vectorized = num_vector_embeds is not None
127
116
  self.is_input_patches = in_channels is not None and patch_size is not None
128
117
 
129
- if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
130
- deprecation_message = (
131
- f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
132
- " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
133
- " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
134
- " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
135
- " would be very nice if you could open a Pull request for the `transformer/config.json` file"
136
- )
137
- deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
138
- norm_type = "ada_norm"
139
-
140
118
  if self.is_input_continuous and self.is_input_vectorized:
141
119
  raise ValueError(
142
120
  f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
@@ -153,104 +131,194 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
153
131
  f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
154
132
  )
155
133
 
156
- # 2. Define input layers
157
- if self.is_input_continuous:
158
- self.in_channels = in_channels
134
+ if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
135
+ deprecation_message = (
136
+ f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
137
+ " incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
138
+ " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
139
+ " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
140
+ " would be very nice if you could open a Pull request for the `transformer/config.json` file"
141
+ )
142
+ deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
143
+ norm_type = "ada_norm"
159
144
 
160
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
161
- if use_linear_projection:
162
- self.proj_in = linear_cls(in_channels, inner_dim)
145
+ # Set some common variables used across the board.
146
+ self.use_linear_projection = use_linear_projection
147
+ self.interpolation_scale = interpolation_scale
148
+ self.caption_channels = caption_channels
149
+ self.num_attention_heads = num_attention_heads
150
+ self.attention_head_dim = attention_head_dim
151
+ self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
152
+ self.in_channels = in_channels
153
+ self.out_channels = in_channels if out_channels is None else out_channels
154
+ self.gradient_checkpointing = False
155
+
156
+ if use_additional_conditions is None:
157
+ if norm_type == "ada_norm_single" and sample_size == 128:
158
+ use_additional_conditions = True
163
159
  else:
164
- self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
160
+ use_additional_conditions = False
161
+ self.use_additional_conditions = use_additional_conditions
162
+
163
+ # 2. Initialize the right blocks.
164
+ # These functions follow a common structure:
165
+ # a. Initialize the input blocks. b. Initialize the transformer blocks.
166
+ # c. Initialize the output blocks and other projection blocks when necessary.
167
+ if self.is_input_continuous:
168
+ self._init_continuous_input(norm_type=norm_type)
165
169
  elif self.is_input_vectorized:
166
- assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
167
- assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
170
+ self._init_vectorized_inputs(norm_type=norm_type)
171
+ elif self.is_input_patches:
172
+ self._init_patched_inputs(norm_type=norm_type)
168
173
 
169
- self.height = sample_size
170
- self.width = sample_size
171
- self.num_vector_embeds = num_vector_embeds
172
- self.num_latent_pixels = self.height * self.width
174
+ def _init_continuous_input(self, norm_type):
175
+ self.norm = torch.nn.GroupNorm(
176
+ num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
177
+ )
178
+ if self.use_linear_projection:
179
+ self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
180
+ else:
181
+ self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
173
182
 
174
- self.latent_image_embedding = ImagePositionalEmbeddings(
175
- num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
176
- )
177
- elif self.is_input_patches:
178
- assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
183
+ self.transformer_blocks = nn.ModuleList(
184
+ [
185
+ BasicTransformerBlock(
186
+ self.inner_dim,
187
+ self.config.num_attention_heads,
188
+ self.config.attention_head_dim,
189
+ dropout=self.config.dropout,
190
+ cross_attention_dim=self.config.cross_attention_dim,
191
+ activation_fn=self.config.activation_fn,
192
+ num_embeds_ada_norm=self.config.num_embeds_ada_norm,
193
+ attention_bias=self.config.attention_bias,
194
+ only_cross_attention=self.config.only_cross_attention,
195
+ double_self_attention=self.config.double_self_attention,
196
+ upcast_attention=self.config.upcast_attention,
197
+ norm_type=norm_type,
198
+ norm_elementwise_affine=self.config.norm_elementwise_affine,
199
+ norm_eps=self.config.norm_eps,
200
+ attention_type=self.config.attention_type,
201
+ )
202
+ for _ in range(self.config.num_layers)
203
+ ]
204
+ )
179
205
 
180
- self.height = sample_size
181
- self.width = sample_size
206
+ if self.use_linear_projection:
207
+ self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
208
+ else:
209
+ self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
182
210
 
183
- self.patch_size = patch_size
184
- interpolation_scale = (
185
- interpolation_scale if interpolation_scale is not None else max(self.config.sample_size // 64, 1)
186
- )
187
- self.pos_embed = PatchEmbed(
188
- height=sample_size,
189
- width=sample_size,
190
- patch_size=patch_size,
191
- in_channels=in_channels,
192
- embed_dim=inner_dim,
193
- interpolation_scale=interpolation_scale,
194
- )
211
+ def _init_vectorized_inputs(self, norm_type):
212
+ assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
213
+ assert (
214
+ self.config.num_vector_embeds is not None
215
+ ), "Transformer2DModel over discrete input must provide num_embed"
216
+
217
+ self.height = self.config.sample_size
218
+ self.width = self.config.sample_size
219
+ self.num_latent_pixels = self.height * self.width
220
+
221
+ self.latent_image_embedding = ImagePositionalEmbeddings(
222
+ num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
223
+ )
195
224
 
196
- # 3. Define transformers blocks
197
225
  self.transformer_blocks = nn.ModuleList(
198
226
  [
199
227
  BasicTransformerBlock(
200
- inner_dim,
201
- num_attention_heads,
202
- attention_head_dim,
203
- dropout=dropout,
204
- cross_attention_dim=cross_attention_dim,
205
- activation_fn=activation_fn,
206
- num_embeds_ada_norm=num_embeds_ada_norm,
207
- attention_bias=attention_bias,
208
- only_cross_attention=only_cross_attention,
209
- double_self_attention=double_self_attention,
210
- upcast_attention=upcast_attention,
228
+ self.inner_dim,
229
+ self.config.num_attention_heads,
230
+ self.config.attention_head_dim,
231
+ dropout=self.config.dropout,
232
+ cross_attention_dim=self.config.cross_attention_dim,
233
+ activation_fn=self.config.activation_fn,
234
+ num_embeds_ada_norm=self.config.num_embeds_ada_norm,
235
+ attention_bias=self.config.attention_bias,
236
+ only_cross_attention=self.config.only_cross_attention,
237
+ double_self_attention=self.config.double_self_attention,
238
+ upcast_attention=self.config.upcast_attention,
211
239
  norm_type=norm_type,
212
- norm_elementwise_affine=norm_elementwise_affine,
213
- norm_eps=norm_eps,
214
- attention_type=attention_type,
240
+ norm_elementwise_affine=self.config.norm_elementwise_affine,
241
+ norm_eps=self.config.norm_eps,
242
+ attention_type=self.config.attention_type,
215
243
  )
216
- for d in range(num_layers)
244
+ for _ in range(self.config.num_layers)
217
245
  ]
218
246
  )
219
247
 
220
- # 4. Define output layers
221
- self.out_channels = in_channels if out_channels is None else out_channels
222
- if self.is_input_continuous:
223
- # TODO: should use out_channels for continuous projections
224
- if use_linear_projection:
225
- self.proj_out = linear_cls(inner_dim, in_channels)
226
- else:
227
- self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
228
- elif self.is_input_vectorized:
229
- self.norm_out = nn.LayerNorm(inner_dim)
230
- self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
231
- elif self.is_input_patches and norm_type != "ada_norm_single":
232
- self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
233
- self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
234
- self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
235
- elif self.is_input_patches and norm_type == "ada_norm_single":
236
- self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
237
- self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
238
- self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
239
-
240
- # 5. PixArt-Alpha blocks.
248
+ self.norm_out = nn.LayerNorm(self.inner_dim)
249
+ self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
250
+
251
+ def _init_patched_inputs(self, norm_type):
252
+ assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
253
+
254
+ self.height = self.config.sample_size
255
+ self.width = self.config.sample_size
256
+
257
+ self.patch_size = self.config.patch_size
258
+ interpolation_scale = (
259
+ self.config.interpolation_scale
260
+ if self.config.interpolation_scale is not None
261
+ else max(self.config.sample_size // 64, 1)
262
+ )
263
+ self.pos_embed = PatchEmbed(
264
+ height=self.config.sample_size,
265
+ width=self.config.sample_size,
266
+ patch_size=self.config.patch_size,
267
+ in_channels=self.in_channels,
268
+ embed_dim=self.inner_dim,
269
+ interpolation_scale=interpolation_scale,
270
+ )
271
+
272
+ self.transformer_blocks = nn.ModuleList(
273
+ [
274
+ BasicTransformerBlock(
275
+ self.inner_dim,
276
+ self.config.num_attention_heads,
277
+ self.config.attention_head_dim,
278
+ dropout=self.config.dropout,
279
+ cross_attention_dim=self.config.cross_attention_dim,
280
+ activation_fn=self.config.activation_fn,
281
+ num_embeds_ada_norm=self.config.num_embeds_ada_norm,
282
+ attention_bias=self.config.attention_bias,
283
+ only_cross_attention=self.config.only_cross_attention,
284
+ double_self_attention=self.config.double_self_attention,
285
+ upcast_attention=self.config.upcast_attention,
286
+ norm_type=norm_type,
287
+ norm_elementwise_affine=self.config.norm_elementwise_affine,
288
+ norm_eps=self.config.norm_eps,
289
+ attention_type=self.config.attention_type,
290
+ )
291
+ for _ in range(self.config.num_layers)
292
+ ]
293
+ )
294
+
295
+ if self.config.norm_type != "ada_norm_single":
296
+ self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
297
+ self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
298
+ self.proj_out_2 = nn.Linear(
299
+ self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
300
+ )
301
+ elif self.config.norm_type == "ada_norm_single":
302
+ self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
303
+ self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
304
+ self.proj_out = nn.Linear(
305
+ self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
306
+ )
307
+
308
+ # PixArt-Alpha blocks.
241
309
  self.adaln_single = None
242
- self.use_additional_conditions = False
243
- if norm_type == "ada_norm_single":
244
- self.use_additional_conditions = self.config.sample_size == 128
310
+ if self.config.norm_type == "ada_norm_single":
245
311
  # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
246
312
  # additional conditions until we find better name
247
- self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
313
+ self.adaln_single = AdaLayerNormSingle(
314
+ self.inner_dim, use_additional_conditions=self.use_additional_conditions
315
+ )
248
316
 
249
317
  self.caption_projection = None
250
- if caption_channels is not None:
251
- self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
252
-
253
- self.gradient_checkpointing = False
318
+ if self.caption_channels is not None:
319
+ self.caption_projection = PixArtAlphaTextProjection(
320
+ in_features=self.caption_channels, hidden_size=self.inner_dim
321
+ )
254
322
 
255
323
  def _set_gradient_checkpointing(self, module, value=False):
256
324
  if hasattr(module, "gradient_checkpointing"):
@@ -272,9 +340,9 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
272
340
  The [`Transformer2DModel`] forward method.
273
341
 
274
342
  Args:
275
- hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
343
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
276
344
  Input `hidden_states`.
277
- encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
345
+ encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
278
346
  Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
279
347
  self-attention.
280
348
  timestep ( `torch.LongTensor`, *optional*):
@@ -303,12 +371,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
303
371
  tuple.
304
372
 
305
373
  Returns:
306
- If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
307
- `tuple` where the first element is the sample tensor.
374
+ If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
375
+ otherwise a `tuple` where the first element is the sample tensor.
308
376
  """
309
377
  if cross_attention_kwargs is not None:
310
378
  if cross_attention_kwargs.get("scale", None) is not None:
311
- logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
379
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
312
380
  # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
313
381
  # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
314
382
  # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
@@ -334,43 +402,20 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
334
402
 
335
403
  # 1. Input
336
404
  if self.is_input_continuous:
337
- batch, _, height, width = hidden_states.shape
405
+ batch_size, _, height, width = hidden_states.shape
338
406
  residual = hidden_states
339
-
340
- hidden_states = self.norm(hidden_states)
341
- if not self.use_linear_projection:
342
- hidden_states = self.proj_in(hidden_states)
343
- inner_dim = hidden_states.shape[1]
344
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
345
- else:
346
- inner_dim = hidden_states.shape[1]
347
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
348
- hidden_states = self.proj_in(hidden_states)
349
-
407
+ hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
350
408
  elif self.is_input_vectorized:
351
409
  hidden_states = self.latent_image_embedding(hidden_states)
352
410
  elif self.is_input_patches:
353
411
  height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
354
- hidden_states = self.pos_embed(hidden_states)
355
-
356
- if self.adaln_single is not None:
357
- if self.use_additional_conditions and added_cond_kwargs is None:
358
- raise ValueError(
359
- "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
360
- )
361
- batch_size = hidden_states.shape[0]
362
- timestep, embedded_timestep = self.adaln_single(
363
- timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
364
- )
412
+ hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
413
+ hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
414
+ )
365
415
 
366
416
  # 2. Blocks
367
- if self.caption_projection is not None:
368
- batch_size = hidden_states.shape[0]
369
- encoder_hidden_states = self.caption_projection(encoder_hidden_states)
370
- encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
371
-
372
417
  for block in self.transformer_blocks:
373
- if self.training and self.gradient_checkpointing:
418
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
374
419
 
375
420
  def create_custom_forward(module, return_dict=None):
376
421
  def custom_forward(*inputs):
@@ -406,51 +451,116 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
406
451
 
407
452
  # 3. Output
408
453
  if self.is_input_continuous:
409
- if not self.use_linear_projection:
410
- hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
411
- hidden_states = self.proj_out(hidden_states)
412
- else:
413
- hidden_states = self.proj_out(hidden_states)
414
- hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
415
-
416
- output = hidden_states + residual
454
+ output = self._get_output_for_continuous_inputs(
455
+ hidden_states=hidden_states,
456
+ residual=residual,
457
+ batch_size=batch_size,
458
+ height=height,
459
+ width=width,
460
+ inner_dim=inner_dim,
461
+ )
417
462
  elif self.is_input_vectorized:
418
- hidden_states = self.norm_out(hidden_states)
419
- logits = self.out(hidden_states)
420
- # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
421
- logits = logits.permute(0, 2, 1)
463
+ output = self._get_output_for_vectorized_inputs(hidden_states)
464
+ elif self.is_input_patches:
465
+ output = self._get_output_for_patched_inputs(
466
+ hidden_states=hidden_states,
467
+ timestep=timestep,
468
+ class_labels=class_labels,
469
+ embedded_timestep=embedded_timestep,
470
+ height=height,
471
+ width=width,
472
+ )
422
473
 
423
- # log(p(x_0))
424
- output = F.log_softmax(logits.double(), dim=1).float()
474
+ if not return_dict:
475
+ return (output,)
476
+
477
+ return Transformer2DModelOutput(sample=output)
425
478
 
426
- if self.is_input_patches:
427
- if self.config.norm_type != "ada_norm_single":
428
- conditioning = self.transformer_blocks[0].norm1.emb(
429
- timestep, class_labels, hidden_dtype=hidden_states.dtype
479
+ def _operate_on_continuous_inputs(self, hidden_states):
480
+ batch, _, height, width = hidden_states.shape
481
+ hidden_states = self.norm(hidden_states)
482
+
483
+ if not self.use_linear_projection:
484
+ hidden_states = self.proj_in(hidden_states)
485
+ inner_dim = hidden_states.shape[1]
486
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
487
+ else:
488
+ inner_dim = hidden_states.shape[1]
489
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
490
+ hidden_states = self.proj_in(hidden_states)
491
+
492
+ return hidden_states, inner_dim
493
+
494
+ def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
495
+ batch_size = hidden_states.shape[0]
496
+ hidden_states = self.pos_embed(hidden_states)
497
+ embedded_timestep = None
498
+
499
+ if self.adaln_single is not None:
500
+ if self.use_additional_conditions and added_cond_kwargs is None:
501
+ raise ValueError(
502
+ "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
430
503
  )
431
- shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
432
- hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
433
- hidden_states = self.proj_out_2(hidden_states)
434
- elif self.config.norm_type == "ada_norm_single":
435
- shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
436
- hidden_states = self.norm_out(hidden_states)
437
- # Modulation
438
- hidden_states = hidden_states * (1 + scale) + shift
439
- hidden_states = self.proj_out(hidden_states)
440
- hidden_states = hidden_states.squeeze(1)
441
-
442
- # unpatchify
443
- if self.adaln_single is None:
444
- height = width = int(hidden_states.shape[1] ** 0.5)
445
- hidden_states = hidden_states.reshape(
446
- shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
504
+ timestep, embedded_timestep = self.adaln_single(
505
+ timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
447
506
  )
448
- hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
449
- output = hidden_states.reshape(
450
- shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
507
+
508
+ if self.caption_projection is not None:
509
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
510
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
511
+
512
+ return hidden_states, encoder_hidden_states, timestep, embedded_timestep
513
+
514
+ def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
515
+ if not self.use_linear_projection:
516
+ hidden_states = (
517
+ hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
518
+ )
519
+ hidden_states = self.proj_out(hidden_states)
520
+ else:
521
+ hidden_states = self.proj_out(hidden_states)
522
+ hidden_states = (
523
+ hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
451
524
  )
452
525
 
453
- if not return_dict:
454
- return (output,)
526
+ output = hidden_states + residual
527
+ return output
455
528
 
456
- return Transformer2DModelOutput(sample=output)
529
+ def _get_output_for_vectorized_inputs(self, hidden_states):
530
+ hidden_states = self.norm_out(hidden_states)
531
+ logits = self.out(hidden_states)
532
+ # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
533
+ logits = logits.permute(0, 2, 1)
534
+ # log(p(x_0))
535
+ output = F.log_softmax(logits.double(), dim=1).float()
536
+ return output
537
+
538
+ def _get_output_for_patched_inputs(
539
+ self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
540
+ ):
541
+ if self.config.norm_type != "ada_norm_single":
542
+ conditioning = self.transformer_blocks[0].norm1.emb(
543
+ timestep, class_labels, hidden_dtype=hidden_states.dtype
544
+ )
545
+ shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
546
+ hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
547
+ hidden_states = self.proj_out_2(hidden_states)
548
+ elif self.config.norm_type == "ada_norm_single":
549
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
550
+ hidden_states = self.norm_out(hidden_states)
551
+ # Modulation
552
+ hidden_states = hidden_states * (1 + scale) + shift
553
+ hidden_states = self.proj_out(hidden_states)
554
+ hidden_states = hidden_states.squeeze(1)
555
+
556
+ # unpatchify
557
+ if self.adaln_single is None:
558
+ height = width = int(hidden_states.shape[1] ** 0.5)
559
+ hidden_states = hidden_states.reshape(
560
+ shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
561
+ )
562
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
563
+ output = hidden_states.reshape(
564
+ shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
565
+ )
566
+ return output