diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +41 -40
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.1.dist-info/RECORD +0 -399
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,327 @@
|
|
1
|
+
# Copyright 2024 the Latte Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from typing import Optional
|
15
|
+
|
16
|
+
import torch
|
17
|
+
from torch import nn
|
18
|
+
|
19
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
20
|
+
from ...models.embeddings import PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid
|
21
|
+
from ..attention import BasicTransformerBlock
|
22
|
+
from ..embeddings import PatchEmbed
|
23
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
24
|
+
from ..modeling_utils import ModelMixin
|
25
|
+
from ..normalization import AdaLayerNormSingle
|
26
|
+
|
27
|
+
|
28
|
+
class LatteTransformer3DModel(ModelMixin, ConfigMixin):
|
29
|
+
_supports_gradient_checkpointing = True
|
30
|
+
|
31
|
+
"""
|
32
|
+
A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code:
|
33
|
+
https://github.com/Vchitect/Latte
|
34
|
+
|
35
|
+
Parameters:
|
36
|
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
37
|
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
38
|
+
in_channels (`int`, *optional*):
|
39
|
+
The number of channels in the input.
|
40
|
+
out_channels (`int`, *optional*):
|
41
|
+
The number of channels in the output.
|
42
|
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
43
|
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
44
|
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
45
|
+
attention_bias (`bool`, *optional*):
|
46
|
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
47
|
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
48
|
+
This is fixed during training since it is used to learn a number of position embeddings.
|
49
|
+
patch_size (`int`, *optional*):
|
50
|
+
The size of the patches to use in the patch embedding layer.
|
51
|
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
52
|
+
num_embeds_ada_norm ( `int`, *optional*):
|
53
|
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
54
|
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
55
|
+
added to the hidden states. During inference, you can denoise for up to but not more steps than
|
56
|
+
`num_embeds_ada_norm`.
|
57
|
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
58
|
+
The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`.
|
59
|
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
60
|
+
Whether or not to use elementwise affine in normalization layers.
|
61
|
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers.
|
62
|
+
caption_channels (`int`, *optional*):
|
63
|
+
The number of channels in the caption embeddings.
|
64
|
+
video_length (`int`, *optional*):
|
65
|
+
The number of frames in the video-like data.
|
66
|
+
"""
|
67
|
+
|
68
|
+
@register_to_config
|
69
|
+
def __init__(
|
70
|
+
self,
|
71
|
+
num_attention_heads: int = 16,
|
72
|
+
attention_head_dim: int = 88,
|
73
|
+
in_channels: Optional[int] = None,
|
74
|
+
out_channels: Optional[int] = None,
|
75
|
+
num_layers: int = 1,
|
76
|
+
dropout: float = 0.0,
|
77
|
+
cross_attention_dim: Optional[int] = None,
|
78
|
+
attention_bias: bool = False,
|
79
|
+
sample_size: int = 64,
|
80
|
+
patch_size: Optional[int] = None,
|
81
|
+
activation_fn: str = "geglu",
|
82
|
+
num_embeds_ada_norm: Optional[int] = None,
|
83
|
+
norm_type: str = "layer_norm",
|
84
|
+
norm_elementwise_affine: bool = True,
|
85
|
+
norm_eps: float = 1e-5,
|
86
|
+
caption_channels: int = None,
|
87
|
+
video_length: int = 16,
|
88
|
+
):
|
89
|
+
super().__init__()
|
90
|
+
inner_dim = num_attention_heads * attention_head_dim
|
91
|
+
|
92
|
+
# 1. Define input layers
|
93
|
+
self.height = sample_size
|
94
|
+
self.width = sample_size
|
95
|
+
|
96
|
+
interpolation_scale = self.config.sample_size // 64
|
97
|
+
interpolation_scale = max(interpolation_scale, 1)
|
98
|
+
self.pos_embed = PatchEmbed(
|
99
|
+
height=sample_size,
|
100
|
+
width=sample_size,
|
101
|
+
patch_size=patch_size,
|
102
|
+
in_channels=in_channels,
|
103
|
+
embed_dim=inner_dim,
|
104
|
+
interpolation_scale=interpolation_scale,
|
105
|
+
)
|
106
|
+
|
107
|
+
# 2. Define spatial transformers blocks
|
108
|
+
self.transformer_blocks = nn.ModuleList(
|
109
|
+
[
|
110
|
+
BasicTransformerBlock(
|
111
|
+
inner_dim,
|
112
|
+
num_attention_heads,
|
113
|
+
attention_head_dim,
|
114
|
+
dropout=dropout,
|
115
|
+
cross_attention_dim=cross_attention_dim,
|
116
|
+
activation_fn=activation_fn,
|
117
|
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
118
|
+
attention_bias=attention_bias,
|
119
|
+
norm_type=norm_type,
|
120
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
121
|
+
norm_eps=norm_eps,
|
122
|
+
)
|
123
|
+
for d in range(num_layers)
|
124
|
+
]
|
125
|
+
)
|
126
|
+
|
127
|
+
# 3. Define temporal transformers blocks
|
128
|
+
self.temporal_transformer_blocks = nn.ModuleList(
|
129
|
+
[
|
130
|
+
BasicTransformerBlock(
|
131
|
+
inner_dim,
|
132
|
+
num_attention_heads,
|
133
|
+
attention_head_dim,
|
134
|
+
dropout=dropout,
|
135
|
+
cross_attention_dim=None,
|
136
|
+
activation_fn=activation_fn,
|
137
|
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
138
|
+
attention_bias=attention_bias,
|
139
|
+
norm_type=norm_type,
|
140
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
141
|
+
norm_eps=norm_eps,
|
142
|
+
)
|
143
|
+
for d in range(num_layers)
|
144
|
+
]
|
145
|
+
)
|
146
|
+
|
147
|
+
# 4. Define output layers
|
148
|
+
self.out_channels = in_channels if out_channels is None else out_channels
|
149
|
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
150
|
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
151
|
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
152
|
+
|
153
|
+
# 5. Latte other blocks.
|
154
|
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)
|
155
|
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
156
|
+
|
157
|
+
# define temporal positional embedding
|
158
|
+
temp_pos_embed = get_1d_sincos_pos_embed_from_grid(
|
159
|
+
inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt"
|
160
|
+
) # 1152 hidden size
|
161
|
+
self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False)
|
162
|
+
|
163
|
+
self.gradient_checkpointing = False
|
164
|
+
|
165
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
166
|
+
self.gradient_checkpointing = value
|
167
|
+
|
168
|
+
def forward(
|
169
|
+
self,
|
170
|
+
hidden_states: torch.Tensor,
|
171
|
+
timestep: Optional[torch.LongTensor] = None,
|
172
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
173
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
174
|
+
enable_temporal_attentions: bool = True,
|
175
|
+
return_dict: bool = True,
|
176
|
+
):
|
177
|
+
"""
|
178
|
+
The [`LatteTransformer3DModel`] forward method.
|
179
|
+
|
180
|
+
Args:
|
181
|
+
hidden_states shape `(batch size, channel, num_frame, height, width)`:
|
182
|
+
Input `hidden_states`.
|
183
|
+
timestep ( `torch.LongTensor`, *optional*):
|
184
|
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
185
|
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
186
|
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
187
|
+
self-attention.
|
188
|
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
189
|
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
190
|
+
|
191
|
+
* Mask `(batcheight, sequence_length)` True = keep, False = discard.
|
192
|
+
* Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard.
|
193
|
+
|
194
|
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
195
|
+
above. This bias will be added to the cross-attention scores.
|
196
|
+
enable_temporal_attentions:
|
197
|
+
(`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions.
|
198
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
199
|
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
200
|
+
tuple.
|
201
|
+
|
202
|
+
Returns:
|
203
|
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
204
|
+
`tuple` where the first element is the sample tensor.
|
205
|
+
"""
|
206
|
+
|
207
|
+
# Reshape hidden states
|
208
|
+
batch_size, channels, num_frame, height, width = hidden_states.shape
|
209
|
+
# batch_size channels num_frame height width -> (batch_size * num_frame) channels height width
|
210
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width)
|
211
|
+
|
212
|
+
# Input
|
213
|
+
height, width = (
|
214
|
+
hidden_states.shape[-2] // self.config.patch_size,
|
215
|
+
hidden_states.shape[-1] // self.config.patch_size,
|
216
|
+
)
|
217
|
+
num_patches = height * width
|
218
|
+
|
219
|
+
hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings
|
220
|
+
|
221
|
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
222
|
+
timestep, embedded_timestep = self.adaln_single(
|
223
|
+
timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
224
|
+
)
|
225
|
+
|
226
|
+
# Prepare text embeddings for spatial block
|
227
|
+
# batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size
|
228
|
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152
|
229
|
+
encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view(
|
230
|
+
-1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1]
|
231
|
+
)
|
232
|
+
|
233
|
+
# Prepare timesteps for spatial and temporal block
|
234
|
+
timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1])
|
235
|
+
timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1])
|
236
|
+
|
237
|
+
# Spatial and temporal transformer blocks
|
238
|
+
for i, (spatial_block, temp_block) in enumerate(
|
239
|
+
zip(self.transformer_blocks, self.temporal_transformer_blocks)
|
240
|
+
):
|
241
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
242
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
243
|
+
spatial_block,
|
244
|
+
hidden_states,
|
245
|
+
None, # attention_mask
|
246
|
+
encoder_hidden_states_spatial,
|
247
|
+
encoder_attention_mask,
|
248
|
+
timestep_spatial,
|
249
|
+
None, # cross_attention_kwargs
|
250
|
+
None, # class_labels
|
251
|
+
use_reentrant=False,
|
252
|
+
)
|
253
|
+
else:
|
254
|
+
hidden_states = spatial_block(
|
255
|
+
hidden_states,
|
256
|
+
None, # attention_mask
|
257
|
+
encoder_hidden_states_spatial,
|
258
|
+
encoder_attention_mask,
|
259
|
+
timestep_spatial,
|
260
|
+
None, # cross_attention_kwargs
|
261
|
+
None, # class_labels
|
262
|
+
)
|
263
|
+
|
264
|
+
if enable_temporal_attentions:
|
265
|
+
# (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size
|
266
|
+
hidden_states = hidden_states.reshape(
|
267
|
+
batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]
|
268
|
+
).permute(0, 2, 1, 3)
|
269
|
+
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1])
|
270
|
+
|
271
|
+
if i == 0 and num_frame > 1:
|
272
|
+
hidden_states = hidden_states + self.temp_pos_embed
|
273
|
+
|
274
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
275
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
276
|
+
temp_block,
|
277
|
+
hidden_states,
|
278
|
+
None, # attention_mask
|
279
|
+
None, # encoder_hidden_states
|
280
|
+
None, # encoder_attention_mask
|
281
|
+
timestep_temp,
|
282
|
+
None, # cross_attention_kwargs
|
283
|
+
None, # class_labels
|
284
|
+
use_reentrant=False,
|
285
|
+
)
|
286
|
+
else:
|
287
|
+
hidden_states = temp_block(
|
288
|
+
hidden_states,
|
289
|
+
None, # attention_mask
|
290
|
+
None, # encoder_hidden_states
|
291
|
+
None, # encoder_attention_mask
|
292
|
+
timestep_temp,
|
293
|
+
None, # cross_attention_kwargs
|
294
|
+
None, # class_labels
|
295
|
+
)
|
296
|
+
|
297
|
+
# (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size
|
298
|
+
hidden_states = hidden_states.reshape(
|
299
|
+
batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]
|
300
|
+
).permute(0, 2, 1, 3)
|
301
|
+
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1])
|
302
|
+
|
303
|
+
embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1])
|
304
|
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
305
|
+
hidden_states = self.norm_out(hidden_states)
|
306
|
+
# Modulation
|
307
|
+
hidden_states = hidden_states * (1 + scale) + shift
|
308
|
+
hidden_states = self.proj_out(hidden_states)
|
309
|
+
|
310
|
+
# unpatchify
|
311
|
+
if self.adaln_single is None:
|
312
|
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
313
|
+
hidden_states = hidden_states.reshape(
|
314
|
+
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
315
|
+
)
|
316
|
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
317
|
+
output = hidden_states.reshape(
|
318
|
+
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
319
|
+
)
|
320
|
+
output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute(
|
321
|
+
0, 2, 1, 3, 4
|
322
|
+
)
|
323
|
+
|
324
|
+
if not return_dict:
|
325
|
+
return (output,)
|
326
|
+
|
327
|
+
return Transformer2DModelOutput(sample=output)
|
@@ -0,0 +1,340 @@
|
|
1
|
+
# Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Any, Dict, Optional
|
16
|
+
|
17
|
+
import torch
|
18
|
+
import torch.nn as nn
|
19
|
+
|
20
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
21
|
+
from ...utils import logging
|
22
|
+
from ..attention import LuminaFeedForward
|
23
|
+
from ..attention_processor import Attention, LuminaAttnProcessor2_0
|
24
|
+
from ..embeddings import (
|
25
|
+
LuminaCombinedTimestepCaptionEmbedding,
|
26
|
+
LuminaPatchEmbed,
|
27
|
+
)
|
28
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
29
|
+
from ..modeling_utils import ModelMixin
|
30
|
+
from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm
|
31
|
+
|
32
|
+
|
33
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34
|
+
|
35
|
+
|
36
|
+
class LuminaNextDiTBlock(nn.Module):
|
37
|
+
"""
|
38
|
+
A LuminaNextDiTBlock for LuminaNextDiT2DModel.
|
39
|
+
|
40
|
+
Parameters:
|
41
|
+
dim (`int`): Embedding dimension of the input features.
|
42
|
+
num_attention_heads (`int`): Number of attention heads.
|
43
|
+
num_kv_heads (`int`):
|
44
|
+
Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
|
45
|
+
multiple_of (`int`): The number of multiple of ffn layer.
|
46
|
+
ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension.
|
47
|
+
norm_eps (`float`): The eps for norm layer.
|
48
|
+
qk_norm (`bool`): normalization for query and key.
|
49
|
+
cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
|
50
|
+
norm_elementwise_affine (`bool`, *optional*, defaults to True),
|
51
|
+
"""
|
52
|
+
|
53
|
+
def __init__(
|
54
|
+
self,
|
55
|
+
dim: int,
|
56
|
+
num_attention_heads: int,
|
57
|
+
num_kv_heads: int,
|
58
|
+
multiple_of: int,
|
59
|
+
ffn_dim_multiplier: float,
|
60
|
+
norm_eps: float,
|
61
|
+
qk_norm: bool,
|
62
|
+
cross_attention_dim: int,
|
63
|
+
norm_elementwise_affine: bool = True,
|
64
|
+
) -> None:
|
65
|
+
super().__init__()
|
66
|
+
self.head_dim = dim // num_attention_heads
|
67
|
+
|
68
|
+
self.gate = nn.Parameter(torch.zeros([num_attention_heads]))
|
69
|
+
|
70
|
+
# Self-attention
|
71
|
+
self.attn1 = Attention(
|
72
|
+
query_dim=dim,
|
73
|
+
cross_attention_dim=None,
|
74
|
+
dim_head=dim // num_attention_heads,
|
75
|
+
qk_norm="layer_norm_across_heads" if qk_norm else None,
|
76
|
+
heads=num_attention_heads,
|
77
|
+
kv_heads=num_kv_heads,
|
78
|
+
eps=1e-5,
|
79
|
+
bias=False,
|
80
|
+
out_bias=False,
|
81
|
+
processor=LuminaAttnProcessor2_0(),
|
82
|
+
)
|
83
|
+
self.attn1.to_out = nn.Identity()
|
84
|
+
|
85
|
+
# Cross-attention
|
86
|
+
self.attn2 = Attention(
|
87
|
+
query_dim=dim,
|
88
|
+
cross_attention_dim=cross_attention_dim,
|
89
|
+
dim_head=dim // num_attention_heads,
|
90
|
+
qk_norm="layer_norm_across_heads" if qk_norm else None,
|
91
|
+
heads=num_attention_heads,
|
92
|
+
kv_heads=num_kv_heads,
|
93
|
+
eps=1e-5,
|
94
|
+
bias=False,
|
95
|
+
out_bias=False,
|
96
|
+
processor=LuminaAttnProcessor2_0(),
|
97
|
+
)
|
98
|
+
|
99
|
+
self.feed_forward = LuminaFeedForward(
|
100
|
+
dim=dim,
|
101
|
+
inner_dim=4 * dim,
|
102
|
+
multiple_of=multiple_of,
|
103
|
+
ffn_dim_multiplier=ffn_dim_multiplier,
|
104
|
+
)
|
105
|
+
|
106
|
+
self.norm1 = LuminaRMSNormZero(
|
107
|
+
embedding_dim=dim,
|
108
|
+
norm_eps=norm_eps,
|
109
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
110
|
+
)
|
111
|
+
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
112
|
+
|
113
|
+
self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
114
|
+
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
115
|
+
|
116
|
+
self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
117
|
+
|
118
|
+
def forward(
|
119
|
+
self,
|
120
|
+
hidden_states: torch.Tensor,
|
121
|
+
attention_mask: torch.Tensor,
|
122
|
+
image_rotary_emb: torch.Tensor,
|
123
|
+
encoder_hidden_states: torch.Tensor,
|
124
|
+
encoder_mask: torch.Tensor,
|
125
|
+
temb: torch.Tensor,
|
126
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
127
|
+
):
|
128
|
+
"""
|
129
|
+
Perform a forward pass through the LuminaNextDiTBlock.
|
130
|
+
|
131
|
+
Parameters:
|
132
|
+
hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
|
133
|
+
attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
|
134
|
+
image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
|
135
|
+
encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
|
136
|
+
encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
|
137
|
+
temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
|
138
|
+
cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
|
139
|
+
"""
|
140
|
+
residual = hidden_states
|
141
|
+
|
142
|
+
# Self-attention
|
143
|
+
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
144
|
+
self_attn_output = self.attn1(
|
145
|
+
hidden_states=norm_hidden_states,
|
146
|
+
encoder_hidden_states=norm_hidden_states,
|
147
|
+
attention_mask=attention_mask,
|
148
|
+
query_rotary_emb=image_rotary_emb,
|
149
|
+
key_rotary_emb=image_rotary_emb,
|
150
|
+
**cross_attention_kwargs,
|
151
|
+
)
|
152
|
+
|
153
|
+
# Cross-attention
|
154
|
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
|
155
|
+
cross_attn_output = self.attn2(
|
156
|
+
hidden_states=norm_hidden_states,
|
157
|
+
encoder_hidden_states=norm_encoder_hidden_states,
|
158
|
+
attention_mask=encoder_mask,
|
159
|
+
query_rotary_emb=image_rotary_emb,
|
160
|
+
key_rotary_emb=None,
|
161
|
+
**cross_attention_kwargs,
|
162
|
+
)
|
163
|
+
cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
|
164
|
+
mixed_attn_output = self_attn_output + cross_attn_output
|
165
|
+
mixed_attn_output = mixed_attn_output.flatten(-2)
|
166
|
+
# linear proj
|
167
|
+
hidden_states = self.attn2.to_out[0](mixed_attn_output)
|
168
|
+
|
169
|
+
hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)
|
170
|
+
|
171
|
+
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
|
172
|
+
|
173
|
+
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
|
174
|
+
|
175
|
+
return hidden_states
|
176
|
+
|
177
|
+
|
178
|
+
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
|
179
|
+
"""
|
180
|
+
LuminaNextDiT: Diffusion model with a Transformer backbone.
|
181
|
+
|
182
|
+
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
183
|
+
|
184
|
+
Parameters:
|
185
|
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
186
|
+
it is used to learn a number of position embeddings.
|
187
|
+
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
|
188
|
+
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
|
189
|
+
in_channels (`int`, *optional*, defaults to 4):
|
190
|
+
The number of input channels for the model. Typically, this matches the number of channels in the input
|
191
|
+
images.
|
192
|
+
hidden_size (`int`, *optional*, defaults to 4096):
|
193
|
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
194
|
+
hidden representations.
|
195
|
+
num_layers (`int`, *optional*, default to 32):
|
196
|
+
The number of layers in the model. This defines the depth of the neural network.
|
197
|
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
198
|
+
The number of attention heads in each attention layer. This parameter specifies how many separate attention
|
199
|
+
mechanisms are used.
|
200
|
+
num_kv_heads (`int`, *optional*, defaults to 8):
|
201
|
+
The number of key-value heads in the attention mechanism, if different from the number of attention heads.
|
202
|
+
If None, it defaults to num_attention_heads.
|
203
|
+
multiple_of (`int`, *optional*, defaults to 256):
|
204
|
+
A factor that the hidden size should be a multiple of. This can help optimize certain hardware
|
205
|
+
configurations.
|
206
|
+
ffn_dim_multiplier (`float`, *optional*):
|
207
|
+
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
|
208
|
+
the model configuration.
|
209
|
+
norm_eps (`float`, *optional*, defaults to 1e-5):
|
210
|
+
A small value added to the denominator for numerical stability in normalization layers.
|
211
|
+
learn_sigma (`bool`, *optional*, defaults to True):
|
212
|
+
Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
|
213
|
+
predictions.
|
214
|
+
qk_norm (`bool`, *optional*, defaults to True):
|
215
|
+
Indicates if the queries and keys in the attention mechanism should be normalized.
|
216
|
+
cross_attention_dim (`int`, *optional*, defaults to 2048):
|
217
|
+
The dimensionality of the text embeddings. This parameter defines the size of the text representations used
|
218
|
+
in the model.
|
219
|
+
scaling_factor (`float`, *optional*, defaults to 1.0):
|
220
|
+
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
|
221
|
+
overall scale of the model's operations.
|
222
|
+
"""
|
223
|
+
|
224
|
+
@register_to_config
|
225
|
+
def __init__(
|
226
|
+
self,
|
227
|
+
sample_size: int = 128,
|
228
|
+
patch_size: Optional[int] = 2,
|
229
|
+
in_channels: Optional[int] = 4,
|
230
|
+
hidden_size: Optional[int] = 2304,
|
231
|
+
num_layers: Optional[int] = 32,
|
232
|
+
num_attention_heads: Optional[int] = 32,
|
233
|
+
num_kv_heads: Optional[int] = None,
|
234
|
+
multiple_of: Optional[int] = 256,
|
235
|
+
ffn_dim_multiplier: Optional[float] = None,
|
236
|
+
norm_eps: Optional[float] = 1e-5,
|
237
|
+
learn_sigma: Optional[bool] = True,
|
238
|
+
qk_norm: Optional[bool] = True,
|
239
|
+
cross_attention_dim: Optional[int] = 2048,
|
240
|
+
scaling_factor: Optional[float] = 1.0,
|
241
|
+
) -> None:
|
242
|
+
super().__init__()
|
243
|
+
self.sample_size = sample_size
|
244
|
+
self.patch_size = patch_size
|
245
|
+
self.in_channels = in_channels
|
246
|
+
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
247
|
+
self.hidden_size = hidden_size
|
248
|
+
self.num_attention_heads = num_attention_heads
|
249
|
+
self.head_dim = hidden_size // num_attention_heads
|
250
|
+
self.scaling_factor = scaling_factor
|
251
|
+
|
252
|
+
self.patch_embedder = LuminaPatchEmbed(
|
253
|
+
patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
|
254
|
+
)
|
255
|
+
|
256
|
+
self.pad_token = nn.Parameter(torch.empty(hidden_size))
|
257
|
+
|
258
|
+
self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
|
259
|
+
hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
|
260
|
+
)
|
261
|
+
|
262
|
+
self.layers = nn.ModuleList(
|
263
|
+
[
|
264
|
+
LuminaNextDiTBlock(
|
265
|
+
hidden_size,
|
266
|
+
num_attention_heads,
|
267
|
+
num_kv_heads,
|
268
|
+
multiple_of,
|
269
|
+
ffn_dim_multiplier,
|
270
|
+
norm_eps,
|
271
|
+
qk_norm,
|
272
|
+
cross_attention_dim,
|
273
|
+
)
|
274
|
+
for _ in range(num_layers)
|
275
|
+
]
|
276
|
+
)
|
277
|
+
self.norm_out = LuminaLayerNormContinuous(
|
278
|
+
embedding_dim=hidden_size,
|
279
|
+
conditioning_embedding_dim=min(hidden_size, 1024),
|
280
|
+
elementwise_affine=False,
|
281
|
+
eps=1e-6,
|
282
|
+
bias=True,
|
283
|
+
out_dim=patch_size * patch_size * self.out_channels,
|
284
|
+
)
|
285
|
+
# self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)
|
286
|
+
|
287
|
+
assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
|
288
|
+
|
289
|
+
def forward(
|
290
|
+
self,
|
291
|
+
hidden_states: torch.Tensor,
|
292
|
+
timestep: torch.Tensor,
|
293
|
+
encoder_hidden_states: torch.Tensor,
|
294
|
+
encoder_mask: torch.Tensor,
|
295
|
+
image_rotary_emb: torch.Tensor,
|
296
|
+
cross_attention_kwargs: Dict[str, Any] = None,
|
297
|
+
return_dict=True,
|
298
|
+
) -> torch.Tensor:
|
299
|
+
"""
|
300
|
+
Forward pass of LuminaNextDiT.
|
301
|
+
|
302
|
+
Parameters:
|
303
|
+
hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
|
304
|
+
timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
|
305
|
+
encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
|
306
|
+
encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
|
307
|
+
"""
|
308
|
+
hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
|
309
|
+
image_rotary_emb = image_rotary_emb.to(hidden_states.device)
|
310
|
+
|
311
|
+
temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask)
|
312
|
+
|
313
|
+
encoder_mask = encoder_mask.bool()
|
314
|
+
for layer in self.layers:
|
315
|
+
hidden_states = layer(
|
316
|
+
hidden_states,
|
317
|
+
mask,
|
318
|
+
image_rotary_emb,
|
319
|
+
encoder_hidden_states,
|
320
|
+
encoder_mask,
|
321
|
+
temb=temb,
|
322
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
323
|
+
)
|
324
|
+
|
325
|
+
hidden_states = self.norm_out(hidden_states, temb)
|
326
|
+
|
327
|
+
# unpatchify
|
328
|
+
height_tokens = width_tokens = self.patch_size
|
329
|
+
height, width = img_size[0]
|
330
|
+
batch_size = hidden_states.size(0)
|
331
|
+
sequence_length = (height // height_tokens) * (width // width_tokens)
|
332
|
+
hidden_states = hidden_states[:, :sequence_length].view(
|
333
|
+
batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
|
334
|
+
)
|
335
|
+
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
|
336
|
+
|
337
|
+
if not return_dict:
|
338
|
+
return (output,)
|
339
|
+
|
340
|
+
return Transformer2DModelOutput(sample=output)
|