diffusers 0.27.1__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +41 -40
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.1.dist-info/RECORD +0 -399
  443. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.1.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,327 @@
1
+ # Copyright 2024 the Latte Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional
15
+
16
+ import torch
17
+ from torch import nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...models.embeddings import PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid
21
+ from ..attention import BasicTransformerBlock
22
+ from ..embeddings import PatchEmbed
23
+ from ..modeling_outputs import Transformer2DModelOutput
24
+ from ..modeling_utils import ModelMixin
25
+ from ..normalization import AdaLayerNormSingle
26
+
27
+
28
+ class LatteTransformer3DModel(ModelMixin, ConfigMixin):
29
+ _supports_gradient_checkpointing = True
30
+
31
+ """
32
+ A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code:
33
+ https://github.com/Vchitect/Latte
34
+
35
+ Parameters:
36
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
37
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
38
+ in_channels (`int`, *optional*):
39
+ The number of channels in the input.
40
+ out_channels (`int`, *optional*):
41
+ The number of channels in the output.
42
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
43
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
44
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
45
+ attention_bias (`bool`, *optional*):
46
+ Configure if the `TransformerBlocks` attention should contain a bias parameter.
47
+ sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
48
+ This is fixed during training since it is used to learn a number of position embeddings.
49
+ patch_size (`int`, *optional*):
50
+ The size of the patches to use in the patch embedding layer.
51
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
52
+ num_embeds_ada_norm ( `int`, *optional*):
53
+ The number of diffusion steps used during training. Pass if at least one of the norm_layers is
54
+ `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
55
+ added to the hidden states. During inference, you can denoise for up to but not more steps than
56
+ `num_embeds_ada_norm`.
57
+ norm_type (`str`, *optional*, defaults to `"layer_norm"`):
58
+ The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`.
59
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
60
+ Whether or not to use elementwise affine in normalization layers.
61
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers.
62
+ caption_channels (`int`, *optional*):
63
+ The number of channels in the caption embeddings.
64
+ video_length (`int`, *optional*):
65
+ The number of frames in the video-like data.
66
+ """
67
+
68
+ @register_to_config
69
+ def __init__(
70
+ self,
71
+ num_attention_heads: int = 16,
72
+ attention_head_dim: int = 88,
73
+ in_channels: Optional[int] = None,
74
+ out_channels: Optional[int] = None,
75
+ num_layers: int = 1,
76
+ dropout: float = 0.0,
77
+ cross_attention_dim: Optional[int] = None,
78
+ attention_bias: bool = False,
79
+ sample_size: int = 64,
80
+ patch_size: Optional[int] = None,
81
+ activation_fn: str = "geglu",
82
+ num_embeds_ada_norm: Optional[int] = None,
83
+ norm_type: str = "layer_norm",
84
+ norm_elementwise_affine: bool = True,
85
+ norm_eps: float = 1e-5,
86
+ caption_channels: int = None,
87
+ video_length: int = 16,
88
+ ):
89
+ super().__init__()
90
+ inner_dim = num_attention_heads * attention_head_dim
91
+
92
+ # 1. Define input layers
93
+ self.height = sample_size
94
+ self.width = sample_size
95
+
96
+ interpolation_scale = self.config.sample_size // 64
97
+ interpolation_scale = max(interpolation_scale, 1)
98
+ self.pos_embed = PatchEmbed(
99
+ height=sample_size,
100
+ width=sample_size,
101
+ patch_size=patch_size,
102
+ in_channels=in_channels,
103
+ embed_dim=inner_dim,
104
+ interpolation_scale=interpolation_scale,
105
+ )
106
+
107
+ # 2. Define spatial transformers blocks
108
+ self.transformer_blocks = nn.ModuleList(
109
+ [
110
+ BasicTransformerBlock(
111
+ inner_dim,
112
+ num_attention_heads,
113
+ attention_head_dim,
114
+ dropout=dropout,
115
+ cross_attention_dim=cross_attention_dim,
116
+ activation_fn=activation_fn,
117
+ num_embeds_ada_norm=num_embeds_ada_norm,
118
+ attention_bias=attention_bias,
119
+ norm_type=norm_type,
120
+ norm_elementwise_affine=norm_elementwise_affine,
121
+ norm_eps=norm_eps,
122
+ )
123
+ for d in range(num_layers)
124
+ ]
125
+ )
126
+
127
+ # 3. Define temporal transformers blocks
128
+ self.temporal_transformer_blocks = nn.ModuleList(
129
+ [
130
+ BasicTransformerBlock(
131
+ inner_dim,
132
+ num_attention_heads,
133
+ attention_head_dim,
134
+ dropout=dropout,
135
+ cross_attention_dim=None,
136
+ activation_fn=activation_fn,
137
+ num_embeds_ada_norm=num_embeds_ada_norm,
138
+ attention_bias=attention_bias,
139
+ norm_type=norm_type,
140
+ norm_elementwise_affine=norm_elementwise_affine,
141
+ norm_eps=norm_eps,
142
+ )
143
+ for d in range(num_layers)
144
+ ]
145
+ )
146
+
147
+ # 4. Define output layers
148
+ self.out_channels = in_channels if out_channels is None else out_channels
149
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
150
+ self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
151
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
152
+
153
+ # 5. Latte other blocks.
154
+ self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)
155
+ self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
156
+
157
+ # define temporal positional embedding
158
+ temp_pos_embed = get_1d_sincos_pos_embed_from_grid(
159
+ inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt"
160
+ ) # 1152 hidden size
161
+ self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False)
162
+
163
+ self.gradient_checkpointing = False
164
+
165
+ def _set_gradient_checkpointing(self, module, value=False):
166
+ self.gradient_checkpointing = value
167
+
168
+ def forward(
169
+ self,
170
+ hidden_states: torch.Tensor,
171
+ timestep: Optional[torch.LongTensor] = None,
172
+ encoder_hidden_states: Optional[torch.Tensor] = None,
173
+ encoder_attention_mask: Optional[torch.Tensor] = None,
174
+ enable_temporal_attentions: bool = True,
175
+ return_dict: bool = True,
176
+ ):
177
+ """
178
+ The [`LatteTransformer3DModel`] forward method.
179
+
180
+ Args:
181
+ hidden_states shape `(batch size, channel, num_frame, height, width)`:
182
+ Input `hidden_states`.
183
+ timestep ( `torch.LongTensor`, *optional*):
184
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
185
+ encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
186
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
187
+ self-attention.
188
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
189
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
190
+
191
+ * Mask `(batcheight, sequence_length)` True = keep, False = discard.
192
+ * Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard.
193
+
194
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
195
+ above. This bias will be added to the cross-attention scores.
196
+ enable_temporal_attentions:
197
+ (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions.
198
+ return_dict (`bool`, *optional*, defaults to `True`):
199
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
200
+ tuple.
201
+
202
+ Returns:
203
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
204
+ `tuple` where the first element is the sample tensor.
205
+ """
206
+
207
+ # Reshape hidden states
208
+ batch_size, channels, num_frame, height, width = hidden_states.shape
209
+ # batch_size channels num_frame height width -> (batch_size * num_frame) channels height width
210
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width)
211
+
212
+ # Input
213
+ height, width = (
214
+ hidden_states.shape[-2] // self.config.patch_size,
215
+ hidden_states.shape[-1] // self.config.patch_size,
216
+ )
217
+ num_patches = height * width
218
+
219
+ hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings
220
+
221
+ added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
222
+ timestep, embedded_timestep = self.adaln_single(
223
+ timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
224
+ )
225
+
226
+ # Prepare text embeddings for spatial block
227
+ # batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size
228
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152
229
+ encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view(
230
+ -1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1]
231
+ )
232
+
233
+ # Prepare timesteps for spatial and temporal block
234
+ timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1])
235
+ timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1])
236
+
237
+ # Spatial and temporal transformer blocks
238
+ for i, (spatial_block, temp_block) in enumerate(
239
+ zip(self.transformer_blocks, self.temporal_transformer_blocks)
240
+ ):
241
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
242
+ hidden_states = torch.utils.checkpoint.checkpoint(
243
+ spatial_block,
244
+ hidden_states,
245
+ None, # attention_mask
246
+ encoder_hidden_states_spatial,
247
+ encoder_attention_mask,
248
+ timestep_spatial,
249
+ None, # cross_attention_kwargs
250
+ None, # class_labels
251
+ use_reentrant=False,
252
+ )
253
+ else:
254
+ hidden_states = spatial_block(
255
+ hidden_states,
256
+ None, # attention_mask
257
+ encoder_hidden_states_spatial,
258
+ encoder_attention_mask,
259
+ timestep_spatial,
260
+ None, # cross_attention_kwargs
261
+ None, # class_labels
262
+ )
263
+
264
+ if enable_temporal_attentions:
265
+ # (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size
266
+ hidden_states = hidden_states.reshape(
267
+ batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]
268
+ ).permute(0, 2, 1, 3)
269
+ hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1])
270
+
271
+ if i == 0 and num_frame > 1:
272
+ hidden_states = hidden_states + self.temp_pos_embed
273
+
274
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
275
+ hidden_states = torch.utils.checkpoint.checkpoint(
276
+ temp_block,
277
+ hidden_states,
278
+ None, # attention_mask
279
+ None, # encoder_hidden_states
280
+ None, # encoder_attention_mask
281
+ timestep_temp,
282
+ None, # cross_attention_kwargs
283
+ None, # class_labels
284
+ use_reentrant=False,
285
+ )
286
+ else:
287
+ hidden_states = temp_block(
288
+ hidden_states,
289
+ None, # attention_mask
290
+ None, # encoder_hidden_states
291
+ None, # encoder_attention_mask
292
+ timestep_temp,
293
+ None, # cross_attention_kwargs
294
+ None, # class_labels
295
+ )
296
+
297
+ # (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size
298
+ hidden_states = hidden_states.reshape(
299
+ batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]
300
+ ).permute(0, 2, 1, 3)
301
+ hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1])
302
+
303
+ embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1])
304
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
305
+ hidden_states = self.norm_out(hidden_states)
306
+ # Modulation
307
+ hidden_states = hidden_states * (1 + scale) + shift
308
+ hidden_states = self.proj_out(hidden_states)
309
+
310
+ # unpatchify
311
+ if self.adaln_single is None:
312
+ height = width = int(hidden_states.shape[1] ** 0.5)
313
+ hidden_states = hidden_states.reshape(
314
+ shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
315
+ )
316
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
317
+ output = hidden_states.reshape(
318
+ shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
319
+ )
320
+ output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute(
321
+ 0, 2, 1, 3, 4
322
+ )
323
+
324
+ if not return_dict:
325
+ return (output,)
326
+
327
+ return Transformer2DModelOutput(sample=output)
@@ -0,0 +1,340 @@
1
+ # Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Dict, Optional
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from ...configuration_utils import ConfigMixin, register_to_config
21
+ from ...utils import logging
22
+ from ..attention import LuminaFeedForward
23
+ from ..attention_processor import Attention, LuminaAttnProcessor2_0
24
+ from ..embeddings import (
25
+ LuminaCombinedTimestepCaptionEmbedding,
26
+ LuminaPatchEmbed,
27
+ )
28
+ from ..modeling_outputs import Transformer2DModelOutput
29
+ from ..modeling_utils import ModelMixin
30
+ from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm
31
+
32
+
33
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
34
+
35
+
36
+ class LuminaNextDiTBlock(nn.Module):
37
+ """
38
+ A LuminaNextDiTBlock for LuminaNextDiT2DModel.
39
+
40
+ Parameters:
41
+ dim (`int`): Embedding dimension of the input features.
42
+ num_attention_heads (`int`): Number of attention heads.
43
+ num_kv_heads (`int`):
44
+ Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
45
+ multiple_of (`int`): The number of multiple of ffn layer.
46
+ ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension.
47
+ norm_eps (`float`): The eps for norm layer.
48
+ qk_norm (`bool`): normalization for query and key.
49
+ cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
50
+ norm_elementwise_affine (`bool`, *optional*, defaults to True),
51
+ """
52
+
53
+ def __init__(
54
+ self,
55
+ dim: int,
56
+ num_attention_heads: int,
57
+ num_kv_heads: int,
58
+ multiple_of: int,
59
+ ffn_dim_multiplier: float,
60
+ norm_eps: float,
61
+ qk_norm: bool,
62
+ cross_attention_dim: int,
63
+ norm_elementwise_affine: bool = True,
64
+ ) -> None:
65
+ super().__init__()
66
+ self.head_dim = dim // num_attention_heads
67
+
68
+ self.gate = nn.Parameter(torch.zeros([num_attention_heads]))
69
+
70
+ # Self-attention
71
+ self.attn1 = Attention(
72
+ query_dim=dim,
73
+ cross_attention_dim=None,
74
+ dim_head=dim // num_attention_heads,
75
+ qk_norm="layer_norm_across_heads" if qk_norm else None,
76
+ heads=num_attention_heads,
77
+ kv_heads=num_kv_heads,
78
+ eps=1e-5,
79
+ bias=False,
80
+ out_bias=False,
81
+ processor=LuminaAttnProcessor2_0(),
82
+ )
83
+ self.attn1.to_out = nn.Identity()
84
+
85
+ # Cross-attention
86
+ self.attn2 = Attention(
87
+ query_dim=dim,
88
+ cross_attention_dim=cross_attention_dim,
89
+ dim_head=dim // num_attention_heads,
90
+ qk_norm="layer_norm_across_heads" if qk_norm else None,
91
+ heads=num_attention_heads,
92
+ kv_heads=num_kv_heads,
93
+ eps=1e-5,
94
+ bias=False,
95
+ out_bias=False,
96
+ processor=LuminaAttnProcessor2_0(),
97
+ )
98
+
99
+ self.feed_forward = LuminaFeedForward(
100
+ dim=dim,
101
+ inner_dim=4 * dim,
102
+ multiple_of=multiple_of,
103
+ ffn_dim_multiplier=ffn_dim_multiplier,
104
+ )
105
+
106
+ self.norm1 = LuminaRMSNormZero(
107
+ embedding_dim=dim,
108
+ norm_eps=norm_eps,
109
+ norm_elementwise_affine=norm_elementwise_affine,
110
+ )
111
+ self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
112
+
113
+ self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
114
+ self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
115
+
116
+ self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
117
+
118
+ def forward(
119
+ self,
120
+ hidden_states: torch.Tensor,
121
+ attention_mask: torch.Tensor,
122
+ image_rotary_emb: torch.Tensor,
123
+ encoder_hidden_states: torch.Tensor,
124
+ encoder_mask: torch.Tensor,
125
+ temb: torch.Tensor,
126
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
127
+ ):
128
+ """
129
+ Perform a forward pass through the LuminaNextDiTBlock.
130
+
131
+ Parameters:
132
+ hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
133
+ attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
134
+ image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
135
+ encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
136
+ encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
137
+ temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
138
+ cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
139
+ """
140
+ residual = hidden_states
141
+
142
+ # Self-attention
143
+ norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
144
+ self_attn_output = self.attn1(
145
+ hidden_states=norm_hidden_states,
146
+ encoder_hidden_states=norm_hidden_states,
147
+ attention_mask=attention_mask,
148
+ query_rotary_emb=image_rotary_emb,
149
+ key_rotary_emb=image_rotary_emb,
150
+ **cross_attention_kwargs,
151
+ )
152
+
153
+ # Cross-attention
154
+ norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
155
+ cross_attn_output = self.attn2(
156
+ hidden_states=norm_hidden_states,
157
+ encoder_hidden_states=norm_encoder_hidden_states,
158
+ attention_mask=encoder_mask,
159
+ query_rotary_emb=image_rotary_emb,
160
+ key_rotary_emb=None,
161
+ **cross_attention_kwargs,
162
+ )
163
+ cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
164
+ mixed_attn_output = self_attn_output + cross_attn_output
165
+ mixed_attn_output = mixed_attn_output.flatten(-2)
166
+ # linear proj
167
+ hidden_states = self.attn2.to_out[0](mixed_attn_output)
168
+
169
+ hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)
170
+
171
+ mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
172
+
173
+ hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
174
+
175
+ return hidden_states
176
+
177
+
178
+ class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
179
+ """
180
+ LuminaNextDiT: Diffusion model with a Transformer backbone.
181
+
182
+ Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
183
+
184
+ Parameters:
185
+ sample_size (`int`): The width of the latent images. This is fixed during training since
186
+ it is used to learn a number of position embeddings.
187
+ patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
188
+ The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
189
+ in_channels (`int`, *optional*, defaults to 4):
190
+ The number of input channels for the model. Typically, this matches the number of channels in the input
191
+ images.
192
+ hidden_size (`int`, *optional*, defaults to 4096):
193
+ The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
194
+ hidden representations.
195
+ num_layers (`int`, *optional*, default to 32):
196
+ The number of layers in the model. This defines the depth of the neural network.
197
+ num_attention_heads (`int`, *optional*, defaults to 32):
198
+ The number of attention heads in each attention layer. This parameter specifies how many separate attention
199
+ mechanisms are used.
200
+ num_kv_heads (`int`, *optional*, defaults to 8):
201
+ The number of key-value heads in the attention mechanism, if different from the number of attention heads.
202
+ If None, it defaults to num_attention_heads.
203
+ multiple_of (`int`, *optional*, defaults to 256):
204
+ A factor that the hidden size should be a multiple of. This can help optimize certain hardware
205
+ configurations.
206
+ ffn_dim_multiplier (`float`, *optional*):
207
+ A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
208
+ the model configuration.
209
+ norm_eps (`float`, *optional*, defaults to 1e-5):
210
+ A small value added to the denominator for numerical stability in normalization layers.
211
+ learn_sigma (`bool`, *optional*, defaults to True):
212
+ Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
213
+ predictions.
214
+ qk_norm (`bool`, *optional*, defaults to True):
215
+ Indicates if the queries and keys in the attention mechanism should be normalized.
216
+ cross_attention_dim (`int`, *optional*, defaults to 2048):
217
+ The dimensionality of the text embeddings. This parameter defines the size of the text representations used
218
+ in the model.
219
+ scaling_factor (`float`, *optional*, defaults to 1.0):
220
+ A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
221
+ overall scale of the model's operations.
222
+ """
223
+
224
+ @register_to_config
225
+ def __init__(
226
+ self,
227
+ sample_size: int = 128,
228
+ patch_size: Optional[int] = 2,
229
+ in_channels: Optional[int] = 4,
230
+ hidden_size: Optional[int] = 2304,
231
+ num_layers: Optional[int] = 32,
232
+ num_attention_heads: Optional[int] = 32,
233
+ num_kv_heads: Optional[int] = None,
234
+ multiple_of: Optional[int] = 256,
235
+ ffn_dim_multiplier: Optional[float] = None,
236
+ norm_eps: Optional[float] = 1e-5,
237
+ learn_sigma: Optional[bool] = True,
238
+ qk_norm: Optional[bool] = True,
239
+ cross_attention_dim: Optional[int] = 2048,
240
+ scaling_factor: Optional[float] = 1.0,
241
+ ) -> None:
242
+ super().__init__()
243
+ self.sample_size = sample_size
244
+ self.patch_size = patch_size
245
+ self.in_channels = in_channels
246
+ self.out_channels = in_channels * 2 if learn_sigma else in_channels
247
+ self.hidden_size = hidden_size
248
+ self.num_attention_heads = num_attention_heads
249
+ self.head_dim = hidden_size // num_attention_heads
250
+ self.scaling_factor = scaling_factor
251
+
252
+ self.patch_embedder = LuminaPatchEmbed(
253
+ patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
254
+ )
255
+
256
+ self.pad_token = nn.Parameter(torch.empty(hidden_size))
257
+
258
+ self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
259
+ hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
260
+ )
261
+
262
+ self.layers = nn.ModuleList(
263
+ [
264
+ LuminaNextDiTBlock(
265
+ hidden_size,
266
+ num_attention_heads,
267
+ num_kv_heads,
268
+ multiple_of,
269
+ ffn_dim_multiplier,
270
+ norm_eps,
271
+ qk_norm,
272
+ cross_attention_dim,
273
+ )
274
+ for _ in range(num_layers)
275
+ ]
276
+ )
277
+ self.norm_out = LuminaLayerNormContinuous(
278
+ embedding_dim=hidden_size,
279
+ conditioning_embedding_dim=min(hidden_size, 1024),
280
+ elementwise_affine=False,
281
+ eps=1e-6,
282
+ bias=True,
283
+ out_dim=patch_size * patch_size * self.out_channels,
284
+ )
285
+ # self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)
286
+
287
+ assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
288
+
289
+ def forward(
290
+ self,
291
+ hidden_states: torch.Tensor,
292
+ timestep: torch.Tensor,
293
+ encoder_hidden_states: torch.Tensor,
294
+ encoder_mask: torch.Tensor,
295
+ image_rotary_emb: torch.Tensor,
296
+ cross_attention_kwargs: Dict[str, Any] = None,
297
+ return_dict=True,
298
+ ) -> torch.Tensor:
299
+ """
300
+ Forward pass of LuminaNextDiT.
301
+
302
+ Parameters:
303
+ hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
304
+ timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
305
+ encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
306
+ encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
307
+ """
308
+ hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
309
+ image_rotary_emb = image_rotary_emb.to(hidden_states.device)
310
+
311
+ temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask)
312
+
313
+ encoder_mask = encoder_mask.bool()
314
+ for layer in self.layers:
315
+ hidden_states = layer(
316
+ hidden_states,
317
+ mask,
318
+ image_rotary_emb,
319
+ encoder_hidden_states,
320
+ encoder_mask,
321
+ temb=temb,
322
+ cross_attention_kwargs=cross_attention_kwargs,
323
+ )
324
+
325
+ hidden_states = self.norm_out(hidden_states, temb)
326
+
327
+ # unpatchify
328
+ height_tokens = width_tokens = self.patch_size
329
+ height, width = img_size[0]
330
+ batch_size = hidden_states.size(0)
331
+ sequence_length = (height // height_tokens) * (width // width_tokens)
332
+ hidden_states = hidden_states[:, :sequence_length].view(
333
+ batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
334
+ )
335
+ output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
336
+
337
+ if not return_dict:
338
+ return (output,)
339
+
340
+ return Transformer2DModelOutput(sample=output)